3 research outputs found

    The Power of Non-Determinism in Higher-Order Implicit Complexity

    Full text link
    We investigate the power of non-determinism in purely functional programming languages with higher-order types. Specifically, we consider cons-free programs of varying data orders, equipped with explicit non-deterministic choice. Cons-freeness roughly means that data constructors cannot occur in function bodies and all manipulation of storage space thus has to happen indirectly using the call stack. While cons-free programs have previously been used by several authors to characterise complexity classes, the work on non-deterministic programs has almost exclusively considered programs of data order 0. Previous work has shown that adding explicit non-determinism to cons-free programs taking data of order 0 does not increase expressivity; we prove that this - dramatically - is not the case for higher data orders: adding non-determinism to programs with data order at least 1 allows for a characterisation of the entire class of elementary-time decidable sets. Finally we show how, even with non-deterministic choice, the original hierarchy of characterisations is restored by imposing different restrictions.Comment: pre-edition version of a paper accepted for publication at ESOP'1

    Complexity Hierarchies and Higher-order Cons-free Term Rewriting

    Get PDF
    Constructor rewriting systems are said to be cons-free if, roughly, constructor terms in the right-hand sides of rules are subterms of the left-hand sides; the computational intuition is that rules cannot build new data structures. In programming language research, cons-free languages have been used to characterize hierarchies of computational complexity classes; in term rewriting, cons-free first-order TRSs have been used to characterize the class PTIME. We investigate cons-free higher-order term rewriting systems, the complexity classes they characterize, and how these depend on the type order of the systems. We prove that, for every K ≥\geq 1, left-linear cons-free systems with type order K characterize EK^KTIME if unrestricted evaluation is used (i.e., the system does not have a fixed reduction strategy). The main difference with prior work in implicit complexity is that (i) our results hold for non-orthogonal term rewriting systems with no assumptions on reduction strategy, (ii) we consequently obtain much larger classes for each type order (EK^KTIME versus EXPK−1^{K-1}TIME), and (iii) results for cons-free term rewriting systems have previously only been obtained for K = 1, and with additional syntactic restrictions besides cons-freeness and left-linearity. Our results are among the first implicit characterizations of the hierarchy E = E1^1TIME ⊊\subsetneq E2^2TIME ⊊\subsetneq ... Our work confirms prior results that having full non-determinism (via overlapping rules) does not directly allow for characterization of non-deterministic complexity classes like NE. We also show that non-determinism makes the classes characterized highly sensitive to minor syntactic changes like admitting product types or non-left-linear rules.Comment: extended version of a paper submitted to FSCD 2016. arXiv admin note: substantial text overlap with arXiv:1604.0893
    corecore