1,099 research outputs found

    The Polyhedron-Hitting Problem

    Full text link
    We consider polyhedral versions of Kannan and Lipton's Orbit Problem (STOC '80 and JACM '86)---determining whether a target polyhedron V may be reached from a starting point x under repeated applications of a linear transformation A in an ambient vector space Q^m. In the context of program verification, very similar reachability questions were also considered and left open by Lee and Yannakakis in (STOC '92). We present what amounts to a complete characterisation of the decidability landscape for the Polyhedron-Hitting Problem, expressed as a function of the dimension m of the ambient space, together with the dimension of the polyhedral target V: more precisely, for each pair of dimensions, we either establish decidability, or show hardness for longstanding number-theoretic open problems

    Boundary behavior of a constrained Brownian motion between reflecting-repellent walls

    Full text link
    Stochastic variational inequalities provide a unified treatment for stochastic differential equations living in a closed domain with normal reflection and (or) singular repellent drift. When the domain is a polyhedron, we prove that the reflected-repelled Brownian motion does not hit the non-smooth part of the boundary. A sufficient condition for non-hitting a face of the polyhedron is derived from the one-dimensional case. A complete answer to the question of attainability of the walls of the Weyl chamber may be given for a radial Dunkl process

    LP-based Covering Games with Low Price of Anarchy

    Full text link
    We present a new class of vertex cover and set cover games. The price of anarchy bounds match the best known constant factor approximation guarantees for the centralized optimization problems for linear and also for submodular costs -- in contrast to all previously studied covering games, where the price of anarchy cannot be bounded by a constant (e.g. [6, 7, 11, 5, 2]). In particular, we describe a vertex cover game with a price of anarchy of 2. The rules of the games capture the structure of the linear programming relaxations of the underlying optimization problems, and our bounds are established by analyzing these relaxations. Furthermore, for linear costs we exhibit linear time best response dynamics that converge to these almost optimal Nash equilibria. These dynamics mimic the classical greedy approximation algorithm of Bar-Yehuda and Even [3]

    A structural approach to kernels for ILPs: Treewidth and Total Unimodularity

    Get PDF
    Kernelization is a theoretical formalization of efficient preprocessing for NP-hard problems. Empirically, preprocessing is highly successful in practice, for example in state-of-the-art ILP-solvers like CPLEX. Motivated by this, previous work studied the existence of kernelizations for ILP related problems, e.g., for testing feasibility of Ax <= b. In contrast to the observed success of CPLEX, however, the results were largely negative. Intuitively, practical instances have far more useful structure than the worst-case instances used to prove these lower bounds. In the present paper, we study the effect that subsystems with (Gaifman graph of) bounded treewidth or totally unimodularity have on the kernelizability of the ILP feasibility problem. We show that, on the positive side, if these subsystems have a small number of variables on which they interact with the remaining instance, then we can efficiently replace them by smaller subsystems of size polynomial in the domain without changing feasibility. Thus, if large parts of an instance consist of such subsystems, then this yields a substantial size reduction. We complement this by proving that relaxations to the considered structures, e.g., larger boundaries of the subsystems, allow worst-case lower bounds against kernelization. Thus, these relaxed structures can be used to build instance families that cannot be efficiently reduced, by any approach.Comment: Extended abstract in the Proceedings of the 23rd European Symposium on Algorithms (ESA 2015
    corecore