23 research outputs found

    Lower bounds for the polygon exploration problem

    Get PDF
    We improve the best known lower bound for the polygon exploration problem from 1.2071 to 1.2825

    Online Exploration of Polygons with Holes

    Full text link
    We study online strategies for autonomous mobile robots with vision to explore unknown polygons with at most h holes. Our main contribution is an (h+c_0)!-competitive strategy for such polygons under the assumption that each hole is marked with a special color, where c_0 is a universal constant. The strategy is based on a new hybrid approach. Furthermore, we give a new lower bound construction for small h.Comment: 16 pages, 9 figures, submitted to WAOA 201

    Experimental data driven robot for pattern classification

    Get PDF
    In this paper the problem whether or not a human being can plan a tour for a mobile robot with a camera so that all changes in the room are detected within a time limit is investigated. A tour simulator and a game based on it are developed. The plan of the winner of the game is used for a driving real robot. It is shown that this plan is two times shorter (as Java bytecode for Lego RCX) than the average one

    Online Searching with an Autonomous Robot

    Full text link
    We discuss online strategies for visibility-based searching for an object hidden behind a corner, using Kurt3D, a real autonomous mobile robot. This task is closely related to a number of well-studied problems. Our robot uses a three-dimensional laser scanner in a stop, scan, plan, go fashion for building a virtual three-dimensional environment. Besides planning trajectories and avoiding obstacles, Kurt3D is capable of identifying objects like a chair. We derive a practically useful and asymptotically optimal strategy that guarantees a competitive ratio of 2, which differs remarkably from the well-studied scenario without the need of stopping for surveying the environment. Our strategy is used by Kurt3D, documented in a separate video.Comment: 16 pages, 8 figures, 12 photographs, 1 table, Latex, submitted for publicatio

    The Visibility Freeze-Tag Problem

    Get PDF
    In the Freeze-Tag Problem, we are given a set of robots at points inside some metric space. Initially, all the robots are frozen except one. That robot can awaken (or “unfreeze”) another robot by moving to its position, and once a robot is awakened, it can move and help to awaken other robots. The goal is to awaken all the robots in the shortest time. The Freeze-Tag Problem has been studied in different metric spaces: graphs and Euclidean spaces. In this thesis, we look at the Freeze-Tag Problem in polygons, and we introduce the Visibility Freeze-Tag Problem, where one robot can awaken another robot by “seeing” it. Furthermore, we introduce a variant of the Visibility Freeze-Tag Problem, called the Line/Point Freeze Tag Problem, where each robot lies on an awakening line, and one robot can awaken another robot by touching its awakening line. We survey the current results for the Freeze-Tag Problem in graphs, Euclidean spaces and polygons. Since the Visibility Freeze-Tag Problem bears some resemblance to the Watchman Route Problem, we also survey the background literature on the Watchman Route Problem. We show that the Freeze-Tag Problem in polygons and the Visibility Freeze-Tag Problem are NP-hard, and we present an O(n)-approximation algorithm for the Visibility Freeze-Tag Problem. For the Line/Point Freeze-Tag Problem, we give a polynomial time algorithm for the special case where all the awakening lines are parallel to each other. We prove that the general case is NP-hard, and we present an O(1)- approximation algorithm

    Deterministic Symmetry Breaking in Ring Networks

    Full text link
    We study a distributed coordination mechanism for uniform agents located on a circle. The agents perform their actions in synchronised rounds. At the beginning of each round an agent chooses the direction of its movement from clockwise, anticlockwise, or idle, and moves at unit speed during this round. Agents are not allowed to overpass, i.e., when an agent collides with another it instantly starts moving with the same speed in the opposite direction (without exchanging any information with the other agent). However, at the end of each round each agent has access to limited information regarding its trajectory of movement during this round. We assume that nn mobile agents are initially located on a circle unit circumference at arbitrary but distinct positions unknown to other agents. The agents are equipped with unique identifiers from a fixed range. The {\em location discovery} task to be performed by each agent is to determine the initial position of every other agent. Our main result states that, if the only available information about movement in a round is limited to %information about distance between the initial and the final position, then there is a superlinear lower bound on time needed to solve the location discovery problem. Interestingly, this result corresponds to a combinatorial symmetry breaking problem, which might be of independent interest. If, on the other hand, an agent has access to the distance to its first collision with another agent in a round, we design an asymptotically efficient and close to optimal solution for the location discovery problem.Comment: Conference version accepted to ICDCS 201

    Polygon Exploration with Time-Discrete Vision

    Full text link
    With the advent of autonomous robots with two- and three-dimensional scanning capabilities, classical visibility-based exploration methods from computational geometry have gained in practical importance. However, real-life laser scanning of useful accuracy does not allow the robot to scan continuously while in motion; instead, it has to stop each time it surveys its environment. This requirement was studied by Fekete, Klein and Nuechter for the subproblem of looking around a corner, but until now has not been considered in an online setting for whole polygonal regions. We give the first algorithmic results for this important algorithmic problem that combines stationary art gallery-type aspects with watchman-type issues in an online scenario: We demonstrate that even for orthoconvex polygons, a competitive strategy can be achieved only for limited aspect ratio A (the ratio of the maximum and minimum edge length of the polygon), i.e., for a given lower bound on the size of an edge; we give a matching upper bound by providing an O(log A)-competitive strategy for simple rectilinear polygons, using the assumption that each edge of the polygon has to be fully visible from some scan point.Comment: 28 pages, 17 figures, 2 photographs, 3 tables, Latex. Updated some details (title, figures and text) for final journal revision, including explicit assumption of full edge visibilit
    corecore