1,802 research outputs found

    An hybrid prediction-based routing approach for reducing routing inaccuracy in optical transport networks

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The advent of network technologies such as Automatically Switched Optical Networks (ASON) and Generalized Multiprotocol Label Switching (GMPLS) pave the way to the deployment of flexible optical transport networks (OTNs). The flexibility of OTNs is a feature highly demanded in dynamic scenarios where lightpaths are continuously set up and torn down on a short-term basis. Unfortunately, the availability and accuracy of network state information in dynamic scenarios are both limited, causing a severe impact on both performance and scalability of Routing and Wavelength Assignment (RWA) algorithms. In this paper we devise a promising routing scheme so-called Hybrid Prediction-based Routing (HPBR). HPBR combines prediction strategies with a novel method to select the most suitable routing metric, aiming at reducing both the dissemination of network state information and the blocking probability. Our findings validate that the proposed scheme significantly reduces the blocking probability compared with other routing schemes, while avoiding the need to periodically disseminate network state information.This work was supported by the Spanish Ministry of Economy under contract TEC2012-34682, and the Catalan Research Council (CIRIT) under contract 2009 SGR1508.Peer ReviewedPostprint (author's final draft

    Management of Spectral Resources in Elastic Optical Networks

    Get PDF
    Recent developments in the area of mobile technologies, data center networks, cloud computing and social networks have triggered the growth of a wide range of network applications. The data rate of these applications also vary from a few megabits per second (Mbps) to several Gigabits per second (Gbps), thereby increasing the burden on the Inter- net. To support this growth in Internet data traffic, one foremost solution is to utilize the advancements in optical networks. With technology such as wavelength division multiplexing (WDM) networks, bandwidth upto 100 Gbps can be exploited from the optical fiber in an energy efficient manner. However, WDM networks are not efficient when the traffic demands vary frequently. Elastic Optical Networks (EONs) or Spectrum Sliced Elastic Optical Path Networks (SLICE) or Flex-Grid has been recently proposed as a long-term solution to handle the ever-increasing data traffic and the diverse demand range. EONs provide abundant bandwidth by managing the spectrum resources as fine-granular orthogonal sub-carriers that makes it suitable to accommodate varying traffic demands. However, the Routing and Spectrum Allocation (RSA) algorithm in EONs has to follow additional constraints while allocating sub-carriers to demands. These constraints increase the complexity of RSA in EONs and also, make EONs prone to the fragmentation of spectral resources, thereby decreasing the spectral efficiency. The major objective of this dissertation is to study the problem of spectrum allocation in EONs under various network conditions. With this objective, this dissertation presents the author\u27s study and research on multiple aspects of spectrum allocation in EONs: how to allocate sub-carriers to the traffic demands, how to accommodate traffic demands that varies with time, how to minimize the fragmentation of spectral resources and how to efficiently integrate the predictability of user demands for spectrum assignment. Another important contribution of this dissertation is the application of EONs as one of the substrate technologies for network virtualization

    Cloud resource provisioning and bandwidth management in media-centric networks

    Get PDF

    End-to-end provisioning in multi-domain/multi-layer networks

    Get PDF
    The last decade has seen many advances in high-speed networking technologies. At the Layer 1 fiber-optic level, dense wavelength division multiplexing (DWDM) has seen fast growth in long-haul backbone/metro sectors. At the Layer 1.5 level, revamped next-generation SONET/SDH (NGS) has gained strong traction in the metro space, as a highly flexible sub-rate\u27 aggregation and grooming solution. Meanwhile, ubiquitous Ethernet (Layer 2) and IP (Layer 3) technologies have also seen the introduction of new quality of service (QoS) paradigms via the differentiated services (Diff-Serv) and integrated services (Intserv) frameworks. In recent years, various control provisioning standards have also been developed to provision these new networks, e.g., via efforts within the IETF, ITU-T, and OIF organizations. As these networks technologies gain traction, there is an increasing need to internetwork multiple domains operating at different technology layers, e.g., IP, Ethernet, SONET, DWDM. However, most existing studies have only looked at single domain networks or multiple domains operating at the same technology layer. As a result, there is now a growing level of interest in developing expanded control solutions for multi-domain/multi-layer networks, i.e., IP-SONET-DWDM. Now given the increase in the number of inter-connected domains, it is difficult for a single entity to maintain complete \u27global\u27 information across all domains. Hence, related solutions must pursue a distributed approach to handling multi-domain/multi-layer problem. Namely, key provisions are needed in the area of inter- domain routing, path computation, and signaling. The work in this thesis addresses these very challenges. Namely, a hierarchical routing framework is first developed to incorporate the multiple link types/granularities encountered in different network domains. Commensurate topology abstraction algorithms and update strategies are then introduced to help condense domain level state and propagate global views. Finally, distributed path computation and signaling setup schemes are developed to leverage the condensed global state information and make intelligent connection routing decisions. The work leverages heavily from graph theory concepts and also addresses the inherent distributed grooming dimension of multi-layer networks. The performance of the proposed framework and algorithms is studied using discrete event simulation techniques. Specifically, a range of multi-domain/multi-layer network topologies are designed and tested. Findings show that the propagation of inter-domain tunneled link state has a huge impact on connection blocking performance, lowering inter-domain connection blocking rates by a notable amount. More importantly, these gains are achieved without any notable increase in inter-domain routing loads. Furthermore, the results also show that topology abstraction is most beneficial at lower network load settings, and when used in conjunction with load-balancing routing.\u2
    corecore