109,162 research outputs found

    Cut distance identifying graphon parameters over weak* limits

    Full text link
    The theory of graphons comes with the so-called cut norm and the derived cut distance. The cut norm is finer than the weak* topology. Dole\v{z}al and Hladk\'y [Cut-norm and entropy minimization over weak* limits, J. Combin. Theory Ser. B 137 (2019), 232-263] showed, that given a sequence of graphons, a cut distance accumulation graphon can be pinpointed in the set of weak* accumulation points as a minimizer of the entropy. Motivated by this, we study graphon parameters with the property that their minimizers or maximizers identify cut distance accumulation points over the set of weak* accumulation points. We call such parameters cut distance identifying. Of particular importance are cut distance identifying parameters coming from subgraph densities, t(H,*). This concept is closely related to the emerging field of graph norms, and the notions of the step Sidorenko property and the step forcing property introduced by Kr\'al, Martins, Pach and Wrochna [The step Sidorenko property and non-norming edge-transitive graphs, J. Combin. Theory Ser. A 162 (2019), 34-54]. We prove that a connected graph is weakly norming if and only if it is step Sidorenko, and that if a graph is norming then it is step forcing. Further, we study convexity properties of cut distance identifying graphon parameters, and find a way to identify cut distance limits using spectra of graphons. We also show that continuous cut distance identifying graphon parameters have the "pumping property", and thus can be used in the proof of the the Frieze-Kannan regularity lemma.Comment: 48 pages, 3 figures. Correction when treating disconnected norming graphs, and a new section 3.2 on index pumping in the regularity lemm

    On the Crepant Resolution Conjecture in the Local Case

    Full text link
    In this paper we analyze four examples of birational transformations between local Calabi-Yau 3-folds: two crepant resolutions, a crepant partial resolution, and a flop. We study the effect of these transformations on genus-zero Gromov-Witten invariants, proving the Coates-Corti-Iritani-Tseng/Ruan form of the Crepant Resolution Conjecture in each case. Our results suggest that this form of the Crepant Resolution Conjecture may also hold for more general crepant birational transformations. They also suggest that Ruan's original Crepant Resolution Conjecture should be modified, by including appropriate "quantum corrections", and that there is no straightforward generalization of either Ruan's original Conjecture or the Cohomological Crepant Resolution Conjecture to the case of crepant partial resolutions. Our methods are based on mirror symmetry for toric orbifolds.Comment: 27 pages. This is a substantially revised and shortened version of my preprint "Wall-Crossings in Toric Gromov-Witten Theory II: Local Examples"; all results contained here are also proved there. To appear in Communications in Mathematical Physic

    From wormhole to time machine: Comments on Hawking's Chronology Protection Conjecture

    Get PDF
    The recent interest in ``time machines'' has been largely fueled by the apparent ease with which such systems may be formed in general relativity, given relatively benign initial conditions such as the existence of traversable wormholes or of infinite cosmic strings. This rather disturbing state of affairs has led Hawking to formulate his Chronology Protection Conjecture, whereby the formation of ``time machines'' is forbidden. This paper will use several simple examples to argue that the universe appears to exhibit a ``defense in depth'' strategy in this regard. For appropriate parameter regimes Casimir effects, wormhole disruption effects, and gravitational back reaction effects all contribute to the fight against time travel. Particular attention is paid to the role of the quantum gravity cutoff. For the class of model problems considered it is shown that the gravitational back reaction becomes large before the Planck scale quantum gravity cutoff is reached, thus supporting Hawking's conjecture.Comment: 43 pages,ReV_TeX,major revision
    corecore