39,440 research outputs found

    MGSim - Simulation tools for multi-core processor architectures

    Get PDF
    MGSim is an open source discrete event simulator for on-chip hardware components, developed at the University of Amsterdam. It is intended to be a research and teaching vehicle to study the fine-grained hardware/software interactions on many-core and hardware multithreaded processors. It includes support for core models with different instruction sets, a configurable multi-core interconnect, multiple configurable cache and memory models, a dedicated I/O subsystem, and comprehensive monitoring and interaction facilities. The default model configuration shipped with MGSim implements Microgrids, a many-core architecture with hardware concurrency management. MGSim is furthermore written mostly in C++ and uses object classes to represent chip components. It is optimized for architecture models that can be described as process networks.Comment: 33 pages, 22 figures, 4 listings, 2 table

    Correcting the World's Greatest Market Failure: Climate Change and the Multilateral Development Banks

    Get PDF
    Outlines efforts by multilaterals to link economic development and environmental policies. Discusses the need for more progress in realizing low carbon development in the developing world, the political and financial challenges, and recommendations

    Model-Based Proactive Read-Validation in Transaction Processing Systems

    Get PDF
    Concurrency control protocols based on read-validation schemes allow transactions which are doomed to abort to still run until a subsequent validation check reveals them as invalid. These late aborts do not favor the reduction of wasted computation and can penalize performance. To counteract this problem, we present an analytical model that predicts the abort probability of transactions handled via read-validation schemes. Our goal is to determine what are the suited points-along a transaction lifetime-to carry out a validation check. This may lead to early aborting doomed transactions, thus saving CPU time. We show how to exploit the abort probability predictions returned by the model in combination with a threshold-based scheme to trigger read-validations. We also show how this approach can definitely improve performance-leading up to 14 % better turnaround-as demonstrated by some experiments carried out with a port of the TPC-C benchmark to Software Transactional Memory

    Pledging, Populism, and the Paris Agreement: The Paradox of a Management-Based Approach to Global Governance

    Get PDF
    For many observers, the Paris Agreement signaled a historic breakthrough in addressing the problem of global warming. In its basic design, however, the Agreement is far from novel. Its dependence on each nation’s self-determined pledge to reduce greenhouse gases mirrors the domestic policy strategy called management-based regulation—a flexible regulatory approach that has been used to address problems as varied as food safety and toxic air pollution. In this article, I connect insights from research on management-based regulation to the international governance of climate change. Unfortunately, management-based regulation’s track-record at the domestic level gives little reason to expect that the Paris Agreement will lead to major long-term behavioral change needed to reduce greenhouse gas emissions. Although a management-based regulatory strategy may have been the best option available for securing a widespread global climate agreement, this strategy seems to offer little assurance of forward momentum on climate policy due to an inherent paradox created by the Agreement’s management-based design: global progress will depend on domestic politics. Especially given the rise of nationalistic populism around the world, the Paris Agreement will succeed only if political efforts within individual countries push back the threat to global cooperation posed by populism and convince domestic leaders to support serious climate action

    Mission and Safety Critical (MASC): An EVACS simulation with nested transactions

    Get PDF
    The Extra-Vehicular Activity Control System (EVACS) Simulation with Nested Transactions, a recent effort of the MISSION Kernel Team, is documented. The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity Control System, in particular, just the selection of communication frequencies. The simulation is a tool to explore mission and safety critical (MASC) applications. For the purpose of this effort, its current definition is quite narrow serving only as a starting point for prototyping purposes. (Note that EVACS itself has been supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover). The frequency selection scenario was modified to embed its processing in nested transactions. Again as a first step, only two aspects of transaction support were implemented in this prototype: architecture and state recovery. Issues of concurrency and distribution are yet to be addressed

    An EVACS simulation with nested transactions

    Get PDF
    Documented here is the recent effort of the MISSION Kernel Team on an Extra-Vehicular Activity Control System (EVACS) simulation with nested transactions. The team has implemented the EVACS simulation along with a design for nested transactions. The EVACS simulation is a project wide aid to exploring Mission and Safety Critical (MASC) applications and their support software. For this effort it served as a trial scenario for demonstrating nested transactions and exercising the transaction support design. The EVACS simulation is a simulation of some aspects of the Extra-Vehicular Activity Control System, in particular, just the selection of communication frequencies. Its current definition is quite narrow, serving only as a starting point for prototyping purposes. (EVACS itself may be supplanted in a larger scenario of a lunar outpost with astronauts and a lunar rover.) Initially the simulation of frequency selection was written without consideration of nested transactions. This scenario was then modified to embed its processing in nested transactions. To simplify the prototyping effort, only two aspects of the general design for transaction support have been implemented: the basic architecture and state recovery. The simulation has been implemented in the programming language Smalltalk. It consists of three components: (1) a simulation support code which provides the framework for initiating, interacting and tracing the system; (2) the EVACS application code itself, including its calls upon nested transaction support; and (3) a transaction support code which implements the logic necessary for nested transactions. Each of these components deserves further description, but for now only the transaction support is discussed
    • …
    corecore