7 research outputs found

    Boolean and Fp-Matrix Factorization: From Theory to Practice

    Get PDF
    Boolean Matrix Factorization (BMF) aims to find an approximation of a given binary matrix as the Boolean product of two low-rank binary matrices. Binary data is ubiquitous in many fields, and representing data by binary matrices is common in medicine, natural language processing, bioinformatics, computer graphics, among many others. Factorizing a matrix into low-rank matrices is used to gain more information about the data, like discovering relationships between the features and samples, roles and users, topics and articles, etc. In many applications, the binary nature of the factor matrices could enormously increase the interpretability of the data. Unfortunately, BMF is computationally hard and heuristic algorithms are used to compute Boolean factorizations. Very re-cently, the theoretical breakthrough was obtained independently by two research groups. Ban et al. (SODA 2019) and Fomin et al. (Trans. Algorithms 2020) show that BMF admits an effi-cient polynomial-time approximation scheme (EPTAS). However, despite the theoretical importance, the high double-exponential dependence of the running times from the rank makes these algorithms unimplementable in practice. The primary research question motivating our work is whether the theoretical advances on BMF could lead to practical algorithms. The main conceptional contribution of our work is the fol-lowing. While EPTAS for BMF is a purely theoretical advance, the general approach behind these algorithms could serve as the basis in designing better heuristics. We also use this strategy to develop new algorithms for related Fp -Matrix Factorization. Here, given a matrix A over a finite field GF (p) where p is a prime, and an integer r. our objective is to find a matrix B over the same field with GF (p) -rank at most r minimizing some norm of A-B. Our empirical research on synthetic and real-world data demonstrates the advantage of the new algorithms over previous works on BMF and Fp-Matrix Factorization. © 2022 IEEE

    The Minimum Description Length Principle for Pattern Mining: A Survey

    Full text link
    This is about the Minimum Description Length (MDL) principle applied to pattern mining. The length of this description is kept to the minimum. Mining patterns is a core task in data analysis and, beyond issues of efficient enumeration, the selection of patterns constitutes a major challenge. The MDL principle, a model selection method grounded in information theory, has been applied to pattern mining with the aim to obtain compact high-quality sets of patterns. After giving an outline of relevant concepts from information theory and coding, as well as of work on the theory behind the MDL and similar principles, we review MDL-based methods for mining various types of data and patterns. Finally, we open a discussion on some issues regarding these methods, and highlight currently active related data analysis problems

    A mathematical theory of making hard decisions: model selection and robustness of matrix factorization with binary constraints

    Get PDF
    One of the first and most fundamental tasks in machine learning is to group observations within a dataset. Given a notion of similarity, finding those instances which are outstandingly similar to each other has manifold applications. Recommender systems and topic analysis in text data are examples which are most intuitive to grasp. The interpretation of the groups, called clusters, is facilitated if the assignment of samples is definite. Especially in high-dimensional data, denoting a degree to which an observation belongs to a specified cluster requires a subsequent processing of the model to filter the most important information. We argue that a good summary of the data provides hard decisions on the following question: how many groups are there, and which observations belong to which clusters? In this work, we contribute to the theoretical and practical background of clustering tasks, addressing one or both aspects of this question. Our overview of state-of-the-art clustering approaches details the challenges of our ambition to provide hard decisions. Based on this overview, we develop new methodologies for two branches of clustering: the one concerns the derivation of nonconvex clusters, known as spectral clustering; the other addresses the identification of biclusters, a set of samples together with similarity defining features, via Boolean matrix factorization. One of the main challenges in both considered settings is the robustness to noise. Assuming that the issue of robustness is controllable by means of theoretical insights, we have a closer look at those aspects of established clustering methods which lack a theoretical foundation. In the scope of Boolean matrix factorization, we propose a versatile framework for the optimization of matrix factorizations subject to binary constraints. Especially Boolean factorizations have been computed by intuitive methods so far, implementing greedy heuristics which lack quality guarantees of obtained solutions. In contrast, we propose to build upon recent advances in nonconvex optimization theory. This enables us to provide convergence guarantees to local optima of a relaxed objective, requiring only approximately binary factor matrices. By means of this new optimization scheme PAL-Tiling, we propose two approaches to automatically determine the number of clusters. The one is based on information theory, employing the minimum description length principle, and the other is a novel statistical approach, controlling the false discovery rate. The flexibility of our framework PAL-Tiling enables the optimization of novel factorization schemes. In a different context, where every data point belongs to a pre-defined class, a characterization of the classes may be obtained by Boolean factorizations. However, there are cases where this traditional factorization scheme is not sufficient. Therefore, we propose the integration of another factor matrix, reflecting class-specific differences within a cluster. Our theoretical considerations are complemented by empirical evaluations, showing how our methods combine theoretical soundness with practical advantages

    Exponential families on resource-constrained systems

    Get PDF
    This work is about the estimation of exponential family models on resource-constrained systems. Our main goal is learning probabilistic models on devices with highly restricted storage, arithmetic, and computational capabilities—so called, ultra-low-power devices. Enhancing the learning capabilities of such devices opens up opportunities for intelligent ubiquitous systems in all areas of life, from medicine, over robotics, to home automation—to mention just a few. We investigate the inherent resource consumption of exponential families, review existing techniques, and devise new methods to reduce the resource consumption. The resource consumption, however, must not be reduced at all cost. Exponential families possess several desirable properties that must be preserved: Any probabilistic model encodes a conditional independence structure—our methods keep this structure intact. Exponential family models are theoretically well-founded. Instead of merely finding new algorithms based on intuition, our models are formalized within the framework of exponential families and derived from first principles. We do not introduce new assumptions which are incompatible with the formal derivation of the base model, and our methods do not rely on properties of particular high-level applications. To reduce the memory consumption, we combine and adapt reparametrization and regularization in an innovative way that facilitates the sparse parametrization of high-dimensional non-stationary time-series. The procedure allows us to load models in memory constrained systems, which would otherwise not fit. We provide new theoretical insights and prove that the uniform distance between the data generating process and our reparametrized solution is bounded. To reduce the arithmetic complexity of the learning problem, we derive the integer exponential family, based on the very definition of sufficient statistics and maximum entropy estimation. New integer-valued inference and learning algorithms are proposed, based on variational inference, proximal optimization, and regularization. The benefit of this technique is larger, the weaker the underlying system is, e.g., the probabilistic inference on a state-of-the-art ultra-lowpower microcontroller can be accelerated by a factor of 250. While our integer inference is fast, the underlying message passing relies on the variational principle, which is inexact and has unbounded error on general graphs. Since exact inference and other existing methods with bounded error exhibit exponential computational complexity, we employ near minimax optimal polynomial approximations to yield new stochastic algorithms for approximating the partition function and the marginal probabilities. Changing the polynomial degree allows us to control the complexity and the error of our new stochastic method. We provide an error bound that is parametrized by the number of samples, the polynomial degree, and the norm of the model’s parameter vector. Moreover, important intermediate quantities can be precomputed and shared with the weak computational device to reduce the resource requirement of our method even further. All new techniques are empirically evaluated on synthetic and real-world data, and the results confirm the properties which are predicted by our theoretical derivation. Our novel techniques allow a broader range of models to be learned on resource-constrained systems and imply several new research possibilities
    corecore