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Abstract

This work is about the estimation of exponential family models on resource-constrained
systems. Our main goal is learning probabilistic models on devices with highly re-
stricted storage, arithmetic, and computational capabilities—so called, ultra-low-power
devices. Enhancing the learning capabilities of such devices opens up opportunities for
intelligent ubiquitous systems in all areas of life, from medicine, over robotics, to home
automation—to mention just a few. We investigate the inherent resource consumption of
exponential families, review existing techniques, and devise new methods to reduce the
resource consumption. The resource consumption, however, must not be reduced at all
cost. Exponential families possess several desirable properties that must be preserved:
Any probabilistic model encodes a conditional independence structure—our methods
keep this structure intact. Exponential family models are theoretically well-founded.
Instead of merely finding new algorithms based on intuition, our models are formalized
within the framework of exponential families and derived from first principles. We do
not introduce new assumptions which are incompatible with the formal derivation of the
base model, and our methods do not rely on properties of particular high-level appli-
cations. To reduce the memory consumption, we combine and adapt reparametrization
and regularization in an innovative way that facilitates the sparse parametrization of
high-dimensional non-stationary time-series. The procedure allows us to load models in
memory constrained systems, which would otherwise not fit. We provide new theoret-
ical insights and prove that the uniform distance between the data generating process
and our reparametrized solution is bounded. To reduce the arithmetic complexity of
the learning problem, we derive the integer exponential family, based on the very def-
inition of sufficient statistics and maximum entropy estimation. New integer-valued
inference and learning algorithms are proposed, based on variational inference, proximal
optimization, and regularization. The benefit of this technique is larger, the weaker
the underlying system is, e.g., the probabilistic inference on a state-of-the-art ultra-low-
power microcontroller can be accelerated by a factor of 250. While our integer inference
is fast, the underlying message passing relies on the variational principle, which is inex-
act and has unbounded error on general graphs. Since exact inference and other existing
methods with bounded error exhibit exponential computational complexity, we employ
near minimax optimal polynomial approximations to yield new stochastic algorithms
for approximating the partition function and the marginal probabilities. Changing the
polynomial degree allows us to control the complexity and the error of our new stochastic
method. We provide an error bound that is parametrized by the number of samples, the
polynomial degree, and the norm of the model’s parameter vector. Moreover, important
intermediate quantities can be precomputed and shared with the weak computational de-
vice to reduce the resource requirement of our method even further. All new techniques
are empirically evaluated on synthetic and real-world data, and the results confirm the
properties which are predicted by our theoretical derivation. Our novel techniques al-
low a broader range of models to be learned on resource-constrained systems and imply
several new research possibilities.
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1 Introduction

This work is about machine learning on devices that underlie specific resource con-
straints. In machine learning, data, collected from any reasonable data generating pro-
cess, is used to learn the parameters of a function or model that in some well-defined way
depends on the data. Learning is guided by a prespecified loss function that quantifies
the quality of a specific choice of parameters—it measures how well the parameters fit
to the data. Machine learning models can solve several abstract tasks: We might want
to assign tags or labels to observed data, detect structure or interactions within data, or
predict how the underlying data generating process might behave in the future. Most
often, good model parameters are found via numerical optimization, i.e., the process
of approaching the loss function’s minimum by exploiting information about its deriva-
tives. It is common that certain nice properties or quality assertions can be guaranteed
for optimal parameter settings—such guarantees might be required if a method has to
be applied in practice.

While the term “machine learning” subsumes a huge variety of models, parametriza-
tions, loss functions and optimization methods, we restrict ourselves to probabilistic
models that belong to the exponential family. On the one hand, probabilistic models
allow us to represent complex dependencies between observable and unobservable entities
explicitly. They let us quantify uncertainty in a consistent and theoretically well-founded
manner, while being completely agnostic about the particular prediction or modelling
task. On the other hand, the simple formal description of exponential families allows
us to identify all sources of resource consumption. The exponential family arises from
first principles, without incorporating assumptions or high-level rationalization efforts.
Hence, results derived in this setting are valid for a manifold of tasks and models. Some
specific instantiations of them have indeed been explored in the literature.

Even with the restriction to probabilistic models, the number of existing machine
learning applications on or for resource-constrained systems is huge—it ranges from
stereo matching [120, 39, image classification [58 [[99] 197], image segmentation [190]
15], and speech recognition [219]; over localization [T09, B0, 5], tracking [193] [T0T],
health monitoring [218] [I88 249], and energy modelling [148]; to agriculture [38| [,
robotics [61], [62], [136], [T5] [T4], and sensor networks [38] as well as behavioral modelling
[T47, (521 791 541 [B55] [72) 118, B3] The large variety of possible applications of machine
learning makes it more difficult but less essential to discuss each of them in-depth.

In general, running machine learning models in resource-constrained computational
systems opens challenges in terms of both, execution time and energy consumption.
Learning and applying the model directly on the ubiquitous device that actually mea-
sures the data has several advantages. First, it reduces the communication cost and
thus the energy consumption. Second, not transferring data to a central server increases
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1 Introduction

privacy and autonomy. Third, the measuring device itself can benefit from machine
learning, e.g., learning from operation system log files allows for a more efficient “per-
sonalized” power management. These advantages are accompanied by restrictions of the
computational capabilities which shrink the set of models that can be considered to be
feasible.

However, the established computational paradigm of machine learning and other com-
putationally demanding areas of computer science is to run algorithms on highly parallel
compute servers with a maximum supply of cores, main memory, storage and intercon-
nectivity. Here, maximum means as much as the current state-of-the-art architecture
can handle. Moreover, some of the fastest systems to date are explicitly designed for
machine learning and data analysis tasks [47 [46]. They are built to deliver the high-
est possible performance, but their resource consumption is far from optimal, especially
when human-like performance is required on non-trivial tasks. While the typical adult
human brain runs on less than 20 watts, the IBM Watson machine that defeated Jeop-
ardy! champions depends on ninety compute servers, each of which consumes around
one thousand watts [105]. AlphaGo, the system that has beaten professional Go play-
ers, runs on 1920 CPUs and another 280 GPUs [211]. While AlphaGo’s exact energy
consumption is unknown, the hardware suggests, that hundreds of thousands of watts
are required. Indeed, the energy efficiency of high-end compute hardware, measured via
FLOPS (floating-point operations per second) per watt, has increased during the last
decade. At the same time, the complexity of state-of-the-art machine learning models do
also increase—at least if model complexity is measured by the number of parameters or
the depth of function compositions. However, human-like performance with human-like
resource requirements can only be achieved if we adapt machine learning methods to
the underlying hardware architecture.

It is true that in computer science, we usually want to abstract the software from the
hardware whenever possible. If one wants to study the underlying algorithmic concept,
this is a reasonable approach. However, if the properties of an algorithm—say, qual-
ity guarantees of a machine learning method—are already well understood, one may
consider the computational capabilities of the underlying system explicitly and make
full use of the whole system. Regarding the state-of-the-art machine learning systems
mentioned above, explicit knowledge about the number of hardware threads, memory
hierarchy, memory sizes, bus systems as well as network connectivity should be taken
into account. Even new machine learning data structures and algorithms are designed
with hardware specifics in mind [48], [43] 207, [76]. Tailoring algorithms to an underlying
hardware architecture has become a trend also in programming graphics processing units
(GPU), video game consoles, smartphones, cyber physical systems, or quantum comput-
ers. Moreover, with the ever increasing number of battery powered systems, consumer
electronics, portable medical devices, robots, and several kinds of unmanned vehicles,
multiple new areas for machine learning techniques emerge, where powerful hardware
is occasionally not available—either because of its restricted size, weight or energy con-
sumption. Hence, we should include knowledge about such resource constraints in our
machine learning models, as we already do in case of hardware accelerators and memory
hierarchies. Instead of fueling machine learning with electrical power, we should identify
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which computational capabilities are really necessary.

Requirements on high-level computational resources surely depend on the specific
task. Some tasks have a high computational complexity, while others can be solved
instantly. Some learning tasks inherently require large amounts of memory while others
don’t. These aspects are caused by the machine learning model and the corresponding
algorithms, but the actual energy consumption depends on the low-level computational
architecture, specified via clock-rates, memory types, functional units, and the number
of clock-cycles that are required for arithmetic instructions [45]. Dynamic random-
access memory (DRAM), for example, has to be refreshed in order to keep the values
in memory—a procedure which consumes much more energy than, e.g., just reading the
data [201] 202]. Hence, even the time for which values have to be stored can have an
impact on the energy consumption. Such observations are of special importance when
the underlying architecture is based on microcontroller units (MCU), field programmable
gate arrays (FPGA), or application-specific integrated circuits (ASIC), which are usually
equipped with the amount of memory that is required for a designated task.

At the time of writing this thesis, machine learning under resource constraints is
discussed by some authors [[13], 31 238 [36], but none of them proposes to adapt the
model itself to resource requirements and the underlying hardware architecture. Instead,
merely algorithms or specific implementations are investigated. Some authors consider
a so called budget, either of computation time that is available for prediction, or on
the number of data samples that are available for training. Other authors develop and
study specialized hardware implementations of algorithms for probabilistic models. E.g.,
FPGA and ASIC implementations of the sum-product algorithm [I30] are presented in
1200, 220, 5], 117], an FPGA implementation of Gibbs sampling [74] in [IT2] 220], and
experimental results on resistive switching memory devices can be found in [65].

In contrast to these “pointwise” approaches, we want to move beyond including knowl-
edge about the underlying hardware architecture into algorithms. We aim at a principled
investigation of the machine learning model itself, with respect to the resources it con-
sumes, and resource constraints that could arise. Exemplary constraints that could arise
are:

e if the memory requirement of a model grows with the number of observed data
points, it is a constraint to have a finite, constant amount of memory;

e if we need to evaluate a transcendental function, it is indeed a constraint to have
no floating-point coprocessor;

e if computationally demanding algorithms are required, it is a constraint when the
CPU has a low clock rate.

After constraints have been identified, we review existing methods for the reduction
of resource consumption, discuss their shortcomings, and propose new techniques to
leverage the constraints. However, the proposed techniques should not harm the model
itself.
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Memory/Computation Computation

Random variable Sufficient statistic Normalization

N \

po(X = ) = exp((0, o(x)) — A(6))

A

Base Parameter Data

Arithmetic Memory

Figure 1.1: Essential components of exponential family models for a (n-dimensional)
random variable X.

1.1 Approach and Techniques

Our central object of study is the exponential family [227]. To understand which re-
sources are consumed and why they are consumed, one has to disassemble the model into
its parts. The essential components of an exponential family model, together with their
primary resource requirement, are sketched in Fig. [[.1 Within this thesis, we analyze
these components, grouped by their primary resource consumption, where we devote a
separate chapter to each resource. Therein, existing methods to reduce the amount of
required resources are reviewed and discussed. The insights gained from these discus-
sions allow us to extend the state-of-the-art by adapting the essential components of the
exponential family to specific constraints. The resource consumption, however, must not
be reduced at all cost. Exponential family members possess several desirable properties
that should be preserved by our proposed extensions. More precisely:

1. Any probabilistic model encodes a conditional independence structure—our meth-
ods must keep this structure intact.

2. Exponential family models are theoretically well-founded. Instead of merely propos-
ing new algorithms, our extensions and their effects must be formalized within the
framework of exponential families.

3. Exponential family models are derived from first principles—our techniques must
not introduce new assumptions which are incompatible with the formal derivation
of the base model.

4. Our extensions should not rely on properties of particular high-level applications or
tasks—this does not exclude low-level characteristics like discrete random variables
or time-series data.

By restricting ourselves to techniques which satisfy the above requirements, we ensure
their generality and compatibility with each other and with existing methods. Moreover,
this eases the analysis of the theoretical implications of our techniques w.r.t. the model’s
resource consumption and quality.
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1.1 Approach and Techniques

Some exponential family related tasks have a rather high computational complexity—
at least in their most general realization. In practice, these hard tasks are either com-
pletely avoided or approximated and a lot of research is devoted to the study of such
approximate inference techniques. We indeed rely on some existing techniques, like
variational inference or sampling, and extend them to fit specific resource constraints.
Motivated by the nature of the essential components which are shown in Fig. our
extensions are based on reparametrization, regularization, as well as numerical and arith-
metic approximation:

e Reparametrization is a standard concept of the exponential family. Instead
of using a plain vector, say 6, to parametrize the model, one employs another
(possibly lower dimensional) vector A which can be “uncompressed” by some
function n to generate the natural parameter @ = n(A). We use this technique to
remove redundancies in @ which are then not contained in A.

e In machine learning, regularization is known to prevent models from overfit-
ting and to induce sparsity [203 [I57, [86]. In the context of probabilistic models,
regularization has been shown to detect the conditional independence structure
between random variables [203] 144, 189 240]. However, when the correct struc-
ture is known, further regularization will remove conditional indecencies from the
model. Since one of our requirements is to keep the conditional independence
structure intact, we propose a combination of regularization and reparametriza-
tion which results in sparse models without touching the structure. This reduces
the memory consumption of the model. Regularization also plays a central role
when dealing with arithmetic limitations.

e Arithmetic approximation is inherent in digital computers. Real-valued num-
bers are stored with a finite amount of bits. If the native precision of a number
exceeds the bit-length, rounding errors are unavoidable without increasing the bit-
length of the representation. In settings where many calculations are approximate
or based on corrupted or noisy data, even ordinary 32 or 64 precision might be spu-
rious. Recent results in machine learning suggest that the precision can safely be
reduced without harming the quality of the resulting model |80, [I38]. We drive this
idea to an extreme, in which all computations are required to be integer-valued.
This reduces the required complexity of the underlying computational circuit and
prevents overfitting.

e Polynomial functions underlay a multitude of mathematical theories and appli-
cations. They are, among other things, used to find approximations to compli-
cated functions [142], while possessing many appealing properties like error bounds
and relatively easy estimation procedures. We employ a polynomial approxi-
mation of the core of any exponential family, namely to the potential function
exp((0, ¢(x))), to derive a novel sampling-based inference technique. This reduces
the computational complexity and guarantees error bounds, while maintaining the
full conditional independence structure.
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1 Introduction

While these techniques aim at reducing the usage of some target resource, they also
introduce other side-effects to the model and its resource consumption. E.g., restricting
every computation to 16 bit integer arithmetic removes the need for a floating-point
coprocessor, lowers the memory requirements (compared to 32 bit floating-point num-
bers), and introduces an approximation error. In the respective chapters, we discuss
these side-effects, and derive quality guarantees.

1.2 Organization

Throughout this thesis, we analyze to what extend the resource consumption of exponen-
tial family models can be reduced via reparametrization, regularization, and numerical
and arithmetic approximation. Our techniques are motivated by and derived from the
model’s essential components and their primary resource requirements (cf. Fig. .
Three chapters, each devoted to one resource, establish the body of this thesis. Within
each chapter, we investigate which parts of the model consume the respective resource,
review existing methods, and identify possible improvements. We then propose exten-
sions to the state-of-the-art to address the identified shortcomings, derive their theoret-
ical and algorithmic implications, and conduct experimental analyses. These chapters
are framed by a background chapter, containing the mathematical and statistical foun-
dations, and a discussion chapter, in which we summarize our work and discuss our
methods in the context of ultra-low-power (ULP) microcontroller units. The contents
can be summarized as follows:

Background. Chapter [2 consists of the material that is required for a sound presen-
tation of the rest of the thesis. The presentation of this material is by necessity brief,
but it provides sufficient details to follow the methods and analysis presented in subse-
quent chapters. The chapter begins with an overview on basic terms and definitions of
probability, information theory, conditional independence structures, and probabilistic
inference, altogether building the essential foundation of probabilistic models. Exponen-
tial family models, their estimation, and their key properties are presented in Section[2.4]
Parameter estimation and regularization are important topics throughout the this the-
ses. They depend strongly on results and techniques from numerical optimization which
we introduce in Section 2.3] In the remainder, we focus on techniques from numeri-
cal integration and polynomial approximation which form the base for a new inference
algorithm.

Memory. The amount of random-access memory that is available to a system is limited.
In addition refreshing the state of DRAM cells constantly consumes energy [201] 202].
In Chapter [3] we investigate all parts of the model that need to be stored and require
actual memory. While the memory requirement for the data is fixed by the so-called suffi-
cient statistic, the number of model parameters can be controlled via reparametrization.
Classic reparametrization approaches from statistical physics [103] and natural language
processing [198] are reviewed, and discussed in the context of generic time-series sensor
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data which is gathered by mobile or autonomous systems. The discussion leads to a new
kind of piecewise-linear reparametrization. Combining the new reparametrization with
[1-regularization allows the model to detect redundancies in its natural parameters which
results in sparse models that cannot be found using plain regularization. The technique,
called spatio-temporal random field (STRF) [169], has already proven to be useful for
modelling car traffic and traffic congestion [168] 7] [190] [I37], usage of mobile network
cells [I47], and smartphone app usage [I74]. Moreover, we explain how to extend STRF
to non-stationary linear dynamical systems [173].

Arithmetic. The second resource type arises from the actual operations that are re-
quired to evaluate the model. The core of the exponential family is the exponential
function, which is transcendental and inherently requires real-valued arithmetic. Cir-
cuits for floating-point arithmetic are larger and more complex than circuits for integer
arithmetic and therefore, require more resources. Hence, resource-constrained systems
may not be equipped with floating-point units; they have to emulate floating-point arith-
metic via integer arithmetic, which is very costly in terms of clock cycles. Thus, machine
learning with low-precision arithmetic and quantization recently became a vivid research
area [80), [19] 37, 138]. In Chapter , we derive new integer-only algorithms and corre-
sponding error bounds for learning and inference in exponential families members with
integer parameters [I70, [[71]. Integer-only inference is based on approximating the bit-
lengths of marginal probabilities, while the parameter estimation procedure is based on
an integer regularization method—both techniques are entirely new.

Computation and Quality. We discuss the interplay of computational complexity and
approximation quality in Chapter [)] Processing units are restricted in terms of their
physical size and the heat they generate. Computing exact (marginal) probabilities
is #P-complete in general [212] 229]. For certain sub-classes, however, polynomial-
time algorithms are known [227, 191l [78], and significant research efforts have been
conducted in order to derive approximations for more general cases. However, most
existing methods either provide no error bounds or exhibit a computational complexity
that prevents them from running on resource-constrained systems. We consider a near-
minimax optimal polynomial approximation to the potential function of the exponential
family. This allows us to derive new deterministic and randomized algorithms for the
partition function and the marginal probabilities. The randomized algorithm relies on
low-dimensional Monte Carlo sampling and exhibits low resource requirements. The
approximation error of the method is bounded and depends on the polynomial degree,
the norm of the model’s parameter vector, and the number of Monte Carlo samples.

1.3 Contributions

Our results have implications for both, the abstract topic of this thesis (probabilistic
models on resource-constrained systems) and for a more general understanding of the
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1 Introduction

fine grained complexity of exponential family models. We summarize the most important
contributions in the order in which they appear in the thesis. In the third chapter,

we combine and adapt reparametrization and regularization in an innovative way
that facilitates a sparse parametrization of high-dimensional non-stationary time-
series, without altering the conditional independence structure. The procedure is
completely novel and allows us to load models in memory constrained systems,
which would otherwise not be possible.

We provide new theoretical results, showing that our piecewise linear reparametriza-
tion is universal, in the sense that it is a bijection between the space of all natural
parameter vectors and the space of all reparametrized vectors.

Moreover, we prove that any sparsity in the reparametrized vector implies a ne-
glectable difference in the parameters of consecutive time steps, and that the uni-
form distance between the parameter vector of the data generating process and the
reparametrized solution is bounded. Both statements hold with high probability.

We derive the Lipschitz constants of the reparametrized model to facilitate fast
parameter learning without stepsize adaption.

Even in the non-constrained setting, our technique reduces the effective degrees
of freedom and hence, eases the learning problem. This contributes in a general
manner to the area of probabilistic spatio-temporal modelling.

In Chapter 4, based on a classic result by Pitman [I75],
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we show that the exponential family can be derived with any base. Following this
result, we present the base-2 exponential family. By restricting the parameter space
to the positive integers, we show that the exponential function (which inherently
requires real-valued arithmetic) can be replaced by a simple bit-shift operation.

We phrase the integer restriction as another reparametrization, and derive a bound
on the difference of log-likelihood values of the true model and the integer model.

Based on loopy belief propagation (LBP), we derive the bit-length propagation
algorithm for probabilistic inference. The corresponding message computations
can be carried out without any real-valued computation. By assuming uniform
and independent rounding errors, we show that the expected Kullback-Leibler

divergence between the result of bit-length propagation and the corresponding
LBP result is bounded.

Existing methods for mixed-integer optimization rely on real-valued computations,
which is by assumption slow on resource-constrained systems. Hence, we introduce
an entirely new method for optimization over the integers. To this end, we employ
a blockwise proximal gradient descent method with a new type of regularization.
Formally, the optimization is still carried out over the real-valued space. However,



1.3 Contributions

we show that for a specific choice of regularization weight, all solutions (and all
intermediate values) generated by our new integer gradient descent method are
integers.

e Beyond integer-valued exponential families, our new optimization method is a
general alternative to branch-and-bound and outer-approximation techniques, and
may hence be regarded as contribution to the field of mixed-integer programming.

In the fifth chapter, based on results in numerical approximation theory,

e we derive a near-minimax optimal polynomial approximation to the potential func-
tion. While this idea is well known for the approximation of intractable integrals,
it has never been applied to the partition function of the exponential family for
discrete random variables.

e We derive an error bound on our new approximation to the partition function.
The error depends on the degree of the underlying polynomial approximation,
which in turn depends on the norm of the parameter vector. Since the norm
can be controlled via regularization, we discover yet another connection between
regularization and the resource consumption of the model.

e We identify a new property of sufficient statistics that allows us to derive an algo-
rithm for the partition function whose complexity is polynomial in the parameter
dimension and exponential in the polynomial degree. Moreover, we show that the
sufficient statistic of any discrete state Markov random field has this property, and
we discover under which circumstances continuous sufficient statistics also have
this property.

e Based on a new probability mass function over k-ary index tuples, we derive a
Monte Carlo sampling method whose result has a bounded relative distance to the
true partition function with high probability. Due to its low resource requirements,
the sampling method is well suited for resource-constrained systems.

e Moreover, we show how our algorithms can be used for marginal inference and
approximate maximum likelihood estimation.

e Since only a few approaches are known for the approximation of partition func-
tions, the new method can be regarded as contribution to the field of probabilistic
inference in general.

Finally, in Chapter 6,

e we discuss our findings in the context of ULP microcontroller units, and present
new perspectives for future research.

e Specifically, we study by how much the proposed methods increase the size of
models that can be applied on real-world ULP systems and perform exemplary
benchmarks. The results show, that models can be applied on systems which are
inconceivable without our modifications.
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e Since basically no results for general exponential family models on ULP systems
exists, our findings can guide the choice of appropriate hardware architectures for
future machine learning applications in resource-constrained systems.

In summary, the work presented here forms a cohesive investigation of learning and
applying exponential family models under resource constraints. While each part has
its own implications, they are inherently connected by regularization, i.e., the idea that
constraints on the model space should reflect our knowledge about specific resource
constraints. We hope that the results herein will prove useful for many more problems
than those we have explicitly addressed. Some ideas for future directions are outlined
in Chapter [6]

1.4 Acknowledgements

During the investigations which finally resulted in this thesis, intermediate states of re-
search have been submitted or published in the form of conference and journal papers.
We summarize at the end of each chapter in how far this thesis extends the already
published results. I thank all of my coauthors who supported me in developing some
basic steps towards exponential families on resource-constrained systems. The basics of
regularization and reparametrization of spatio-temporal models are based on research
done together with Sangkyun Lee and Katharina Morik [I68] [[69]. The experimental
results on car traffic data are inspired by work with Alexander Artikis, Frangois Schnit-
zler and Thomas Liebig [7 190, [137]. The extension of the spatio-temporal model to
multivariate Gaussian data is joint work with Frangois Schnitzler [I73]. Work on integer
undirected models has also been conducted with Sangkyun Lee and Katharina Morik
[T70, I71]. The integer regularization technique is based on binary regularization which
is joint work with Sibylle Hess [03]. Initial experiments on smartphone data were done
together with Stefan Michaelis, Jochen Streicher, Olaf Spinczyk and Katharina Morik
[147, [I74]. My work has been funded by the Deutsche Forschungsgemeinschaft (DFG)
via the collaborative research center SFB 876, project Al.

24



2 Background

Probability theory is the basic language in which our models and ideas are phrased. It
is essential for almost all sciences and unifies the idea that most natural phenomena
are either too complex or simply not fully observed to construct deterministic models.
We provide the basic terms and definitions of probability and information theory in the
appendix. Here, we start with a summary of our notation, followed by the core concepts,
namely probabilistic graphical models and exponential families.

2.1 Notation

Uppercase, boldface letters, like X, denote random variables (Definition . Each
random variable has its own state space, which is denoted by a calligraphic version of
the random variable’s letter, e.g., X denotes the state space of X. State spaces are
sets that contain all possible values, also called realizations, a random variable can take.
Generic realizations are denoted by lowercase boldface letters, like . The event that
a random variable X takes a specific value * € X is denoted by X = x, and the
probability density{]] of this event is p(z) = p(X = z). Conditional probabilities are
denoted by p(X = x | O) for an arbitrary event O. Details about probability measures
and densities can be found in Section [7.1] If multiple realizations of a random variable
are collected, we enumerate them and address them via superscript, i.e., !, 22, =3 are
three arbitrary but fixed realizations of the random variable X .

Here, any random variable has a non-zero, integer dimension n > 0. The i-th dimen-
sion of X is addressed by subscript: X; (1 < i < n). Moreover, multiple dimensions
may be addressed at once via sets of indices U C N, e.g., Xy. The same notation is
used to address single or multiple dimensions of X and x, e.g., X;, Xy, «;, xy—A; is the
state space of the i-th component of X, and «x; is a possible realization of X;.

2.2 Graphical Models and Exponential Families

Any n-dimensional random variable X can obey a large number of conditional inde-
pendences (Definition [7.5]). Independence assertions between components of a random
variable are denoted by

TAs explained in the appendix, the terms “probability measure”, “probability density”, and “proba-
bility mass function” are identical in case of discrete random variables. We will hence use the term
“density” for both, discrete and continuous random variables.
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2 Background

for regular and conditional independences, respectively. Apparently, it involves several
notational inconveniences to work directly with formal statements like when X is
high dimensional. It is hence natural to ask for a more compact and intuitive repre-
sentation of conditional independences. The formalism of probabilistic graphical models
provides a unifying framework for theoretical derivations, algorithms, and the estimation
of large-scale multivariate statistical models [227].

Definition 2.1 (Graphical Model) Let X be an n-dimensional random variable, and
G = (V,E) a graph with vertex set V = [n] and edge set E. The n vertices of G are
identified with the n dimensions of X —vertex v € V' corresponds to X,. The set of
independences which are encoded by a graph is denoted by I(G).

In undirected models, also known as Markov random fields (MRF'), the edge set encodes
conditional independences of each vertex given its neighbors N'(v) ={u € V |v,u € E},
i.e.,

YoeV: XU A XV\({’U}UN(U)) | X/\/’(u) . (2.2)

The set N (v) is also called Markov blanket of vertex v (denoted by Mg(v)), and inde-
pendence assertions like are called local Markov properties.

In directed graphs, each vertex v € V' is conditionally independent of all other vertices
given its parents (Parents(v) = {u € V' | (u,v) € E}), its children (Children(v) = {u €
V| (v,u) € E}), and the other parents of its children. Ie., the Markov blanket of a
vertex v in a directed graph is

M (v) = Parents(v) U Children(v) U Parents(u) \ {v}.

u€Children(v)

Besides their intuitive representation, the particular way how graphical models encode
conditional dependences imply algebraic properties of the underlying probability density,
which will eventually lead to efficient algorithms as well as a canonical representations
of data.

Theorem 2.1 (Directed Factorization [122]) Let X be a random variable with den-
sity p and let G be a directed graph. Let further I(X) be the set of local conditional inde-
pendence assertions of X, and let I(G) be the set of conditional independence assertions
implied by G. The density of X factorizes according to G, 1i.e.,

p(a:) = Hpv(wv | CCPzaLlrents(’L))>7

veV

if and only if 1(G) C I(X).

In directed models, each factor p, is itself a probability density, and is hence normal-
ized. In case of undirected models, a similar yet significantly different statement can be
made.
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Figure 2.1: An undirected graph G = (V, E), with V' = {1,2,3,4,5,6}. The cliques
A={1,2/4,5} and B = {2,3,5,6} share the edge {2,5}.

Theorem 2.2 (Undirected Factorization [84]) Let X be a random variable with
strictly positive density p, G an undirected graph, and C(G) the set of its cliques. Let
further I(X) be the set of conditional independence assertions of X, and let 1(G) be the
set of conditional independence assertions implied by G. The density of X factorizes
according to G, i.e.,
1 1
p(a) = i@ = 5 [] velao)
cec(a)

if and only if I(G) C I(X). Here, Z = [(x)dv(x) is a normalization constant, and
Y a positive function that factorizes into positive functions Vc.

Note that in both Theorems and , the independences encoded by the graphical
structure are not asked to contain all independences of X to yield a valid factorization.
However, the more independences are captured by the graph, the finer is the correspond-
ing factorization, and hence, the lower the complexity of probabilistic inference. In the
extreme case, (G is fully connected, which means that no conditional independences are
captured, i.e., I(G) = 0.

In contrast to directed models, the factors 1)c of undirected models are not (neces-
sarily) normalized. This particularity allows for more flexibility in parametrizing and
estimating undirected models, but the joint density p requires explicit normalization via
the so-called partition function Z (Section . The factors will play an important
role for our contributions.

Definition 2.2 (Potential Function) Let ¢ : X — R, be a non-negative function
that factorizes along the cliques of an undirected graph G, i.e., ¥(x) = HCEC(G) Yo(xe).
Y 18 called potential function of the corresponding undirected graphical model, and its
factors V¢ are called clique potentials or clique factors. The number of input values |C|
is the dimension of the clique factor V¥¢.

Remark 2.1 In general, any clique factor V¢ is allowed to factorize further, e.q.,
Yo(xe) = Yalxa)¥p(xp), A,B C C. The factors 1o and g are “smaller” than
Yo, in that they have a smaller dimension than Y¢c. A clique factor 1¢ that cannot be
written as the product of smaller factors is called minimal, and we denote the set of all
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0 0 0 {(A,0,+1),

1 0 0 (4,0,—1), « x}

0 0 0 (4,1,—-1),

0 0 0 (A,1,+1),

0 0 0 (B,0,+1),
otel) = o|  evletr=|g|  evedr=|o|  w= gy

0 1 0 (B,1,41), « x?

0 0 0 (C,0,+1),

0 0 0 (C,0,-1),

0 0 1 (C,1,-1), « x}

0 0 0 (C,1,+1)}

Figure 2.2: Sufficient statistic of a vertex set U = {u,v,w} with vertex state spaces
X, ={A,B,C} X, ={0,1}, X, = {-1,+1}. Let =, = (4,0,—1), =% =
(B,1,+1), and x}, = (C,1,—1). The entries of ¢ correspond to indicator
functions for each possible state in Xy = X, ® X, ® X, listed on the right.

cliques with minimal factors by C(G) C C(G). An undirected model is called pairwise, if
any minimal factor involves at most two variables.

Since the dimensionality of factors plays an important role for the resource consump-
tion of the model, we will always use a factorization in terms of cliques with minimal
factors, e.g., Y(x) = Hceé(a) Yo(xe). Moreover, all minimal factors that belong to the
same clique are merged.

For brevity, we will omit the term “clique with minimal factor” in the sequel, and
simply refer to those as the clique factors of simply factors of the model.

This situation ins depicted in Fig. 2.1} Assume that the factors of the cliques A =
{1,2,4,5} and B ={2,3,5,6} factorize further into edge factors, i.e., the corresponding
model is pairwise. Since the clique D = {2,5} is shared by A and B, two different
factors Y a25(xp) and Ypa5(xp), both corresponding to the clique D, would appear
in the overall factorization of the model. Whenever this happens, we define a new
factor ¥p(xp) = Ya2s5(xp)Ypas(xp). Hence, the final pairwise factorization ¢ (x) =
[I.cr Ye(ze), will contain (at most) one potential for each edge e € E-—no matter how
many cliques share the edge e.

There is an alternative graphical representation of undirected models in terms of C(G),
via so-called factor graphs [130]. Since both representations are equivalent, we denote
undirected models via undirected graphs.
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2.2.1 The Exponential Family of Densities

Definition is merely the declaration of what we consider a potential function. Indeed,
any arbitrary non-negative function 1 of n variables induces an undirected graphical
model, regardless of its factorization properties. If b does not factorize at all, the
corresponding model consists of a single clique and the graphical structure is K, (the
fully connected graph). In case 1 factorizes, each factor depends on a subset of all
n variables. Each of these subsets of variables defines a clique, and the edges of the
graphical model are then implied by the set of cliques.

In this thesis, we focus on undirected models, and the term graphical model always
refers to an undirected model, unless otherwise explicitly mentioned. We do now proceed
to the main formalism of this thesis:

Definition 2.3 (Exponential Family) Let X be a random variable and p its density.
Moreover, let p = pg be parametrized by a vector @ € R%. Then, pg belongs to an
exponential family of densities, if it can be written in the following form.:

1

po(X = ) = exp((0, ¢(x)) — A(8)) = mw(w : (2.3)
Here, A(0) =log Z(0) is the log-partition function, ¥ (x) = exp((0, ¢p(x))) the potential
function, and ¢(x) is the sufficient statistic of the model.

The sufficient statistic encodes the conditional independence structure of X, i.e., ¢
is actually a function of G. Nevertheless, the notation ¢¢(X) is omitted, whenever the
underlying structure is not ambiguous. More formally:

Definition 2.4 (Sufficiency) Let X be a random variable with state space X, let fur-
ther © be an arbitrary realization of X, and let ¢ be some function from X to R%.
Moreover, let the density of X be parametrized by 6. Then, ¢ is sufficient for 0, if

p(0 |z, o(x)) = p(@ | o(x)) .
Le., given ¢(x), the parameter @ becomes independent of x.

We know from Theorem that undirected models factorize over the cliques of their
conditional independence structure. It is, however, not yet clear how such a factorization
can be achieved with exponential families. In case of discrete random fields X, there is
a canonical representation, based on simple indicator functions, which we now explain.

Definition 2.5 (Sufficient Statistics for Discrete Data) Let X be a discrete, n-
dimensional random variable, G = (V, E) its undirected conditional independence struc-
ture, U C V, and ]l{wu=m’U} an indicator function that evaluates to 1 if and only if

xy = xy; and 0 otherwise. Let Xy = Q) oy Xu be the joint joint state space of the vertex
set U; Xy contains |Xy| = [[,ep |Xo| elements. The overcomplete, binary, sufficient
statistic of verter set U, ¢y : X — {0, 1}1*v| is defined via

.
ou(x) = (H Lipy—ay : V&' € XU> .

velU
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ou(x) is hence a |Xy|-dimensional column vector that contains exactly one bit for each
possible joint state of the variables in U. ¢y(x) contains exactly one 1-entry—all other
entries are 0. The order in which the joint state indicators appear in ¢y (x) is arbitrary
but fized. For ease of notation, the domain of ¢y might be reduced to Xy, i.e., py(x) =
ou(xy). Sufficient statistics may be overcomplete. Overcompleteness means that there
exists some vector a € R? and a constant b € R, such that (a,¢(x)) = b holds for all
reX.

In the remainder of this thesis, overcomplete sufficient statistics are used without loss of
generality. Any overcomplete statistic can be reduced to an equivalent minimal formula-
tion by eliminating components of ¢ until no affine dependencies remain (cf. Appendix
B.1 in [227]). Although minimality sounds like an appealing property when the focus
lies on the consumption of resources, it is mainly an arithmetic property. Moreover,
the overcomplete sufficient statistics that we consider in this thesis, are a merely the-
oretical tool and not fully instantiated in practice. They hence consume almost no
resources. An exemplary sufficient statistic for different realizations of a generic vertex
set U = {u,v,w} is shown in Fig. . Note that only the 1-entries have to be known to
represent the statistic—we will revisit this observation in Chapter |3, when we discuss
the memory consumption of exponential family models.

The statistics of all clique factors are stacked together, to construct the sufficient
statistic of the model.

Definition 2.6 (Sufficient Statistic for Discrete Graphical Models) Let X be a
discrete, n-dimensional random variable with undirected conditional independence struc-
ture G = (V, E). The overcomplete sufficient statistic ¢ : X — R of X is

o(x) = (¢c(x)' :VC € C(G))" .

¢(x) is hence a d-dimensional column vector, with d = 3z |Xcl, that contains

indicator functions for the states of all cliques in C(G). The order in which the sufficient
statistics of cliques appear in ¢(x) is arbitrary but fived. Single components may be
addressed via specific joint states in the subscript, i.e., ¢(€)c—a = [[,cc Lmo=a’}-

The sufficient statistic defined above is universal—it can be constructed for any dis-
crete random variable X, i.e., the existence of this kind of sufficient statistic is not an
assumption.

Definition 2.7 (Potential Function of Exponential Families) Let X be a discrete,
n-dimensional random variable with undirected conditional independence structure G =
(V,E). Moreover, let @ € R, with d = ZCE&G) |Xc|, be the parameter vector of an
exponential family density of X and ¢ its sufficient statistic. The vector @ is composed
out of sub-vectors 8 € RI*! where each dimension of 8¢ is the weight for a spe-
cific joint state of the variables contained in clique C € C(G). The order in which the
weights appear in Q¢ s fixed by the order in which the joint state indicators appear in
the corresponding sufficient statistic pc(x). Each clique factor can hence be written as

Yo(@) = exp((Bc, dc(@c))) -
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Feeding the whole joint state @ (instead of x¢) into the potential function is merely
done to simplify the notation. In addition, we will allow to partition the argument of v
in any conceivable way. E.g., when C' = {u,v,w}, the following equivalent expressions
are all identical to Yc(x):

¢C($C) = wc’(wua Ly, ww) = wC(w{u,'u}y ww) = wC(w{u,w}a wv) = ¢C(w{w,v}7 wu) .

One should get the idea that the order in which we feed the joint state of C' to ¢ has
no relevance, as long as the argument suffices to reconstruct the values of the sufficient
statistic. We will use this kind of notation throughout the whole thesis whenever ap-
plicable, i.e., with any function that accepts realizations of multi-dimensional random
variables.

With the above definitions, every undirected model for any discrete random variable
X with strictly positive density p, can be represented by an exponential family member:

p(x) = % I ¢e(ze) = ﬁ II ep((Bc, dol(ze))
CeC(G) CeC(G)
= o0 | X Oc.vctae)) | = exp((6.0(a) - A6)

CeC(@)

The reason why the above equality holds for any discrete X is, that any arbitrary, strictly
positive function f with domain X can be written in the form exp((@¢, ¢c(xc))) via
Oc—y = log f(x'),Vx' € Xo which guarantees that

exp((Bc, ¢o(x))) = f(a'), Vo' € Ao .

In contrast to the discrete case, there is no universal sufficient statistic for continuous
random variables. It is, however, possible to specify some function space ® of reasonable
expressiveness—Ilike the space of all feedforward artificial neural networks—and choose
¢ € ® that minimizes a desired loss function.

The following theorem shows, that exponential family models have a natural connec-
tion to the concept of entropy.

Theorem 2.3 (Maximum Entropy Derivation) Let X be an n-dimensional ran-
dom variable. Let further ¢ : X — R? be a function on the state space of X with
arbitrary but fived expectation ¢ € R If a density p has mazimum entropy among
all densities which satisfy E, [¢ (X)] = ¢, then p belongs to an exponential family of
densities.

Proof. Let P = {p: X — (0;+00]} be the set of all functions which map the state
space of X to the positive real line. For any element p of P, let P denote the corre-
sponding probability measure, uniquely defined—up to a v-null set—by P(S) = f gpdv
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for all S C X. Let Hx|[p] be the entropy of X under density p. Now, consider the
optimization problem:

max Hx|[p] st. El¢p(x)], =¢;,V1 <i<d and /pduzl
x

peP

We construct the Lagrangian £ (p, 8, C) = Hx[p] — E[p|] — Z[p] with 8 € R?, C' € R,

d

£l =36 (e~ (X)), and 24 = ( [ pav-1) .

=1

The functional derivative of some functional F' w.r.t. f, i.e., (dF/d f), is defined via
Jy(dF/df)gdv = OF(f + €q)/0¢ |0 for some test function g. We will, however, not go
into any details concerning the existence of the functional derivative, nor will we make
any attempt to characterize the space of test functions which are allowed. A precise
discussion of the topic can be found in [§]. The functional derivative of the entropy is

dH 0
/X@qdy = 5 </X(p+eq)log(p+eq)du)

:_/X Oe

= / —(I+logp)gdv,
X

e=0

dlog (p + €q)

d
Oe v

e=0

o log (p+€q) + (p + €q)

and thus (dH/dp) = —(1 +logp). Similarly, for the expectation constraint £, we have

[0 - —Z"ae (/gb z) + ol >>du<w>) o
_ /X (6, 6(w))g(x) dv(x)

And the derivative is hence (d€/dp) = —(0,¢(x)). Finally, for the normalization
constraint, we find

/—Qdy— 886 (/X(ereq)dy—l) }eoz/xoqu’

and at any stationary point, we must have (d £/dp) =0, i.e.,

—1—logp(x)+(0,¢(x)) —C = 0
ep®) = exp((0,0(x) - (1+0)) .

Plugging this back into the normalization constraint shows, that C' is a function of 6:

[ pav=1 [ exp6.6@) = exp(1+0) e log Y exp (8,0 ()) = 1+C

xreX
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2.2 Graphical Models and Exponential Families

It is common to make this functional dependence explicit by defining A (0) = 1+ C,
which yields the exponential family form (2.3

p(x) = exp (6,0 (x)) — A(0)) .

|

Having maximum entropy is a convenient property but does not ultimately qualify
exponential families as an appropriate model for resource-constrained systems. We will
revisit exponential families and their sufficient statistics with a closer look on memory

complexity in Section [3.1]

2.2.2 Probabilistic Inference

Inference is an ambiguous term—in an abstract sense, it refers to the derivation of
knowledge from a probability measure. More specifically, it denotes the computation of
one or more of the following quantities (or extensions thereof):

e Marginal probabilities p(X; = x;) or conditional marginal probabilities p(X; =
x; | X; = ;) (cf. Definition [7.4),

e Partition function Z(0) = [ () dv(x) (cf. Theorem [2.2)),
e Maximum a posteriori (MAP) state, i.e., maxzer p(x),
e Maximum likelihood parameter, i.e., maxgega [ [,ep Po ().

We will now explain these tasks, corresponding algorithmic techniques, and resource
requirements. In what follows, X is an n-dimensional random variable with joint state
space X = @), A, joint density p, and base measure v.

Partition Function and Marginal Probabilities

As seen in Theorem [2.2] the partition function is the quantity that ensures normalization
of a probability density. Knowledge of the partition function is required in order to
compute actual probabilities.

Lemma 2.1 (Normalization) Let1) : X — R, be an arbitrary non-negative function.
Y can be converted into a probability density py, over X via normalization

B 1
N f;(@bdl/

Z:/wdy
X

() .

() Vi) = 5

The quantity

is called partition function of p.
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2 Background

When the integration is carried out over a subset U C {1,2,...,n} of variables with
the others being fixed to a state x7, the normalized result is the marginal density of x:
1
po(®g) = - | ¥(@v, zg) dvy(@y) -
Xu

This shows why the computation of marginal probabilities and the partition function
are closely related—any algorithm for Z can be transformed into an algorithm for the
marginal density pg by fixing the values of U during integration.

It depends on the actual ¢ whether the computation of Z is easy or hard. In case of
continuous random variables, 1 is often chosen such that the integration is possible in
closed-form. Famous examples of such distributions are the Gaussian (a.k.a. Normal),
Poisson, Laplace, Beta, Exponential, Weibull, Von Mises-Fisher, Levy, Cauchy, Gum-
bel, and Dirichlet distributions. One could even say that one important reason why
those probability distributions are so well-known and frequently used, is that efficient
algorithms for the computation of their normalized density exist.

For discrete random variables, such efficient algorithms cannot be found in general.
Without additional assumptions, computing the partition function of a discrete random
variable is a #P-completeﬂ problem—it requires the same amount of time as counting
the number of accepting computation paths of a non-deterministic polynomial time
Turing machine [212] 33].

Special cases have been discovered for which efficient algorithms exist [T91]. If the
induced graph G contains no loops, i.e., is tree-structured, Z can be evaluated exactly in
polynomial time via the belief propagation algorithm [[65]—whose runtime is polynomial
in the number of edges and polynomial in the state space sizes. The same algorithmic
technique, e.g., message passing along the conditional independence structure, underlies
a frequently applied heuristic inference algorithm, namely loopy belief propagation. Al-
though LBP is often termed an approximate inference algorithm, it is no approximation
algorithm in the classical sense, because it delivers no performance guarantees.

Belief Propagation The belief propagation (BP) algorithm, introduced by Pearl [165],
is based on two basic ingredients. First, the factorization of undirected models as defined
in Theorem [2.2] The BP algorithm is originally formulated for tree-structured graphs
G = (V, E), where the maximum cliques are simply the edges E. Consequently, the
density factorizes over the edgesE|

1
p(zw) = 7 H You(Tou)
{v,u}eE

and the partition function is thus

zeX {vu}lel

2The definitions of fundamental complexity classes can be found in [229].

3Tt is common in the literature to write the factorization of pairwise models in terms of vertices
and edges. But since potentials of non-maximal cliques (here: vertices) may be absorbed into the
potentials of their supercliques (here: edges), an explicit inclusion of vertex factors is not necessary.
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2.2 Graphical Models and Exponential Families

Figure 2.3: An undirected graph G = (V, E) with vertex set V' = {u,v,w,...}. The
neighborhood of w is M'(u) = {v,w}. Dashed lines indicate edges to other
vertices. The grey area indicates the subtree, rooted at vertex w.

The summation in (2.4) may be rewritten in form of explicit summations over each
variable. Each factor depends on two variables, and we may employ the second basic
ingredient, the distributive law, to pull the factors inside the summation. W.l.o.g., let v
be a leaf vertex, u its sole neighbor, and A (u) the set of neighbors of u. This situation
is depicted in Fig. 2.3] We set

qu%u(“"u) = Z H ¢zh(w;h) (25>

wleXV\{'u,u} {Z,h}EE\{{U,U}}

to be the summation over the states of all vertices in the subtree rooted at w that
originates when we cut the edge between w and u (the grey area in Fig. 2.3). Z may
then be rewritten in terms of W, ., (x,):

Z=Y" 1] Y tw@nz) [ Turulz.). (2.6)

TyEX, UEN(U) Ty EXy ’LUEN(U)\{U}

Note that has the same sum-product form as the full partition function , and
we may proceed recursively like before. l.e., we cut the edges between w and any of its
neighbors z # u and apply . This can be repeated until all remaining subtrees are
singletons. Since G is a tree, the recursion will terminate after a finite number of steps.
The terms W, ., (x,) are usually interpreted as message from w to u, such that the final
BP update becomes

mu%v<wv) - Z wvu(w'u’mu) H mw%u(wu) . (27)

Ty EXy weN (u)\{v}

With this notation, we have 7 = " _, Hue]\/(v) m,_,(x,) at any vertex v. The BP
algorithm thus consists of computing the messages in reverse depth first search (DFS)
order, where the DFS root may be any vertex. Computing Z with BP has therefore
a worst-case time complexity of O(|E||Xmax|*|Nmax|) and requires O(|E||Xpax|) space,
where X, is the largest vertex state space and N,y is the largest neighborhood.
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2 Background

Algorithm 2.1: Loopy Belief Propagation
input Graph G = (V, E), parameter 8 € R?, precision € > 0, iterations [ € N
output Vector fi € [0;1]¢ of all singleton and pairwise marginals
Lm «—0; mMdoo; e<—00; i1

2: repeat

3. mold  pnew

4:  for {v,u} € E do

5 for xr € X, do

6: update message m2V, (x) according to ([2.9)
7 end for

8 for z € X, do

9 update message m ¥ (x) according to

10: end for

11:  end for

12: € < ||m™Y — m||,
13: 1141

14: until e <core > 1

The same procedure can be applied to compute the marginal density of some fixed
event Xy = xy, U C V, by simply omitting the summation over the states of vertices in
U. If the set U contains a single vertex v, the corresponding marginal density becomes

1 Hue/\/(v) My (Ty)
P Zy) = — My sy Ty) =
( ) z uelj\—fI(v) - ( ) Zw’EXv HuEN(v) My—o (ZL“/)

, (2.8)

which follows directly from plugging into the definition of the marginal density
(Definition of an undirected model. It is also worth mentioning that the messages
may be scaled by any arbitrary constant o without altering the resulting marginals, due
to cancellation, e.g., [T, crrw) @Muso(®0)/d e, [luenw) @Muso(@’) = pu(@,). This
fact allows the normalization of messages.

It is important that the whole derivation of the BP messages cannot be correct if G
is not a tree, because every non-tree has a subgraph that does not contain leaf vertices.
We therefore cannot simplify by the distributive law. However, it is common
to run BP in loopy graphs and compute the normalized messages in some arbitrary
order. The corresponding algorithm is called loopy belief propagation [I30], shown in
Algorithm 2.1} In this setting, one has to recompute messages multiple times, because
incoming messages might change—depending on previous message computations. Hence,
we have to store two separate message vectors, m"" and m°9, which are swapped after
each LBP iteration.

M @) = 3 vwl@nz,) [ mo (@), (2.9)

xy, €EXy weN (u)\{v}

new

The procedure of message-re-computation may or may not converge. If it converges,
its fixpoints are local minima of the so-called Bethe free energy [245] [02]. Despite its
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2.2 Graphical Models and Exponential Families

heuristic nature, LBP and its generalizations [I30, [246] are well known for delivering
good results in practice.

When marginals and partition function are computed from LBP fixpoints, they can in
principle be arbitrarily far from the correct values. However, properties of the potential
function 1 like bounded dynamic range or log-supermodularity can be used to derive
convergence guarantees or lower bounds on the true partition function [T02] [183] [T87].

BP is attractive for probabilistic inference in resource-constrained systems due to its
rather low resource requirements. Even in loopy graphs, one may prefer to run LBP
for a few iterations, instead of more sophisticated methods (described below), because
of its low overhead and good empirical performance. We present a specialized version
of (L)BP, based on integer arithmetic, in Chapter [l Therein, only the bit-length of a
message is computed, instead of the actual message.

Junction Tree Algorithm Evaluating the partition function of loopy models exactly
does not necessarily require a naive summation over the state space; there is another,
more efficient, technique. Any loopy graph can be converted into a tree, the so-called
gunction tree (JT) [134) 227, 122]. As with BP in ordinary trees, inference on the
junction tree has a time complexity that is polynomial in the maximal state space size
of its vertices. The maximal vertex state space size of a junction tree is, however,
exponential in the size of the largest clique of a triangulationﬁ of G, a.k.a. exponential
in the treewidth of G. Hence, if the treewidth of a loopy model is small, exact inference
via the junction tree algorithm is rather efficient. Choosing a triangulation that results
in a minimal treewidth is a NP-hard problem, but a valid triangulation can be found
with time and memory complexity linear in the number of vertices [50., [19] [91]. Moreover,
the maximal cliques of triangulated graphs can be computed in polynomial time w.r.t.
to |V| and |[Muax|. We provide the pseudocode of the junction tree construction in

Algorithm 2.2
Since the junction tree is a tree, the derivation of BP applies and the same reasoning

as in — — — may be used to derive the corresponding message
update rules. Note, however, that each vertex of the junction tree J(G) corresponds to
a vertex subset of the original input graph G. The state spaces of neighboring vertices
will overlap by construction, and the final messages look hence slightly different from the
ordinary BP messages . For junction tree vertices U, C, W C V', the Shafer-Shenoy
messages [192] are

myc(Tow) = Z Yu(zy) H myu(Tow) -

Ty\cE€EXY\C WeN(U))\{C}

The clique potentials v are constructed from the potentials of GG, according to ¥y =
[ L ¢, for all C; which are contained in the junction tree vertex U. If any C; is contained
in more than one junction tree vertex, it is multiplied only to exactly one of the junction

4A triangulation of a graph G = (V, E) is another graph G’ = (V, E’) with E C E’, such that any
induced cycle of G’ has exactly three vertices.
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2 Background

Algorithm 2.2: Junction Tree Construction
input Graph G = (V, E)
output Junction tree J(G)
1: Gp « triangulate(G)
C(Ga) < findcliques(Ga)
n < [C(Ga)|
Graph H < K,, // fully connected graph with n vertices
for C; € C(Ga) do
for C; € C(Ga) do
W;j < |Cl N CJ‘
end for
end for
J(G) < MWST(H,w) // maximum weight spanning tree of H with weights w

>—~
@

tree potentials. Other versions of junction tree messages exist [227], but the complexity
of all variants depends on the quality of the triangulation.

The actual computational complexity of inference on the junction tree can be com-
puted directly from the vertex state spaces and the neighborhood sizes. On a resource-
constrained system, we can compute the junction tree, based on sub-optimal triangu-
lation, and compute its resource requirements. If they exceed the capabilities of the
system, we may resort to LBP or a simpler conditional independence structure. LBP
results on a real-world microcontroller unit are provided in Chapter [6]

Variational Methods It should be clear from the previous paragraphs, that the con-
ditional independence structure is responsible for both, an accurate representation of
the probability measure, and the computational complexity. How can the structure be
modified such that the complexity is reduced while not degrading the quality too much?
One way to formalize this compromise is variational inference. We shall provide the
basic underlying ideas of this field and relate it to resource-constrained systems. A more
detailed introduction to the topic can be found in [227]. Here, the main starting point
is Jensen’s inequality [106].

Definition 2.8 (Convexity) Let a,b € RY. A differentiable function f : R — R is
convex if and only if

fla) = f(b) + (Vf(b),a —b).

Moreover, [ is convex if and only if its gradient is monotonically non-decreasing, i.e.,
(Vf(a)— Vf(b),a—b) > 0. The negative of a convex function is a concave function
and vice-versa.

Here, Vf(a) is the gradient of f, i.e., the column vector of all first partial derivatives of

fat a. )
vita = ()
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2.2 Graphical Models and Exponential Families

Lemma 2.2 (Jensen’s Inequality [106]) Let f : RY — R be a convex function and
X a d-dimensional random variable with density p. Then

fEX]) <E[f(X)].

Now, consider a probability measure [F on the same o-algebra as P, dominated by v, and
with density ¢. The logarithm of the partition function can then be lower-bounded by
applying Jensen’s inequality:

logZzlog/Xwgdl/Z/quog%dl/:EF[logw(X)]—I—H[]F],

where Er denotes the expectation w.r.t. to the probability measure F. Note that the
choice of F was arbitrary and that equality is attained for F = P. Denoting the space of
all non-deterministic probability measures by P, we arrive at the fundamental variational
principle

log Z = max Erllogy(X)] + H[F] . (2.10)

The variational principle may equivalently be derived via conjugate duality [I81], but in
the context of this thesis, the former derivation suffices.

When the density of P belongs to an exponential family, plugging the potential func-
tion Y (x) = exp((O, ¢(x))) into simplifies the variational principle to

log Z(0) = %E%;(w, )+ H[F] . (2.11)

Therein, p' = Ep[¢(X)] is the expected sufficient statistic w.r.t. F. When X is discrete
and ¢ is a binary, g/ contains the marginal probabilities of the corresponding clique
states, e.g., -, = P(X ¢ = y). In this case, the set of all realizable ' vectors for the
dependence structure G is the so-called marginal polytope

M(G) = {p/ e RYD | IF € P : Eplope(X)] = '}, (2.12)

where we excluded boundary marginals, and the connection between the model dimen-
sion d and the structure G was made explicit. We drop the dependence of M on G
whenever the graph is clear from the context. When we define H(u') as the entropy of
the probability measure with marginals ', (2.11)) can be reformulated solely in terms
of

log Z(0) = sup (0, p') + H(p') . (2.13)

pn'emM

This makes the connection between the marginals and the partition function evident.
It can be shown that the negative entropy corresponds to the dual function A*(p') of
A(0) =log Z(0) for all p' that lie in the interior of M [227].

Several variational approximations can be derived from by relaxing the set M
to classes M of tractable marginals. Inner approximations of M lead to lower bounds
on log Z from which we may choose a member that maximizes the lower bound, and
hence, being as close as possible to log Z. Maybe the most prominent example is the
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naive mean field (MF) approximation; the class of joint densities that factorize fully over
their singleton marginals, i.e., p(x) = [],cy pv(,). Moreover, structured mean field and
other approaches are known which are less restrictive but computationally harder. Most
of these approximations are based on non-convex variational problems [227| and suffer
from multiple local optima. Given that the underlying exact variational principle
is convex, it is natural to consider variational approximations that retain this convexity.
If the set M is replaced by a convex outer bound, and in addition, H is replaced by
an upper bound, the approximate variational principle provides an upper bound on the
log partition function [224, 226]. Recall that the sufficient statistic is actually a
function of the conditional independence structure G, and so is 6, since 8 contains a
weight for each indicator in ¢. For any subgraph H of G, let 8|y be the projection of
0 to H, i.e., all components of @ which correspond to cliques C' which are not present
in H, are dropped—the same kind of projection may be applied to p’. Due to duality
between —H and log Z(0) for realizable p’, we have

—H(W |m) = sup (Olg, p'|m) —log Z(8|x)

9|H€Rd(H>
=sup (0, p') —log Z(0) < —H(p')
OcRd

st. 00 =0,YC ¢ H .

We see that the entropy of a submodel with structure H is always larger than the entropy
of the full model with structure G. In addition, for any set of subgraphs G(G) of G, let

M(G(G)) = {W € RY® | 3F € P : VH € G(G) : Exlon(X)] = o]} -

Each member of p’ € M(G(G)) has the property that the expected sufficient statistics
of all H € G(G) are identical for the cliques they have in common. They may, however,
contain different cliques which are then allowed to have arbitrary, realizable marginals.
If p is an arbitrary probability mass of the discrete random variable G with state space
G(G), we have H(p') < E,[H(p'|¢)]. Finally, the convex approximate variational prin-
ciple is
Bg)(0,p) = sup  (0,p)) +E,[H(1|e)] -
WEM(G(G))

B(0,p) can be used in place of A(€) whenever the latter cannot be evaluated due to
resource constraints [221]. Especially convenient approximations Bg ) (0, p) arise, when
G(G) = T(G) is a set of a spanning trees of G [224], 220] or even a single tree [244]. This
particular convex approximate variational principle is known as tree-reweighting (TRW).
Moreover, a special BP version, namely tree-reweighted belief propagation [225] can be
derived, which solves the corresponding approximate variational problem via message
passing.

Sampling Methods As seen in the previous paragraphs, the main source of complexity
in marginalization and normalization of discrete random variables is the enumeration of
an exponentially large set. Belief propagation, the junction tree algorithm, and general
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2.2 Graphical Models and Exponential Families

variational methods address this task by exploiting or simplifying the structure of the set
that has to be enumerated. But in any case, all variable assignments are eventually fully
enumerated. Instead of such exhaustive combinatorial calculations, one may draw N
samples ' from the state space X at random, compute the solution on the samples, and
extrapolate the obtained result onto the full set. The process of gathering information
from a set of samples to mimic a specific quantity is called estimation.

Definition 2.9 (Estimator) Let X be a random variable with measure P and Y =
Y (X) a function of X. Both random variables are not independent of each other, i.e.,
X LY. Let further D be a multi set that contains random realizations of X. Any
function Y = Y(D) that is used to recover' Y from D is called estimator forY .

o An estimator is called unbiased, if we can expect that it yields the correct value,

~

i, E[Y]=Y.

e Here, an estimator is called (weakly) consistent, if the probability that the estima-
tion error |Y—Y| 1s arbitrary small, converges to 1 in the limit of infinite samples,
1.€.,

Ve>0: lim P(]Y —Y|<e) =1.
|D]|—o0

Some examples of sampling based estimators are:

1. Estimating the expectation for arbitrary functions, by evaluating f on each sample
x € D and computing the average function value E[f(X)] = ‘%‘ chvep f(x).

2. Estimating marginal probabilities py(xy) = E[ﬂ{xU:mU}} for U C V, by observing
and counting the number of cases in which the specific variable assignment x
appears.

3. Estimating the partition function, by summing the potentials ¢ (x) of uniform
samples and finally rescaling the average potential by the size of the state space,

ie., Z = |X[E[(X)).

4. Estimating the most likely joint state by choosing the sample with the largest
estimated density " = maxgep p().

Underneath the here explained techniques lies the Monte Carlo principle. In each
of the above cases, the estimator is reduced to a sample mean estimation, i.e., the
estimation of an expected value, which is unbiased and weakly consistent [6]. It is
indeed very important that we can generate proper samples that follow a probability
measure of our choice.

The computational resource consumption of sampling stems from the number of sam-
ples N, and the actual algorithm used to generate the samples. The most basic tech-
niques are rejection sampling and inversion sampling. Rejection sampling draws samples
from a given, easy-to-sample proposal distribution F and converts them to samples from
a not necessary normalized potential function 1, by rejecting samples from F which do
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Algorithm 2.3: Rejection Sampling
input Proposal measure F with density ¢, potential ¢/, number of samples N,
upper bound M
output Set of samples D
1: D+ 1+ 1
2: while 71 < N do
3:  Draw sample ' ~ F
4:  Draw u ~ U(g,1) // uniform random distribution on the interval (0; 1]
5. if u < ¢(x)/(Mg(x)) then
6: D + DU{x'} // accept sample &
7
8
9:

1+ 1+1
end if
end while

not fit to our target distribution (Algorithm [2.3). The algorithm is easy to implement
but requires a constant bound M on the quotient ¢ (x)/q(x) which might not always
be easy to obtain. Moreover, the runtime can be large when many samples are rejected.
Whenever a probability measure is sufficiently simple, we may completely omit the rejec-
tion step via inversion sampling. The procedure consists of drawing a uniform random
number u € (0;1), and inverting the distribution function P(X < x) at u. lL.e., when
U is uniform in (0;1), then P~*(U) is a sample from P. In general, the inverse of P
might not be analytically available. Nevertheless, if the random variable X is discrete
with |X| distinct states, the first &' that satisfies .\_ P(X = &) > U is a sample
from P. Here, “first” is meant w.r.t. some arbitrary but fixed ordering of states. Of
course, when the state space X is large, say exponential in n, this technique has an
unreasonable large runtime. One may encounter situations in which some structure of
the underlying measure can be exploited to leverage this issue. This technique will be
revisited in Chapter 5] when we present a new inference method that combines numeri-
cal integration with fast inversion sampling.

If numerical data, sampled from PP (the proposal), is already available, it can be converted
to samples from another measure F via importance sampling. To this end, samples x
are weighted by their importance weight f(z)/p(z). Taking the empirical expectation of
the weighted samples asymptotically cancels out the true density of the samples. This
technique can be applied to estimate the partition function. When D is a set of sam-
ples from P and % is the potential function, the importance sampling estimate of the
partition function is Z = (1/|D)|) Y wep(W(x)/p(x)) Note that p(x) = 1/|X] yields the
simple estimator, mentioned in the examples above. The estimator is unbiased but its
variance can be infinite whenever the divergence between p and f is large. A discussion
of importance sampling and its variants can be found in [I51] [139] and references therein.

As opposed to plain Monte Carlo methods, Markov Chain Monte Carlo (MCMC) meth-
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Algorithm 2.4: Gibbs Sampler
input Set of variables V', conditional marginals p,(x,) | Tx(w), Vv, ,
joint state £°, number of resampling steps R
output Sample x

1+ x°

2: for v =1to R do

3: forveVdo

4: Sample x, according to p(x, | Tarw)) // computed via
5:  end for

6: end for

ods generate a sequence of samples in which each sample depends on the previous one—
the samples form a chain. After B steps, the elements of the chain are valid but depen-
dent samples from our target distribution. To overcome the dependence, a fixed number
of samples may be discarded before the next sample is stored. Maybe the most popular
MCMC method is the Metropolis-Hastings algorithm [I40l 87], which forms the basis
of most practical MCMC algorithms. An overview can be found in [6]. Here, we will
shortly present the Gibbs sampler [74].

For Gibbs sampling, recall that undirected models obey the (local) Markov property,
ie., py(xy | Tv\(}) = Po(Tw | Taw)). Moreover, let C(v) be the set of cliques which
contain vertex v, the conditional marginal is simply

_ HC’EC(U) Vo (Ty, Ta(w))
> yex, Heeew) Yoy, Tnw)

p(®y | () (2.14)

which can be computed in time O(|X,||C(v)|). The Gibbs sampler starts with an arbi-
trary joint state £° and updates each variable by sampling from . If this process
is repeated multiple times, the resulting joint state x will be a valid sample from P,
independent of . Gibbs sampling is generic and requires only the space to store the
n-dimensional sample x, the model parameters & € R? and the neighborhoods N (v).
The memory complexity is hence O(n+d+2m). Based on a set of samples D generated
from Gibbs sampling (or other MCMC techniques), the (inverse) partition function may
be estimated via the Ogata-Tanemura 