
Exponential Families on
Resource-Constrained Systems

Dissertation

zur Erlangung des Grades eines

D o k t o r s d e r N a t u r w i s s e n s c h a f t e n

der Technischen Universität Dortmund
an der Fakultät für Informatik

von

Nico Philipp Piatkowski

Dortmund

2018

Tag der mündlichen Prüfung: 23.04.2018

Dekan: Prof. Dr.-Ing. Gernot A. Fink

Gutachter: Prof. Dr. Katharina Morik

Prof. Dr. Stefano Ermon

Abstract

This work is about the estimation of exponential family models on resource-constrained
systems. Our main goal is learning probabilistic models on devices with highly re-
stricted storage, arithmetic, and computational capabilities—so called, ultra-low-power
devices. Enhancing the learning capabilities of such devices opens up opportunities for
intelligent ubiquitous systems in all areas of life, from medicine, over robotics, to home
automation—to mention just a few. We investigate the inherent resource consumption of
exponential families, review existing techniques, and devise new methods to reduce the
resource consumption. The resource consumption, however, must not be reduced at all
cost. Exponential families possess several desirable properties that must be preserved:
Any probabilistic model encodes a conditional independence structure—our methods
keep this structure intact. Exponential family models are theoretically well-founded.
Instead of merely finding new algorithms based on intuition, our models are formalized
within the framework of exponential families and derived from first principles. We do
not introduce new assumptions which are incompatible with the formal derivation of the
base model, and our methods do not rely on properties of particular high-level appli-
cations. To reduce the memory consumption, we combine and adapt reparametrization
and regularization in an innovative way that facilitates the sparse parametrization of
high-dimensional non-stationary time-series. The procedure allows us to load models in
memory constrained systems, which would otherwise not fit. We provide new theoret-
ical insights and prove that the uniform distance between the data generating process
and our reparametrized solution is bounded. To reduce the arithmetic complexity of
the learning problem, we derive the integer exponential family, based on the very def-
inition of sufficient statistics and maximum entropy estimation. New integer-valued
inference and learning algorithms are proposed, based on variational inference, proximal
optimization, and regularization. The benefit of this technique is larger, the weaker
the underlying system is, e.g., the probabilistic inference on a state-of-the-art ultra-low-
power microcontroller can be accelerated by a factor of 250. While our integer inference
is fast, the underlying message passing relies on the variational principle, which is inex-
act and has unbounded error on general graphs. Since exact inference and other existing
methods with bounded error exhibit exponential computational complexity, we employ
near minimax optimal polynomial approximations to yield new stochastic algorithms
for approximating the partition function and the marginal probabilities. Changing the
polynomial degree allows us to control the complexity and the error of our new stochastic
method. We provide an error bound that is parametrized by the number of samples, the
polynomial degree, and the norm of the model’s parameter vector. Moreover, important
intermediate quantities can be precomputed and shared with the weak computational de-
vice to reduce the resource requirement of our method even further. All new techniques
are empirically evaluated on synthetic and real-world data, and the results confirm the
properties which are predicted by our theoretical derivation. Our novel techniques al-
low a broader range of models to be learned on resource-constrained systems and imply
several new research possibilities.

3

4

Contents

Abstract . 3

1 Introduction 15
1.1 Approach and Techniques . 18
1.2 Organization . 20
1.3 Contributions . 21
1.4 Acknowledgements . 24

2 Background 25
2.1 Notation . 25
2.2 Graphical Models and Exponential Families 25

2.2.1 The Exponential Family of Densities 29
2.2.2 Probabilistic Inference . 33

2.3 Numerical Optimization and Regularization 45
2.3.1 Parameter Estimation . 46
2.3.2 First-Order Methods . 50
2.3.3 Regularization . 55
2.3.4 Structure Estimation . 59

2.4 Polynomial Approximation . 62
2.4.1 Chebyshev Polynomials . 64
2.4.2 Remez Algorithm . 67

3 Memory Constraints 69
3.1 Sufficiency . 71
3.2 Reparametrization . 73

3.2.1 Parameter Tying . 74
3.3 Multivariate Sensor Data . 76

3.3.1 Generalized Sequence Structures 78
3.3.2 Redundancy . 80

3.4 Compressible Reparametrization . 81
3.4.1 Decay Types . 86
3.4.2 Reparametrization and Optimization 89

3.5 Continuous State Spaces . 91
3.5.1 Parameter Estimation . 93
3.5.2 Linear Dynamical Systems and Undirected Models 94
3.5.3 Reparametrization . 95

5

Contents

3.6 Experimental Demonstration . 96
3.6.1 Setup . 98
3.6.2 Results . 101

3.7 Discussion . 104

4 Arithmetic Constraints 115
4.1 Low-Precision Machine Learning . 116
4.2 Integer Exponential Families . 117
4.3 Integer Probabilistic Inference . 119

4.3.1 General Variational Inference . 119
4.3.2 Message Passing Algorithms . 121
4.3.3 Bit-Length Propagation . 121
4.3.4 Computing Bit-Length Messages 127
4.3.5 Gibbs Sampling . 130

4.4 Integer Parameter Estimation . 130
4.4.1 Tree-Structured Models . 132
4.4.2 The Integer Gradient Descent Method 133
4.4.3 Learning with Integer Arithmetic 140
4.4.4 Alternative Integer-Valued Estimation Procedures 142

4.5 Experimental Demonstration . 143
4.5.1 Setup . 144
4.5.2 Results . 146

4.6 Discussion . 150

5 Computation and Quality Constraints 159
5.1 Integration, Hashing and Optimization 161
5.2 Quadrature . 163
5.3 Integrable Sufficient Statistics . 165

5.3.1 Discrete Random Variables . 165
5.3.2 Continuous Random Variables . 167

5.4 Stochastic Quadrature Method . 168
5.4.1 Approximation Error and Sample Complexity 170
5.4.2 Normalizing the Tuple Density . 172
5.4.3 Index Tuple Sampling . 176

5.5 Parameter Learning and SQM . 180
5.5.1 Marginal Inference . 180
5.5.2 Parameter Estimation . 182

5.6 Experimental Demonstration . 183
5.6.1 Setup . 184
5.6.2 Results . 186

5.7 Discussion . 189

6 Conclusion 199
6.1 Future Directions . 202

6

Contents

7 Appendix 205
7.1 Basic Probability and Information Theory 205
7.2 Information Entropy and Related Functionals 208

7

List of Acronyms

ASIC Application-specific integrated circuits
BLprop Bit-length propagation
BFGS Broyden-Fletcher-Goldfarb-Shanno
BNC Bayesian network classifier
BP Belief propagation
CPU Central processing unit
DBN Dynamic Bayesian network
DCT Discrete cosine transformation
DFS Depth first search
DRAM Dynamic random-access memory
EA Evolutionary algorithm
FISTA Fast iterative shrinkage thresholding algorithm
FLOPS Floating point operations per second
FPGA Field programmable gate array
FRAM Ferroelectric random-access memory
GLM Generalized linear model
GPU Graphics processing units
IEEE Institute of Electrical and Electronics Engineers
JT Junction tree
KL-divergence Kullback-Leibler-divergence
KL-function Kurdyka-Lojasiewicz-function
LBP Loopy belief propagation
LDS Linear dynamical system
LP Linear programming
MAP Maximum a posteriori
MCMC Markov chain Monte Carlo
MCU Microcontroller unit
MF Mean field
MIP Mixed-integer programming
ML Maximum likelihood
MRF Markov random field
MSE Mean squared error
NLP Natural language processing
NNZ Number of non-zeros
PAM Perturb-and-MAP

9

RCDM Randomized coordinate descent method
SCATS Sydney coordinated adaptive traffic system
SGD Stochastic gradient descent
SQM Stochastic quadrature method
SRAM Static random-access memory
STRF Spatio-temporal random field
TRW Tree-reweighting
ULP Ultra-low-power
WISH Weighted integrals and sums by hashing

List of Figures

1.1 Essential components of exponential family models 18

2.1 Exemplary undirected graph . 27
2.2 Exemplary sufficient statistic . 28
2.3 Subtree, rooted at vertex w . 35
2.4 Polynomial approximation error . 63

3.1 Sequence structure and grid structure . 74
3.2 Base graph and temporal copies . 78
3.3 Generalized sequence . 79
3.4 Parameter as a function of time . 81
3.5 Global decay matrix . 82
3.6 Visualization of decay types . 86
3.7 Exemplary decay matrices . 87
3.8 Base graphs for synthetic data . 98
3.9 Key for figures in Chapter 3 . 101
3.10 MSE and NNZ w.r.t. λ on synthetic data 106
3.11 MSE and NNZ w.r.t. the parameter redundancy on synthetic data 107
3.12 MSE and NNZ w.r.t. the depth T on synthetic data 108
3.13 Runtime w.r.t. λ and redundancy on synthetic data 109
3.14 Runtime w.r.t. the depth T on synthetic data 110
3.15 MSE, NNZ, and runtime w.r.t. λ on the insight data 111
3.16 MSE, NNZ, and runtime w.r.t. λ on the intel data 112
3.17 MSE, NNZ, and runtime w.r.t. λ on the vavel data 113

4.1 Discretized parameter space . 131
4.2 Integer regularization . 135
4.3 Exemplary proximal problem . 139

10

4.4 Key for figures in Chapter 4 . 147
4.5 MSE and NNZ w.r.t. the parameter integrality on synthetic data 152
4.6 MSE and NNZ w.r.t. the standard deviation on synthetic data 153
4.7 Runtime w.r.t. integrality and standard deviation on synthetic data . . . 154
4.8 Comparison of LBP and BLprop marginals 155
4.9 MSE, NNZ, and runtime w.r.t. the maximal parameter on the insight data156
4.10 MSE, NNZ, and runtime w.r.t. the maximal parameter on the intel data 157
4.11 MSE, NNZ, and runtime w.r.t. the maximal parameter on the vavel data 158

5.1 Ordering of equivalence classes and index tuples 176
5.2 Factorization of the tuple density . 177
5.3 Factorization of the marginal tuple density 181
5.4 Key for figures in Chapter 5 . 187
5.5 Approximation error for the log-partition function (I) 192
5.6 Approximation error for the log-partition function (II) 193
5.7 MSE w.r.t. the polynomial degree on synthetic data 194
5.8 MSE w.r.t. the standard deviation on synthetic data 195
5.9 MSE and runtime w.r.t. λ on the intel data 196
5.10 MSE and runtime w.r.t. the polynomial degree on the intel data 197

List of Tables

3.1 Memory requirements of inference methods and tasks 71
3.2 Upper bounds on the l∞-norm of decay matrices 88
3.3 Summary of real-world data sets . 100
3.4 Empirical variances of each experiment on synthetic data 101

4.1 Approximate energy consumption of arithmetic instructions 116
4.2 Summary of real-world data sets . 146
4.3 Empirical variances of each experiment on synthetic data 147

5.1 Complexity comparison of partition function approximations 160
5.2 Parameter dimensions of synthetic data sets 185
5.3 Empirical variances of each experiment on synthetic data 186

6.1 Comparing the memory consumption of θ 200
6.2 Runtime of LBP, BLprop, and SQM on an MCU with 64 bit floats 201
6.3 Runtime of LBP, BLprop, and SQM on an MCU with 32 bit floats 201

11

List of Algorithms

2.1 Loopy Belief Propagation . 36
2.2 Junction Tree Construction . 38
2.3 Rejection Sampling . 42
2.4 Gibbs Sampler . 43
2.5 Remez Exchange Algorithm . 68

4.1 Computation of Bit-Length Messages with Sparse Integer Representation . 127
4.2 Integer Parameter Estimation via Integer Gradient Descent 141
4.3 Integer Parameter Estimation via (1+1)-EA 143

5.1 Weighted Integrals and Sums by Hashing 161
5.2 Stochastic Quadrature Method (N -SQM) 170
5.3 Fast Index Tuple Sampler for Discrete State Models 178
5.4 SQM Marginal Inference with Shared Sampling 183

List of Symbols

R The set of real numbers
Q The set of rational numbers
N The set of natural numbers
i, j, n,m, d,N, T Positive integer variable or constants
[n] The set {1, 2, . . . , n}
κ Stepsize
λ Regularization parameter
M ,Q,D Matrices
I Identity matrix
X,Y ,W Random variables
X ,Y ,W State spaces of a random variables
x,y,w Realizations of a random variables
x⊤ Transpose of x
D A data set (multi-set) that contains N realizations of X
X ⊥⊥ Y Stochastic independence of random variables X and Y
G = (V,E) Graph G with vertex set V and edge set E
Kn Fully connected graph with n vertices
v, u, w Vertices of G
N (v) Neighbors of v; all vertices u which are connected to vertex v
U,W Subsets of N or V

12

C(G) Set of all cliques of graph G
ψC Factor that belongs to clique C
C(G) Set of all cliques with minimal factors
η Reparametrization; function from Rd′ to Rd

P Generic probability measure
p Generic probability density
θ d-dimensional parameter vector
pθ Probability density with parameter θ
ϕ(X) Sufficient statistic of X
µ∗,E[ϕ(X)] Expected ϕ(X) w.r.t. the density of X
µ̂,Eθ[ϕ(X)] Expected ϕ(X) w.r.t. the density with parameter θ

µ̃, Ẽ[ϕ(X)],ED[ϕ(X)] Empirical expectation of ϕ(X) w.r.t. a data set D
ζ Vector of polynomial coefficients
χiϕ Potential of i-dimensional tuple density w.r.t. ϕ
[[·]] Equivalence class(
n
k

)
, (n k)⊤ Binomial coefficient “n choose k”{

n
k

}
, {n k}⊤ Stirling number of second kind

⟨θ, ϕ(x)⟩ Inner product between the vectors θ and ϕ(x)
f ◦ g Composition of functions f and g

13

1 Introduction

This work is about machine learning on devices that underlie specific resource con-
straints. In machine learning, data, collected from any reasonable data generating pro-
cess, is used to learn the parameters of a function or model that in some well-defined way
depends on the data. Learning is guided by a prespecified loss function that quantifies
the quality of a specific choice of parameters—it measures how well the parameters fit
to the data. Machine learning models can solve several abstract tasks: We might want
to assign tags or labels to observed data, detect structure or interactions within data, or
predict how the underlying data generating process might behave in the future. Most
often, good model parameters are found via numerical optimization, i.e., the process
of approaching the loss function’s minimum by exploiting information about its deriva-
tives. It is common that certain nice properties or quality assertions can be guaranteed
for optimal parameter settings—such guarantees might be required if a method has to
be applied in practice.

While the term “machine learning” subsumes a huge variety of models, parametriza-
tions, loss functions and optimization methods, we restrict ourselves to probabilistic
models that belong to the exponential family. On the one hand, probabilistic models
allow us to represent complex dependencies between observable and unobservable entities
explicitly. They let us quantify uncertainty in a consistent and theoretically well-founded
manner, while being completely agnostic about the particular prediction or modelling
task. On the other hand, the simple formal description of exponential families allows
us to identify all sources of resource consumption. The exponential family arises from
first principles, without incorporating assumptions or high-level rationalization efforts.
Hence, results derived in this setting are valid for a manifold of tasks and models. Some
specific instantiations of them have indeed been explored in the literature.

Even with the restriction to probabilistic models, the number of existing machine
learning applications on or for resource-constrained systems is huge—it ranges from
stereo matching [120, 39], image classification [58, 199, 197], image segmentation [196,
15], and speech recognition [219]; over localization [109, 30, 5], tracking [193, 101],
health monitoring [218, 188, 249], and energy modelling [148]; to agriculture [88, 1],
robotics [61, 62, 136, 15, 14], and sensor networks [38] as well as behavioral modelling
[147, 52, 179, 54, 55, 72, 118, 53]. The large variety of possible applications of machine
learning makes it more difficult but less essential to discuss each of them in-depth.

In general, running machine learning models in resource-constrained computational
systems opens challenges in terms of both, execution time and energy consumption.
Learning and applying the model directly on the ubiquitous device that actually mea-
sures the data has several advantages. First, it reduces the communication cost and
thus the energy consumption. Second, not transferring data to a central server increases

15

1 Introduction

privacy and autonomy. Third, the measuring device itself can benefit from machine
learning, e.g., learning from operation system log files allows for a more efficient “per-
sonalized” power management. These advantages are accompanied by restrictions of the
computational capabilities which shrink the set of models that can be considered to be
feasible.

However, the established computational paradigm of machine learning and other com-
putationally demanding areas of computer science is to run algorithms on highly parallel
compute servers with a maximum supply of cores, main memory, storage and intercon-
nectivity. Here, maximum means as much as the current state-of-the-art architecture
can handle. Moreover, some of the fastest systems to date are explicitly designed for
machine learning and data analysis tasks [47, 46]. They are built to deliver the high-
est possible performance, but their resource consumption is far from optimal, especially
when human-like performance is required on non-trivial tasks. While the typical adult
human brain runs on less than 20 watts, the IBM Watson machine that defeated Jeop-
ardy! champions depends on ninety compute servers, each of which consumes around
one thousand watts [105]. AlphaGo, the system that has beaten professional Go play-
ers, runs on 1920 CPUs and another 280 GPUs [211]. While AlphaGo’s exact energy
consumption is unknown, the hardware suggests, that hundreds of thousands of watts
are required. Indeed, the energy efficiency of high-end compute hardware, measured via
FLOPS (floating-point operations per second) per watt, has increased during the last
decade. At the same time, the complexity of state-of-the-art machine learning models do
also increase—at least if model complexity is measured by the number of parameters or
the depth of function compositions. However, human-like performance with human-like
resource requirements can only be achieved if we adapt machine learning methods to
the underlying hardware architecture.

It is true that in computer science, we usually want to abstract the software from the
hardware whenever possible. If one wants to study the underlying algorithmic concept,
this is a reasonable approach. However, if the properties of an algorithm—say, qual-
ity guarantees of a machine learning method—are already well understood, one may
consider the computational capabilities of the underlying system explicitly and make
full use of the whole system. Regarding the state-of-the-art machine learning systems
mentioned above, explicit knowledge about the number of hardware threads, memory
hierarchy, memory sizes, bus systems as well as network connectivity should be taken
into account. Even new machine learning data structures and algorithms are designed
with hardware specifics in mind [48, 43, 207, 76]. Tailoring algorithms to an underlying
hardware architecture has become a trend also in programming graphics processing units
(GPU), video game consoles, smartphones, cyber physical systems, or quantum comput-
ers. Moreover, with the ever increasing number of battery powered systems, consumer
electronics, portable medical devices, robots, and several kinds of unmanned vehicles,
multiple new areas for machine learning techniques emerge, where powerful hardware
is occasionally not available—either because of its restricted size, weight or energy con-
sumption. Hence, we should include knowledge about such resource constraints in our
machine learning models, as we already do in case of hardware accelerators and memory
hierarchies. Instead of fueling machine learning with electrical power, we should identify

16

which computational capabilities are really necessary.

Requirements on high-level computational resources surely depend on the specific
task. Some tasks have a high computational complexity, while others can be solved
instantly. Some learning tasks inherently require large amounts of memory while others
don’t. These aspects are caused by the machine learning model and the corresponding
algorithms, but the actual energy consumption depends on the low-level computational
architecture, specified via clock-rates, memory types, functional units, and the number
of clock-cycles that are required for arithmetic instructions [45]. Dynamic random-
access memory (DRAM), for example, has to be refreshed in order to keep the values
in memory—a procedure which consumes much more energy than, e.g., just reading the
data [201, 202]. Hence, even the time for which values have to be stored can have an
impact on the energy consumption. Such observations are of special importance when
the underlying architecture is based on microcontroller units (MCU), field programmable
gate arrays (FPGA), or application-specific integrated circuits (ASIC), which are usually
equipped with the amount of memory that is required for a designated task.

At the time of writing this thesis, machine learning under resource constraints is
discussed by some authors [113, 31, 238, 36], but none of them proposes to adapt the
model itself to resource requirements and the underlying hardware architecture. Instead,
merely algorithms or specific implementations are investigated. Some authors consider
a so called budget, either of computation time that is available for prediction, or on
the number of data samples that are available for training. Other authors develop and
study specialized hardware implementations of algorithms for probabilistic models. E.g.,
FPGA and ASIC implementations of the sum-product algorithm [130] are presented in
[200, 220, 51, 117], an FPGA implementation of Gibbs sampling [74] in [112, 220], and
experimental results on resistive switching memory devices can be found in [65].

In contrast to these “pointwise” approaches, we want to move beyond including knowl-
edge about the underlying hardware architecture into algorithms. We aim at a principled
investigation of the machine learning model itself, with respect to the resources it con-
sumes, and resource constraints that could arise. Exemplary constraints that could arise
are:

• if the memory requirement of a model grows with the number of observed data
points, it is a constraint to have a finite, constant amount of memory;

• if we need to evaluate a transcendental function, it is indeed a constraint to have
no floating-point coprocessor;

• if computationally demanding algorithms are required, it is a constraint when the
CPU has a low clock rate.

After constraints have been identified, we review existing methods for the reduction
of resource consumption, discuss their shortcomings, and propose new techniques to
leverage the constraints. However, the proposed techniques should not harm the model
itself.

17

1 Introduction

pθ(X = x) = exp(⟨θ, ϕ(x)⟩ − A(θ))

Parameter
Memory

Sufficient statistic

Memory/Computation

Normalization

Computation

Random variable

Base
Arithmetic

Data

Figure 1.1: Essential components of exponential family models for a (n-dimensional)
random variable X.

1.1 Approach and Techniques

Our central object of study is the exponential family [227]. To understand which re-
sources are consumed and why they are consumed, one has to disassemble the model into
its parts. The essential components of an exponential family model, together with their
primary resource requirement, are sketched in Fig. 1.1. Within this thesis, we analyze
these components, grouped by their primary resource consumption, where we devote a
separate chapter to each resource. Therein, existing methods to reduce the amount of
required resources are reviewed and discussed. The insights gained from these discus-
sions allow us to extend the state-of-the-art by adapting the essential components of the
exponential family to specific constraints. The resource consumption, however, must not
be reduced at all cost. Exponential family members possess several desirable properties
that should be preserved by our proposed extensions. More precisely:

1. Any probabilistic model encodes a conditional independence structure—our meth-
ods must keep this structure intact.

2. Exponential family models are theoretically well-founded. Instead of merely propos-
ing new algorithms, our extensions and their effects must be formalized within the
framework of exponential families.

3. Exponential family models are derived from first principles—our techniques must
not introduce new assumptions which are incompatible with the formal derivation
of the base model.

4. Our extensions should not rely on properties of particular high-level applications or
tasks—this does not exclude low-level characteristics like discrete random variables
or time-series data.

By restricting ourselves to techniques which satisfy the above requirements, we ensure
their generality and compatibility with each other and with existing methods. Moreover,
this eases the analysis of the theoretical implications of our techniques w.r.t. the model’s
resource consumption and quality.

18

1.1 Approach and Techniques

Some exponential family related tasks have a rather high computational complexity—
at least in their most general realization. In practice, these hard tasks are either com-
pletely avoided or approximated and a lot of research is devoted to the study of such
approximate inference techniques. We indeed rely on some existing techniques, like
variational inference or sampling, and extend them to fit specific resource constraints.
Motivated by the nature of the essential components which are shown in Fig. 1.1, our
extensions are based on reparametrization, regularization, as well as numerical and arith-
metic approximation:

• Reparametrization is a standard concept of the exponential family. Instead
of using a plain vector, say θ, to parametrize the model, one employs another
(possibly lower dimensional) vector ∆ which can be “uncompressed” by some
function η to generate the natural parameter θ = η(∆). We use this technique to
remove redundancies in θ which are then not contained in ∆.

• In machine learning, regularization is known to prevent models from overfit-
ting and to induce sparsity [203, 157, 86]. In the context of probabilistic models,
regularization has been shown to detect the conditional independence structure
between random variables [203, 144, 189, 240]. However, when the correct struc-
ture is known, further regularization will remove conditional indecencies from the
model. Since one of our requirements is to keep the conditional independence
structure intact, we propose a combination of regularization and reparametriza-
tion which results in sparse models without touching the structure. This reduces
the memory consumption of the model. Regularization also plays a central role
when dealing with arithmetic limitations.

• Arithmetic approximation is inherent in digital computers. Real-valued num-
bers are stored with a finite amount of bits. If the native precision of a number
exceeds the bit-length, rounding errors are unavoidable without increasing the bit-
length of the representation. In settings where many calculations are approximate
or based on corrupted or noisy data, even ordinary 32 or 64 precision might be spu-
rious. Recent results in machine learning suggest that the precision can safely be
reduced without harming the quality of the resulting model [80, 138]. We drive this
idea to an extreme, in which all computations are required to be integer-valued.
This reduces the required complexity of the underlying computational circuit and
prevents overfitting.

• Polynomial functions underlay a multitude of mathematical theories and appli-
cations. They are, among other things, used to find approximations to compli-
cated functions [142], while possessing many appealing properties like error bounds
and relatively easy estimation procedures. We employ a polynomial approxi-
mation of the core of any exponential family, namely to the potential function
exp(⟨θ, ϕ(x)⟩), to derive a novel sampling-based inference technique. This reduces
the computational complexity and guarantees error bounds, while maintaining the
full conditional independence structure.

19

1 Introduction

While these techniques aim at reducing the usage of some target resource, they also
introduce other side-effects to the model and its resource consumption. E.g., restricting
every computation to 16 bit integer arithmetic removes the need for a floating-point
coprocessor, lowers the memory requirements (compared to 32 bit floating-point num-
bers), and introduces an approximation error. In the respective chapters, we discuss
these side-effects, and derive quality guarantees.

1.2 Organization

Throughout this thesis, we analyze to what extend the resource consumption of exponen-
tial family models can be reduced via reparametrization, regularization, and numerical
and arithmetic approximation. Our techniques are motivated by and derived from the
model’s essential components and their primary resource requirements (cf. Fig. 1.1).
Three chapters, each devoted to one resource, establish the body of this thesis. Within
each chapter, we investigate which parts of the model consume the respective resource,
review existing methods, and identify possible improvements. We then propose exten-
sions to the state-of-the-art to address the identified shortcomings, derive their theoret-
ical and algorithmic implications, and conduct experimental analyses. These chapters
are framed by a background chapter, containing the mathematical and statistical foun-
dations, and a discussion chapter, in which we summarize our work and discuss our
methods in the context of ultra-low-power (ULP) microcontroller units. The contents
can be summarized as follows:

Background. Chapter 2 consists of the material that is required for a sound presen-
tation of the rest of the thesis. The presentation of this material is by necessity brief,
but it provides sufficient details to follow the methods and analysis presented in subse-
quent chapters. The chapter begins with an overview on basic terms and definitions of
probability, information theory, conditional independence structures, and probabilistic
inference, altogether building the essential foundation of probabilistic models. Exponen-
tial family models, their estimation, and their key properties are presented in Section 2.4.
Parameter estimation and regularization are important topics throughout the this the-
ses. They depend strongly on results and techniques from numerical optimization which
we introduce in Section 2.3. In the remainder, we focus on techniques from numeri-
cal integration and polynomial approximation which form the base for a new inference
algorithm.

Memory. The amount of random-access memory that is available to a system is limited.
In addition refreshing the state of DRAM cells constantly consumes energy [201, 202].
In Chapter 3, we investigate all parts of the model that need to be stored and require
actual memory. While the memory requirement for the data is fixed by the so-called suffi-
cient statistic, the number of model parameters can be controlled via reparametrization.
Classic reparametrization approaches from statistical physics [103] and natural language
processing [198] are reviewed, and discussed in the context of generic time-series sensor

20

1.3 Contributions

data which is gathered by mobile or autonomous systems. The discussion leads to a new
kind of piecewise-linear reparametrization. Combining the new reparametrization with
l1-regularization allows the model to detect redundancies in its natural parameters which
results in sparse models that cannot be found using plain regularization. The technique,
called spatio-temporal random field (STRF) [169], has already proven to be useful for
modelling car traffic and traffic congestion [168, 7, 190, 137], usage of mobile network
cells [147], and smartphone app usage [174]. Moreover, we explain how to extend STRF
to non-stationary linear dynamical systems [173].

Arithmetic. The second resource type arises from the actual operations that are re-
quired to evaluate the model. The core of the exponential family is the exponential
function, which is transcendental and inherently requires real-valued arithmetic. Cir-
cuits for floating-point arithmetic are larger and more complex than circuits for integer
arithmetic and therefore, require more resources. Hence, resource-constrained systems
may not be equipped with floating-point units; they have to emulate floating-point arith-
metic via integer arithmetic, which is very costly in terms of clock cycles. Thus, machine
learning with low-precision arithmetic and quantization recently became a vivid research
area [80, 49, 37, 138]. In Chapter 4, we derive new integer-only algorithms and corre-
sponding error bounds for learning and inference in exponential families members with
integer parameters [170, 171]. Integer-only inference is based on approximating the bit-
lengths of marginal probabilities, while the parameter estimation procedure is based on
an integer regularization method—both techniques are entirely new.

Computation and Quality. We discuss the interplay of computational complexity and
approximation quality in Chapter 5. Processing units are restricted in terms of their
physical size and the heat they generate. Computing exact (marginal) probabilities
is #P-complete in general [212, 229]. For certain sub-classes, however, polynomial-
time algorithms are known [227, 191, 78], and significant research efforts have been
conducted in order to derive approximations for more general cases. However, most
existing methods either provide no error bounds or exhibit a computational complexity
that prevents them from running on resource-constrained systems. We consider a near-
minimax optimal polynomial approximation to the potential function of the exponential
family. This allows us to derive new deterministic and randomized algorithms for the
partition function and the marginal probabilities. The randomized algorithm relies on
low-dimensional Monte Carlo sampling and exhibits low resource requirements. The
approximation error of the method is bounded and depends on the polynomial degree,
the norm of the model’s parameter vector, and the number of Monte Carlo samples.

1.3 Contributions

Our results have implications for both, the abstract topic of this thesis (probabilistic
models on resource-constrained systems) and for a more general understanding of the

21

1 Introduction

fine grained complexity of exponential family models. We summarize the most important
contributions in the order in which they appear in the thesis. In the third chapter,

• we combine and adapt reparametrization and regularization in an innovative way
that facilitates a sparse parametrization of high-dimensional non-stationary time-
series, without altering the conditional independence structure. The procedure is
completely novel and allows us to load models in memory constrained systems,
which would otherwise not be possible.

• We provide new theoretical results, showing that our piecewise linear reparametriza-
tion is universal, in the sense that it is a bijection between the space of all natural
parameter vectors and the space of all reparametrized vectors.

• Moreover, we prove that any sparsity in the reparametrized vector implies a ne-
glectable difference in the parameters of consecutive time steps, and that the uni-
form distance between the parameter vector of the data generating process and the
reparametrized solution is bounded. Both statements hold with high probability.

• We derive the Lipschitz constants of the reparametrized model to facilitate fast
parameter learning without stepsize adaption.

• Even in the non-constrained setting, our technique reduces the effective degrees
of freedom and hence, eases the learning problem. This contributes in a general
manner to the area of probabilistic spatio-temporal modelling.

In Chapter 4, based on a classic result by Pitman [175],

• we show that the exponential family can be derived with any base. Following this
result, we present the base-2 exponential family. By restricting the parameter space
to the positive integers, we show that the exponential function (which inherently
requires real-valued arithmetic) can be replaced by a simple bit-shift operation.

• We phrase the integer restriction as another reparametrization, and derive a bound
on the difference of log-likelihood values of the true model and the integer model.

• Based on loopy belief propagation (LBP), we derive the bit-length propagation
algorithm for probabilistic inference. The corresponding message computations
can be carried out without any real-valued computation. By assuming uniform
and independent rounding errors, we show that the expected Kullback-Leibler
divergence between the result of bit-length propagation and the corresponding
LBP result is bounded.

• Existing methods for mixed-integer optimization rely on real-valued computations,
which is by assumption slow on resource-constrained systems. Hence, we introduce
an entirely new method for optimization over the integers. To this end, we employ
a blockwise proximal gradient descent method with a new type of regularization.
Formally, the optimization is still carried out over the real-valued space. However,

22

1.3 Contributions

we show that for a specific choice of regularization weight, all solutions (and all
intermediate values) generated by our new integer gradient descent method are
integers.

• Beyond integer-valued exponential families, our new optimization method is a
general alternative to branch-and-bound and outer-approximation techniques, and
may hence be regarded as contribution to the field of mixed-integer programming.

In the fifth chapter, based on results in numerical approximation theory,

• we derive a near-minimax optimal polynomial approximation to the potential func-
tion. While this idea is well known for the approximation of intractable integrals,
it has never been applied to the partition function of the exponential family for
discrete random variables.

• We derive an error bound on our new approximation to the partition function.
The error depends on the degree of the underlying polynomial approximation,
which in turn depends on the norm of the parameter vector. Since the norm
can be controlled via regularization, we discover yet another connection between
regularization and the resource consumption of the model.

• We identify a new property of sufficient statistics that allows us to derive an algo-
rithm for the partition function whose complexity is polynomial in the parameter
dimension and exponential in the polynomial degree. Moreover, we show that the
sufficient statistic of any discrete state Markov random field has this property, and
we discover under which circumstances continuous sufficient statistics also have
this property.

• Based on a new probability mass function over k-ary index tuples, we derive a
Monte Carlo sampling method whose result has a bounded relative distance to the
true partition function with high probability. Due to its low resource requirements,
the sampling method is well suited for resource-constrained systems.

• Moreover, we show how our algorithms can be used for marginal inference and
approximate maximum likelihood estimation.

• Since only a few approaches are known for the approximation of partition func-
tions, the new method can be regarded as contribution to the field of probabilistic
inference in general.

Finally, in Chapter 6,

• we discuss our findings in the context of ULP microcontroller units, and present
new perspectives for future research.

• Specifically, we study by how much the proposed methods increase the size of
models that can be applied on real-world ULP systems and perform exemplary
benchmarks. The results show, that models can be applied on systems which are
inconceivable without our modifications.

23

1 Introduction

• Since basically no results for general exponential family models on ULP systems
exists, our findings can guide the choice of appropriate hardware architectures for
future machine learning applications in resource-constrained systems.

In summary, the work presented here forms a cohesive investigation of learning and
applying exponential family models under resource constraints. While each part has
its own implications, they are inherently connected by regularization, i.e., the idea that
constraints on the model space should reflect our knowledge about specific resource
constraints. We hope that the results herein will prove useful for many more problems
than those we have explicitly addressed. Some ideas for future directions are outlined
in Chapter 6.

1.4 Acknowledgements

During the investigations which finally resulted in this thesis, intermediate states of re-
search have been submitted or published in the form of conference and journal papers.
We summarize at the end of each chapter in how far this thesis extends the already
published results. I thank all of my coauthors who supported me in developing some
basic steps towards exponential families on resource-constrained systems. The basics of
regularization and reparametrization of spatio-temporal models are based on research
done together with Sangkyun Lee and Katharina Morik [168, 169]. The experimental
results on car traffic data are inspired by work with Alexander Artikis, François Schnit-
zler and Thomas Liebig [7, 190, 137]. The extension of the spatio-temporal model to
multivariate Gaussian data is joint work with François Schnitzler [173]. Work on integer
undirected models has also been conducted with Sangkyun Lee and Katharina Morik
[170, 171]. The integer regularization technique is based on binary regularization which
is joint work with Sibylle Hess [93]. Initial experiments on smartphone data were done
together with Stefan Michaelis, Jochen Streicher, Olaf Spinczyk and Katharina Morik
[147, 174]. My work has been funded by the Deutsche Forschungsgemeinschaft (DFG)
via the collaborative research center SFB 876, project A1.

24

2 Background

Probability theory is the basic language in which our models and ideas are phrased. It
is essential for almost all sciences and unifies the idea that most natural phenomena
are either too complex or simply not fully observed to construct deterministic models.
We provide the basic terms and definitions of probability and information theory in the
appendix. Here, we start with a summary of our notation, followed by the core concepts,
namely probabilistic graphical models and exponential families.

2.1 Notation

Uppercase, boldface letters, like X, denote random variables (Definition 7.2). Each
random variable has its own state space, which is denoted by a calligraphic version of
the random variable’s letter, e.g., X denotes the state space of X. State spaces are
sets that contain all possible values, also called realizations, a random variable can take.
Generic realizations are denoted by lowercase boldface letters, like x. The event that
a random variable X takes a specific value x ∈ X is denoted by X = x, and the
probability density1 of this event is p(x) = p(X = x). Conditional probabilities are
denoted by p(X = x | O) for an arbitrary event O. Details about probability measures
and densities can be found in Section 7.1. If multiple realizations of a random variable
are collected, we enumerate them and address them via superscript, i.e., x1,x2,x3 are
three arbitrary but fixed realizations of the random variable X.

Here, any random variable has a non-zero, integer dimension n > 0. The i-th dimen-
sion of X is addressed by subscript: X i (1 ≤ i ≤ n). Moreover, multiple dimensions
may be addressed at once via sets of indices U ⊂ N, e.g., XU . The same notation is
used to address single or multiple dimensions of X and x, e.g., Xi,XU ,xi,xU—Xi is the
state space of the i-th component of X, and xi is a possible realization of X i.

2.2 Graphical Models and Exponential Families

Any n-dimensional random variable X can obey a large number of conditional inde-
pendences (Definition 7.5). Independence assertions between components of a random
variable are denoted by

X i ⊥⊥Xj and X i ⊥⊥Xj |Xz (2.1)

1As explained in the appendix, the terms “probability measure”, “probability density”, and “proba-
bility mass function” are identical in case of discrete random variables. We will hence use the term
“density” for both, discrete and continuous random variables.

25

2 Background

for regular and conditional independences, respectively. Apparently, it involves several
notational inconveniences to work directly with formal statements like (2.1) when X is
high dimensional. It is hence natural to ask for a more compact and intuitive repre-
sentation of conditional independences. The formalism of probabilistic graphical models
provides a unifying framework for theoretical derivations, algorithms, and the estimation
of large-scale multivariate statistical models [227].

Definition 2.1 (Graphical Model) Let X be an n-dimensional random variable, and
G = (V,E) a graph with vertex set V = [n] and edge set E. The n vertices of G are
identified with the n dimensions of X—vertex v ∈ V corresponds to Xv. The set of
independences which are encoded by a graph is denoted by I(G).

In undirected models, also known as Markov random fields (MRF), the edge set encodes
conditional independences of each vertex given its neighbors N (v) = {u ∈ V | v, u ∈ E},
i.e.,

∀v ∈ V : Xv ⊥⊥XV \({v}∪N (v)) |XN (v) . (2.2)

The set N (v) is also called Markov blanket of vertex v (denoted by MG(v)), and inde-
pendence assertions like (2.2) are called local Markov properties.

In directed graphs, each vertex v ∈ V is conditionally independent of all other vertices
given its parents (Parents(v) = {u ∈ V | (u, v) ∈ E}), its children (Children(v) = {u ∈
V | (v, u) ∈ E}), and the other parents of its children. I.e., the Markov blanket of a
vertex v in a directed graph is

MG(v) = Parents(v) ∪ Children(v)
⋃

u∈Children(v)

Parents(u) \ {v}.

Besides their intuitive representation, the particular way how graphical models encode
conditional dependences imply algebraic properties of the underlying probability density,
which will eventually lead to efficient algorithms as well as a canonical representations
of data.

Theorem 2.1 (Directed Factorization [122]) Let X be a random variable with den-
sity p and let G be a directed graph. Let further I(X) be the set of local conditional inde-
pendence assertions of X, and let I(G) be the set of conditional independence assertions
implied by G. The density of X factorizes according to G, i.e.,

p(x) =
∏
v∈V

pv(xv | xParents(v)),

if and only if I(G) ⊆ I(X).

In directed models, each factor pv is itself a probability density, and is hence normal-
ized. In case of undirected models, a similar yet significantly different statement can be
made.

26

2.2 Graphical Models and Exponential Families

1

4

2

5

3

6

Figure 2.1: An undirected graph G = (V,E), with V = {1, 2, 3, 4, 5, 6}. The cliques
A = {1, 2, 4, 5} and B = {2, 3, 5, 6} share the edge {2, 5}.

Theorem 2.2 (Undirected Factorization [84]) Let X be a random variable with
strictly positive density p, G an undirected graph, and C(G) the set of its cliques. Let
further I(X) be the set of conditional independence assertions of X, and let I(G) be the
set of conditional independence assertions implied by G. The density of X factorizes
according to G, i.e.,

p(x) =
1

Z
ψ(x) =

1

Z

∏
C∈C(G)

ψC(xC),

if and only if I(G) ⊆ I(X). Here, Z =
∫
ψ(x) d ν(x) is a normalization constant, and

ψ a positive function that factorizes into positive functions ψC.

Note that in both Theorems (2.1 and 2.2), the independences encoded by the graphical
structure are not asked to contain all independences of X to yield a valid factorization.
However, the more independences are captured by the graph, the finer is the correspond-
ing factorization, and hence, the lower the complexity of probabilistic inference. In the
extreme case, G is fully connected, which means that no conditional independences are
captured, i.e., I(G) = ∅.

In contrast to directed models, the factors ψC of undirected models are not (neces-
sarily) normalized. This particularity allows for more flexibility in parametrizing and
estimating undirected models, but the joint density p requires explicit normalization via
the so-called partition function Z (Section 2.2.2). The factors will play an important
role for our contributions.

Definition 2.2 (Potential Function) Let ψ : X → R+ be a non-negative function
that factorizes along the cliques of an undirected graph G, i.e., ψ(x) =

∏
C∈C(G) ψC(xC).

ψ is called potential function of the corresponding undirected graphical model, and its
factors ψC are called clique potentials or clique factors. The number of input values |C|
is the dimension of the clique factor ψC.

Remark 2.1 In general, any clique factor ψC is allowed to factorize further, e.g.,
ψC(xC) = ψA(xA)ψB(xB), A,B ⊂ C. The factors ψA and ψB are “smaller” than
ψC, in that they have a smaller dimension than ψC. A clique factor ψC that cannot be
written as the product of smaller factors is called minimal, and we denote the set of all

27

2 Background

ϕU(x1
U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϕU(x2
U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1
0
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϕU(x3
U) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

XU =

{(A, 0,+1),
(A, 0,−1),
(A, 1,−1),
(A, 1,+1),
(B, 0,+1),
(B, 0,−1),
(B, 1,−1),
(B, 1,+1),
(C, 0,+1),
(C, 0,−1),
(C, 1,−1),
(C, 1,+1)}

← x1
U

← x2
U

← x3
U

Figure 2.2: Sufficient statistic of a vertex set U = {u, v, w} with vertex state spaces
Xu = {A,B,C}, Xv = {0, 1}, Xw = {−1,+1}. Let x1

U = (A, 0,−1), x2
U =

(B, 1,+1), and x3
U = (C, 1,−1). The entries of ϕU correspond to indicator

functions for each possible state in XU = Xu ⊗Xv ⊗Xw, listed on the right.

cliques with minimal factors by C(G) ⊆ C(G). An undirected model is called pairwise, if
any minimal factor involves at most two variables.

Since the dimensionality of factors plays an important role for the resource consump-
tion of the model, we will always use a factorization in terms of cliques with minimal
factors, e.g., ψ(x) =

∏
C∈C(G) ψC(xC). Moreover, all minimal factors that belong to the

same clique are merged.

For brevity, we will omit the term “clique with minimal factor” in the sequel, and
simply refer to those as the clique factors of simply factors of the model.

This situation ins depicted in Fig. 2.1. Assume that the factors of the cliques A =
{1, 2, 4, 5} and B = {2, 3, 5, 6} factorize further into edge factors, i.e., the corresponding
model is pairwise. Since the clique D = {2, 5} is shared by A and B, two different
factors ψA,2,5(xD) and ψB,2,5(xD), both corresponding to the clique D, would appear
in the overall factorization of the model. Whenever this happens, we define a new
factor ψD(xD) = ψA,2,5(xD)ψB,2,5(xD). Hence, the final pairwise factorization ψ(x) =∏

e∈E ψe(xe), will contain (at most) one potential for each edge e ∈ E—no matter how
many cliques share the edge e.

There is an alternative graphical representation of undirected models in terms of C(G),
via so-called factor graphs [130]. Since both representations are equivalent, we denote
undirected models via undirected graphs.

28

2.2 Graphical Models and Exponential Families

2.2.1 The Exponential Family of Densities

Definition 2.2 is merely the declaration of what we consider a potential function. Indeed,
any arbitrary non-negative function ψ of n variables induces an undirected graphical
model, regardless of its factorization properties. If ψ does not factorize at all, the
corresponding model consists of a single clique and the graphical structure is Kn (the
fully connected graph). In case ψ factorizes, each factor depends on a subset of all
n variables. Each of these subsets of variables defines a clique, and the edges of the
graphical model are then implied by the set of cliques.

In this thesis, we focus on undirected models, and the term graphical model always
refers to an undirected model, unless otherwise explicitly mentioned. We do now proceed
to the main formalism of this thesis:

Definition 2.3 (Exponential Family) Let X be a random variable and p its density.
Moreover, let p = pθ be parametrized by a vector θ ∈ Rd. Then, pθ belongs to an
exponential family of densities, if it can be written in the following form:

pθ(X = x) = exp(⟨θ, ϕ(x)⟩ − A(θ)) =
1

Z(θ)
ψ(x) . (2.3)

Here, A(θ) = logZ(θ) is the log-partition function, ψ(x) = exp(⟨θ, ϕ(x)⟩) the potential
function, and ϕ(x) is the sufficient statistic of the model.

The sufficient statistic encodes the conditional independence structure of X, i.e., ϕ
is actually a function of G. Nevertheless, the notation ϕG(X) is omitted, whenever the
underlying structure is not ambiguous. More formally:

Definition 2.4 (Sufficiency) Let X be a random variable with state space X , let fur-
ther x be an arbitrary realization of X, and let ϕ be some function from X to Rd.
Moreover, let the density of X be parametrized by θ. Then, ϕ is sufficient for θ, if

p(θ | x, ϕ(x)) = p(θ | ϕ(x)) .

I.e., given ϕ(x), the parameter θ becomes independent of x.

We know from Theorem 2.2 that undirected models factorize over the cliques of their
conditional independence structure. It is, however, not yet clear how such a factorization
can be achieved with exponential families. In case of discrete random fields X, there is
a canonical representation, based on simple indicator functions, which we now explain.

Definition 2.5 (Sufficient Statistics for Discrete Data) Let X be a discrete, n-
dimensional random variable, G = (V,E) its undirected conditional independence struc-
ture, U ⊆ V , and 1{xU=x′

U} an indicator function that evaluates to 1 if and only if

xU = x′
U and 0 otherwise. Let XU =

⨂
v∈U Xv be the joint joint state space of the vertex

set U ; XU contains |XU | =
∏

v∈U |Xv| elements. The overcomplete, binary, sufficient
statistic of vertex set U , ϕU : X → {0, 1}|XU |, is defined via

ϕU(x) =

(∏
v∈U

1{xv=x′
v} : ∀x′ ∈ XU

)⊤

.

29

2 Background

ϕU(x) is hence a |XU |-dimensional column vector that contains exactly one bit for each
possible joint state of the variables in U . ϕU(x) contains exactly one 1-entry—all other
entries are 0. The order in which the joint state indicators appear in ϕU(x) is arbitrary
but fixed. For ease of notation, the domain of ϕU might be reduced to XU , i.e., ϕU(x) =
ϕU(xU). Sufficient statistics may be overcomplete. Overcompleteness means that there
exists some vector a ∈ Rd and a constant b ∈ R, such that ⟨a, ϕ(x)⟩ = b holds for all
x ∈ X .

In the remainder of this thesis, overcomplete sufficient statistics are used without loss of
generality. Any overcomplete statistic can be reduced to an equivalent minimal formula-
tion by eliminating components of ϕ until no affine dependencies remain (cf. Appendix
B.1 in [227]). Although minimality sounds like an appealing property when the focus
lies on the consumption of resources, it is mainly an arithmetic property. Moreover,
the overcomplete sufficient statistics that we consider in this thesis, are a merely the-
oretical tool and not fully instantiated in practice. They hence consume almost no
resources. An exemplary sufficient statistic for different realizations of a generic vertex
set U = {u, v, w} is shown in Fig. 2.2. Note that only the 1-entries have to be known to
represent the statistic—we will revisit this observation in Chapter 3, when we discuss
the memory consumption of exponential family models.

The statistics of all clique factors are stacked together, to construct the sufficient
statistic of the model.

Definition 2.6 (Sufficient Statistic for Discrete Graphical Models) Let X be a
discrete, n-dimensional random variable with undirected conditional independence struc-
ture G = (V,E). The overcomplete sufficient statistic ϕ : X → Rd of X is

ϕ(x) = (ϕC(x)⊤ : ∀C ∈ C(G))⊤ .

ϕ(x) is hence a d-dimensional column vector, with d =
∑

C∈C(G) |XC |, that contains

indicator functions for the states of all cliques in C(G). The order in which the sufficient
statistics of cliques appear in ϕ(x) is arbitrary but fixed. Single components may be
addressed via specific joint states in the subscript, i.e., ϕ(x)C=x′ =

∏
v∈C 1{xv=x′

v}.

The sufficient statistic defined above is universal—it can be constructed for any dis-
crete random variable X, i.e., the existence of this kind of sufficient statistic is not an
assumption.

Definition 2.7 (Potential Function of Exponential Families) Let X be a discrete,
n-dimensional random variable with undirected conditional independence structure G =
(V,E). Moreover, let θ ∈ Rd, with d =

∑
C∈C(G) |XC |, be the parameter vector of an

exponential family density of X and ϕ its sufficient statistic. The vector θ is composed
out of sub-vectors θC ∈ R|XC |, where each dimension of θC is the weight for a spe-
cific joint state of the variables contained in clique C ∈ C(G). The order in which the
weights appear in θC is fixed by the order in which the joint state indicators appear in
the corresponding sufficient statistic ϕC(x). Each clique factor can hence be written as

ψC(x) = exp(⟨θC , ϕC(xC)⟩) .

30

2.2 Graphical Models and Exponential Families

Feeding the whole joint state x (instead of xC) into the potential function is merely
done to simplify the notation. In addition, we will allow to partition the argument of ψ
in any conceivable way. E.g., when C = {u, v, w}, the following equivalent expressions
are all identical to ψC(x):

ψC(xC) = ψC(xu,xv,xw) = ψC(x{u,v},xw) = ψC(x{u,w},xv) = ψC(x{w,v},xu) .

One should get the idea that the order in which we feed the joint state of C to ψ has
no relevance, as long as the argument suffices to reconstruct the values of the sufficient
statistic. We will use this kind of notation throughout the whole thesis whenever ap-
plicable, i.e., with any function that accepts realizations of multi-dimensional random
variables.

With the above definitions, every undirected model for any discrete random variable
X with strictly positive density p, can be represented by an exponential family member:

p(x) =
1

Z

∏
C∈C(G)

ψC(xC) =
1

Z(θ)

∏
C∈C(G)

exp(⟨θC , ϕC(xC)⟩)

=
1

Z(θ)
exp

⎛⎝ ∑
C∈C(G)

⟨θC , ϕC(xC)⟩

⎞⎠ = exp(⟨θ, ϕ(x)⟩ − A(θ))

The reason why the above equality holds for any discrete X is, that any arbitrary, strictly
positive function f with domain XC can be written in the form exp(⟨θC , ϕC(xC)⟩) via
θC=x′ = log f(x′),∀x′ ∈ XC which guarantees that

exp(⟨θC , ϕC(x′)⟩) = f(x′),∀x′ ∈ XC .

In contrast to the discrete case, there is no universal sufficient statistic for continuous
random variables. It is, however, possible to specify some function space Φ of reasonable
expressiveness—like the space of all feedforward artificial neural networks—and choose
ϕ ∈ Φ that minimizes a desired loss function.

The following theorem shows, that exponential family models have a natural connec-
tion to the concept of entropy.

Theorem 2.3 (Maximum Entropy Derivation) Let X be an n-dimensional ran-
dom variable. Let further ϕ : X → Rd be a function on the state space of X with
arbitrary but fixed expectation c ∈ Rd. If a density p has maximum entropy among
all densities which satisfy Ep [ϕ (X)] = c, then p belongs to an exponential family of
densities.

Proof. Let P = {p : X → (0; +∞]} be the set of all functions which map the state
space of X to the positive real line. For any element p of P , let P denote the corre-
sponding probability measure, uniquely defined—up to a ν-null set—by P(S) =

∫
S
p d ν

31

2 Background

for all S ⊆ X . Let HX [p] be the entropy of X under density p. Now, consider the
optimization problem:

max
p∈P

HX [p] s.t. E [ϕ (x)]i = ci, ∀1 ≤ i ≤ d and

∫
X
p d ν = 1

We construct the Lagrangian L (p,θ, C) = HX [p]− E [p]−Z[p] with θ ∈ Rd, C ∈ R,

E [p] =
d∑
i=1

θi (ci − E [ϕ (X)]i) , and Z [p] = C

(∫
X
p d ν − 1

)
.

The functional derivative of some functional F w.r.t. f , i.e., (dF/ d f), is defined via∫
X (dF/ d f)q d ν = ∂F (f + ϵq)/∂ϵ |ϵ=0 for some test function q. We will, however, not go

into any details concerning the existence of the functional derivative, nor will we make
any attempt to characterize the space of test functions which are allowed. A precise
discussion of the topic can be found in [8]. The functional derivative of the entropy is∫

X

dH
d p

q d ν = − ∂

∂ϵ

(∫
X

(p+ ϵq) log (p+ ϵq) d ν

) ⏐⏐
ϵ=0

= −
∫
X

∂p+ ϵq

∂ϵ

⏐⏐
ϵ=0

log (p+ ϵq) + (p+ ϵq)
∂log (p+ ϵq)

∂ϵ

⏐⏐
ϵ=0

d ν

=

∫
X
− (1 + log p) q d ν ,

and thus (dH/ d p) = −(1 + log p). Similarly, for the expectation constraint E , we have∫
X

d E
d p

q d ν = −
d∑
i=1

θi
∂

∂ϵ

(∫
X
ϕ(x)i(p(x) + ϵq(x)) d ν(x)

) ⏐⏐
ϵ=0

=

∫
X
−⟨θ, ϕ(x)⟩q(x) d ν(x) .

And the derivative is hence (d E/ d p) = −⟨θ, ϕ(x)⟩. Finally, for the normalization
constraint, we find∫

X

dZ
d p

q d ν = C
∂

∂ϵ

(∫
X

(p+ ϵq) d ν − 1

) ⏐⏐
ϵ=0

=

∫
X
Cq d ν ,

and at any stationary point, we must have (dL/d p) = 0, i.e.,

−1− log p (x) + ⟨θ, ϕ (x)⟩ − C = 0

⇔ p (x) = exp (⟨θ, ϕ (x)⟩ − (1 + C)) .

Plugging this back into the normalization constraint shows, that C is a function of θ:∫
X
p d ν = 1⇔

∫
X

exp⟨θ, ϕ (x)⟩ = exp (1 + C)⇔ log
∑
x∈X

exp (⟨θ, ϕ (x)⟩) = 1 + C

32

2.2 Graphical Models and Exponential Families

It is common to make this functional dependence explicit by defining A (θ) = 1 + C,
which yields the exponential family form (2.3)

p (x) = exp (⟨θ, ϕ (x)⟩ − A (θ)) .

■
Having maximum entropy is a convenient property but does not ultimately qualify

exponential families as an appropriate model for resource-constrained systems. We will
revisit exponential families and their sufficient statistics with a closer look on memory
complexity in Section 3.1.

2.2.2 Probabilistic Inference

Inference is an ambiguous term—in an abstract sense, it refers to the derivation of
knowledge from a probability measure. More specifically, it denotes the computation of
one or more of the following quantities (or extensions thereof):

• Marginal probabilities p(X i = xi) or conditional marginal probabilities p(X i =
xi |Xj = xj) (cf. Definition 7.4),

• Partition function Z(θ) =
∫
ψ(x) d ν(x) (cf. Theorem 2.2),

• Maximum a posteriori (MAP) state, i.e., maxx∈X p(x),

• Maximum likelihood parameter, i.e., maxθ∈Rd

∏
x∈D pθ(x).

We will now explain these tasks, corresponding algorithmic techniques, and resource
requirements. In what follows, X is an n-dimensional random variable with joint state
space X =

⨂n
i=1Xi, joint density p, and base measure ν.

Partition Function and Marginal Probabilities

As seen in Theorem 2.2, the partition function is the quantity that ensures normalization
of a probability density. Knowledge of the partition function is required in order to
compute actual probabilities.

Lemma 2.1 (Normalization) Let ψ : X → R+ be an arbitrary non-negative function.
ψ can be converted into a probability density pψ over X via normalization

p(x) =
1∫

X ψ d ν
ψ(x) =

1

Z
ψ(x) .

The quantity

Z =

∫
X
ψ d ν

is called partition function of p.

33

2 Background

When the integration is carried out over a subset U ⊂ {1, 2, . . . , n} of variables with
the others being fixed to a state xŪ , the normalized result is the marginal density of xŪ :

pŪ(xŪ) =
1

Z

∫
XU

ψ(xU ,xŪ) d νU(xU) .

This shows why the computation of marginal probabilities and the partition function
are closely related—any algorithm for Z can be transformed into an algorithm for the
marginal density pŪ by fixing the values of U during integration.

It depends on the actual ψ whether the computation of Z is easy or hard. In case of
continuous random variables, ψ is often chosen such that the integration is possible in
closed-form. Famous examples of such distributions are the Gaussian (a.k.a. Normal),
Poisson, Laplace, Beta, Exponential, Weibull, Von Mises-Fisher, Levy, Cauchy, Gum-
bel, and Dirichlet distributions. One could even say that one important reason why
those probability distributions are so well-known and frequently used, is that efficient
algorithms for the computation of their normalized density exist.

For discrete random variables, such efficient algorithms cannot be found in general.
Without additional assumptions, computing the partition function of a discrete random
variable is a #P-complete2 problem—it requires the same amount of time as counting
the number of accepting computation paths of a non-deterministic polynomial time
Turing machine [212, 33].

Special cases have been discovered for which efficient algorithms exist [191]. If the
induced graph G contains no loops, i.e., is tree-structured, Z can be evaluated exactly in
polynomial time via the belief propagation algorithm [165]—whose runtime is polynomial
in the number of edges and polynomial in the state space sizes. The same algorithmic
technique, e.g., message passing along the conditional independence structure, underlies
a frequently applied heuristic inference algorithm, namely loopy belief propagation. Al-
though LBP is often termed an approximate inference algorithm, it is no approximation
algorithm in the classical sense, because it delivers no performance guarantees.

Belief Propagation The belief propagation (BP) algorithm, introduced by Pearl [165],
is based on two basic ingredients. First, the factorization of undirected models as defined
in Theorem 2.2. The BP algorithm is originally formulated for tree-structured graphs
G = (V,E), where the maximum cliques are simply the edges E. Consequently, the
density factorizes over the edges3

p(x) =
1

Z

∏
{v,u}∈E

ψvu(xvu)

and the partition function is thus

Z =
∑
x∈X

∏
{v,u}∈E

ψvu(xvu) . (2.4)

2The definitions of fundamental complexity classes can be found in [229].
3It is common in the literature to write the factorization of pairwise models in terms of vertices
and edges. But since potentials of non-maximal cliques (here: vertices) may be absorbed into the
potentials of their supercliques (here: edges), an explicit inclusion of vertex factors is not necessary.

34

2.2 Graphical Models and Exponential Families

v u w

Figure 2.3: An undirected graph G = (V,E) with vertex set V = {u, v, w, . . . }. The
neighborhood of u is N (u) = {v, w}. Dashed lines indicate edges to other
vertices. The grey area indicates the subtree, rooted at vertex w.

The summation in (2.4) may be rewritten in form of explicit summations over each
variable. Each factor depends on two variables, and we may employ the second basic
ingredient, the distributive law, to pull the factors inside the summation. W.l.o.g., let v
be a leaf vertex, u its sole neighbor, and N (u) the set of neighbors of u. This situation
is depicted in Fig. 2.3. We set

Ψw ̸−u(xu) =
∑

x′∈XV \{v,u}

∏
{z,h}∈E\{{v,u}}

ψzh(x
′
zh) (2.5)

to be the summation over the states of all vertices in the subtree rooted at w that
originates when we cut the edge between w and u (the grey area in Fig. 2.3). Z may
then be rewritten in terms of Ψw ̸−u(xu):

Z =
∑

xv∈Xv

∏
u∈N (v)

∑
xu∈Xu

ψvu(xv,xu)
∏

w∈N (u)\{v}

Ψw ̸−u(xu) . (2.6)

Note that (2.5) has the same sum-product form as the full partition function (2.4), and
we may proceed recursively like before. I.e., we cut the edges between w and any of its
neighbors z ̸= u and apply (2.5). This can be repeated until all remaining subtrees are
singletons. Since G is a tree, the recursion will terminate after a finite number of steps.
The terms Ψw ̸−u(xu) are usually interpreted as message from w to u, such that the final
BP update becomes

mu→v(xv) =
∑

xu∈Xu

ψvu(xv,xu)
∏

w∈N (u)\{v}

mw→u(xu) . (2.7)

With this notation, we have Z =
∑

xv∈Xv

∏
u∈N (v)mu→v(xv) at any vertex v. The BP

algorithm thus consists of computing the messages in reverse depth first search (DFS)
order, where the DFS root may be any vertex. Computing Z with BP has therefore
a worst-case time complexity of O(|E||Xmax|2|Nmax|) and requires O(|E||Xmax|) space,
where Xmax is the largest vertex state space and Nmax is the largest neighborhood.

35

2 Background

Algorithm 2.1: Loopy Belief Propagation

input Graph G = (V,E), parameter θ ∈ Rd, precision ε > 0, iterations I ∈ N
output Vector µ̂ ∈ [0; 1]d of all singleton and pairwise marginals
1: mnew ← 0 ; mold ←∞ ; ϵ ← ∞ ; i ← 1
2: repeat
3: mold ← mnew

4: for {v, u} ∈ E do
5: for x ∈ Xv do
6: update message mnew

u→v(x) according to (2.9)
7: end for
8: for x ∈ Xu do
9: update message mnew

v→u(x) according to (2.9)
10: end for
11: end for
12: ϵ ← ∥mnew −mold∥∞
13: i ← i+ 1
14: until ϵ < ε or i > I

The same procedure can be applied to compute the marginal density of some fixed
event XU = xU , U ⊆ V , by simply omitting the summation over the states of vertices in
U . If the set U contains a single vertex v, the corresponding marginal density becomes

pv(xv) =
1

Z

∏
u∈N (v)

mu→v(xv) =

∏
u∈N (v) mu→v(xv)∑

x′∈Xv

∏
u∈N (v) mu→v(x′)

, (2.8)

which follows directly from plugging (2.7) into the definition of the marginal density
(Definition 7.4) of an undirected model. It is also worth mentioning that the messages
may be scaled by any arbitrary constant α without altering the resulting marginals, due
to cancellation, e.g.,

∏
u∈N (v) αmu→v(xv)/

∑
x′∈Xv

∏
u∈N (v) αmu→v(x

′) = pv(xv). This
fact allows the normalization of messages.

It is important that the whole derivation of the BP messages cannot be correct if G
is not a tree, because every non-tree has a subgraph that does not contain leaf vertices.
We therefore cannot simplify (2.4) by the distributive law. However, it is common
to run BP in loopy graphs and compute the normalized messages in some arbitrary
order. The corresponding algorithm is called loopy belief propagation [130], shown in
Algorithm 2.1. In this setting, one has to recompute messages multiple times, because
incoming messages might change—depending on previous message computations. Hence,
we have to store two separate message vectors, mnew and mold, which are swapped after
each LBP iteration.

mnew
u→v(xv) =

∑
xu∈Xu

ψvu(xv,xu)
∏

w∈N (u)\{v}

mold
w→u(xu) , (2.9)

The procedure of message-re-computation may or may not converge. If it converges,
its fixpoints are local minima of the so-called Bethe free energy [245, 92]. Despite its

36

2.2 Graphical Models and Exponential Families

heuristic nature, LBP and its generalizations [130, 246] are well known for delivering
good results in practice.

When marginals and partition function are computed from LBP fixpoints, they can in
principle be arbitrarily far from the correct values. However, properties of the potential
function ψ like bounded dynamic range or log-supermodularity can be used to derive
convergence guarantees or lower bounds on the true partition function [102, 183, 184].

BP is attractive for probabilistic inference in resource-constrained systems due to its
rather low resource requirements. Even in loopy graphs, one may prefer to run LBP
for a few iterations, instead of more sophisticated methods (described below), because
of its low overhead and good empirical performance. We present a specialized version
of (L)BP, based on integer arithmetic, in Chapter 4. Therein, only the bit-length of a
message is computed, instead of the actual message.

Junction Tree Algorithm Evaluating the partition function of loopy models exactly
does not necessarily require a naive summation over the state space; there is another,
more efficient, technique. Any loopy graph can be converted into a tree, the so-called
junction tree (JT) [134, 227, 122]. As with BP in ordinary trees, inference on the
junction tree has a time complexity that is polynomial in the maximal state space size
of its vertices. The maximal vertex state space size of a junction tree is, however,
exponential in the size of the largest clique of a triangulation4 of G, a.k.a. exponential
in the treewidth of G. Hence, if the treewidth of a loopy model is small, exact inference
via the junction tree algorithm is rather efficient. Choosing a triangulation that results
in a minimal treewidth is a NP-hard problem, but a valid triangulation can be found
with time and memory complexity linear in the number of vertices [50, 19, 91]. Moreover,
the maximal cliques of triangulated graphs can be computed in polynomial time w.r.t.
to |V | and |Nmax|. We provide the pseudocode of the junction tree construction in
Algorithm 2.2.

Since the junction tree is a tree, the derivation of BP applies and the same reasoning
as in (2.4) → (2.5) → (2.6) → (2.7) may be used to derive the corresponding message
update rules. Note, however, that each vertex of the junction tree J(G) corresponds to
a vertex subset of the original input graph G. The state spaces of neighboring vertices
will overlap by construction, and the final messages look hence slightly different from the
ordinary BP messages (2.7). For junction tree vertices U,C,W ⊂ V , the Shafer-Shenoy
messages [192] are

mU→C(xC\U) =
∑

xU\C∈XU\C

ψU(xU)
∏

W∈N (U)\{C}

mW→U(xU\W) .

The clique potentials ψU are constructed from the potentials of G, according to ψU =∏
i ψCi

for all Ci which are contained in the junction tree vertex U . If any Ci is contained
in more than one junction tree vertex, it is multiplied only to exactly one of the junction

4A triangulation of a graph G = (V,E) is another graph G′ = (V,E′) with E ⊆ E′, such that any
induced cycle of G′ has exactly three vertices.

37

2 Background

Algorithm 2.2: Junction Tree Construction

input Graph G = (V,E)
output Junction tree J(G)
1: G∆ ← triangulate(G)
2: C(G∆) ← findcliques(G∆)
3: n ← |C(G∆)|
4: Graph H ← Kn // fully connected graph with n vertices
5: for Ci ∈ C(G∆) do
6: for Cj ∈ C(G∆) do
7: wi,j ← |Ci ∩ Cj|
8: end for
9: end for
10: J(G) ← MWST(H,w) // maximum weight spanning tree of H with weights w

tree potentials. Other versions of junction tree messages exist [227], but the complexity
of all variants depends on the quality of the triangulation.

The actual computational complexity of inference on the junction tree can be com-
puted directly from the vertex state spaces and the neighborhood sizes. On a resource-
constrained system, we can compute the junction tree, based on sub-optimal triangu-
lation, and compute its resource requirements. If they exceed the capabilities of the
system, we may resort to LBP or a simpler conditional independence structure. LBP
results on a real-world microcontroller unit are provided in Chapter 6.

Variational Methods It should be clear from the previous paragraphs, that the con-
ditional independence structure is responsible for both, an accurate representation of
the probability measure, and the computational complexity. How can the structure be
modified such that the complexity is reduced while not degrading the quality too much?
One way to formalize this compromise is variational inference. We shall provide the
basic underlying ideas of this field and relate it to resource-constrained systems. A more
detailed introduction to the topic can be found in [227]. Here, the main starting point
is Jensen’s inequality [106].

Definition 2.8 (Convexity) Let a, b ∈ Rd. A differentiable function f : Rd → R is
convex if and only if

f(a) ≥ f(b) + ⟨∇f(b),a− b⟩ .

Moreover, f is convex if and only if its gradient is monotonically non-decreasing, i.e.,
⟨∇f(a) − ∇f(b),a − b⟩ ≥ 0. The negative of a convex function is a concave function
and vice-versa.

Here, ∇f(a) is the gradient of f , i.e., the column vector of all first partial derivatives of
f at a.

∇f(a) =

(
∂f(a)

∂a⊤

)⊤

38

2.2 Graphical Models and Exponential Families

Lemma 2.2 (Jensen’s Inequality [106]) Let f : Rd → R be a convex function and
X a d-dimensional random variable with density p. Then

f(E[X]) ≤ E[f(X)] .

Now, consider a probability measure F on the same σ-algebra as P, dominated by ν, and
with density q. The logarithm of the partition function can then be lower-bounded by
applying Jensen’s inequality:

logZ = log

∫
X
ψ
q

q
d ν ≥

∫
X
q log

ψ

q
d ν = EF[logψ(X)] +H[F] ,

where EF denotes the expectation w.r.t. to the probability measure F. Note that the
choice of F was arbitrary and that equality is attained for F = P. Denoting the space of
all non-deterministic probability measures by P , we arrive at the fundamental variational
principle

logZ = max
F∈P

EF[logψ(X)] +H[F] . (2.10)

The variational principle may equivalently be derived via conjugate duality [181], but in
the context of this thesis, the former derivation suffices.

When the density of P belongs to an exponential family, plugging the potential func-
tion ψ(x) = exp(⟨θ, ϕ(x)⟩) into (2.10) simplifies the variational principle to

logZ(θ) = max
F∈P
⟨θ,µ′⟩+H[F] . (2.11)

Therein, µ′ = EF[ϕ(X)] is the expected sufficient statistic w.r.t. F. When X is discrete
and ϕ is a binary, µ′ contains the marginal probabilities of the corresponding clique
states, e.g., µ′

C=y = P(XC = y). In this case, the set of all realizable µ′ vectors for the
dependence structure G is the so-called marginal polytope

M(G) = {µ′ ∈ Rd(G) | ∃F ∈ P : EF[ϕG(X)] = µ′} , (2.12)

where we excluded boundary marginals, and the connection between the model dimen-
sion d and the structure G was made explicit. We drop the dependence of M on G
whenever the graph is clear from the context. When we define H(µ′) as the entropy of
the probability measure with marginals µ′, (2.11) can be reformulated solely in terms
of µ′

logZ(θ) = sup
µ′∈M

⟨θ,µ′⟩+H(µ′) . (2.13)

This makes the connection between the marginals and the partition function evident.
It can be shown that the negative entropy corresponds to the dual function A∗(µ′) of
A(θ) = logZ(θ) for all µ′ that lie in the interior of M [227].

Several variational approximations can be derived from (2.13) by relaxing the set M
to classes M̃ of tractable marginals. Inner approximations of M lead to lower bounds
on logZ from which we may choose a member that maximizes the lower bound, and
hence, being as close as possible to logZ. Maybe the most prominent example is the

39

2 Background

naive mean field (MF) approximation; the class of joint densities that factorize fully over
their singleton marginals, i.e., p(x) =

∏
v∈V pv(xv). Moreover, structured mean field and

other approaches are known which are less restrictive but computationally harder. Most
of these approximations are based on non-convex variational problems [227] and suffer
from multiple local optima. Given that the underlying exact variational principle (2.13)
is convex, it is natural to consider variational approximations that retain this convexity.
If the set M is replaced by a convex outer bound, and in addition, H is replaced by
an upper bound, the approximate variational principle provides an upper bound on the
log partition function [224, 226]. Recall that the sufficient statistic (2.6) is actually a
function of the conditional independence structure G, and so is θ, since θ contains a
weight for each indicator in ϕ. For any subgraph H of G, let θ|H be the projection of
θ to H, i.e., all components of θ which correspond to cliques C which are not present
in H, are dropped—the same kind of projection may be applied to µ′. Due to duality
between −H and logZ(θ) for realizable µ′, we have

−H(µ′|H) = sup
θ|H∈Rd(H)

⟨θ|H ,µ′|H⟩ − logZ(θ|H)

= sup
θ∈Rd

⟨θ,µ′⟩ − logZ(θ) ≤ −H(µ′)

s.t. θC = 0,∀C ̸∈ H .

We see that the entropy of a submodel with structure H is always larger than the entropy
of the full model with structure G. In addition, for any set of subgraphs G(G) of G, let

M(G(G)) = {µ′ ∈ Rd(G) | ∃F ∈ P : ∀H ∈ G(G) : EF[ϕH(X)] = µ′|H} .

Each member of µ′ ∈ M(G(G)) has the property that the expected sufficient statistics
of all H ∈ G(G) are identical for the cliques they have in common. They may, however,
contain different cliques which are then allowed to have arbitrary, realizable marginals.
If ρ is an arbitrary probability mass of the discrete random variable G with state space
G(G), we have H(µ′) ≤ Eρ[H(µ′|G)]. Finally, the convex approximate variational prin-
ciple is

BG(G)(θ, ρ) = sup
µ′∈M(G(G))

⟨θ,µ′⟩+ Eρ[H(µ′|G)] .

B(θ, ρ) can be used in place of A(θ) whenever the latter cannot be evaluated due to
resource constraints [221]. Especially convenient approximations BG(G)(θ, ρ) arise, when
G(G) = T (G) is a set of a spanning trees of G [224, 226] or even a single tree [244]. This
particular convex approximate variational principle is known as tree-reweighting (TRW).
Moreover, a special BP version, namely tree-reweighted belief propagation [225] can be
derived, which solves the corresponding approximate variational problem via message
passing.

Sampling Methods As seen in the previous paragraphs, the main source of complexity
in marginalization and normalization of discrete random variables is the enumeration of
an exponentially large set. Belief propagation, the junction tree algorithm, and general

40

2.2 Graphical Models and Exponential Families

variational methods address this task by exploiting or simplifying the structure of the set
that has to be enumerated. But in any case, all variable assignments are eventually fully
enumerated. Instead of such exhaustive combinatorial calculations, one may draw N
samples xi from the state space X at random, compute the solution on the samples, and
extrapolate the obtained result onto the full set. The process of gathering information
from a set of samples to mimic a specific quantity is called estimation.

Definition 2.9 (Estimator) Let X be a random variable with measure P and Y =
Y (X) a function of X. Both random variables are not independent of each other, i.e.,
X ̸⊥⊥ Y . Let further D be a multi set that contains random realizations of X. Any
function Ŷ = Ŷ (D) that is used to recover Y from D is called estimator for Y .

• An estimator is called unbiased, if we can expect that it yields the correct value,
i.e., E[Ŷ] = Y .

• Here, an estimator is called (weakly) consistent, if the probability that the estima-
tion error |Ŷ −Y | is arbitrary small, converges to 1 in the limit of infinite samples,
i.e.,

∀ϵ > 0 : lim
|D|→∞

P(|Ŷ − Y | < ϵ) = 1 .

Some examples of sampling based estimators are:

1. Estimating the expectation for arbitrary functions, by evaluating f on each sample
x ∈ D and computing the average function value Ê[f(X)] = 1

|D|
∑N

x∈D f(x).

2. Estimating marginal probabilities p̂U(xU) = Ê[1{XU=xU}] for U ⊆ V , by observing
and counting the number of cases in which the specific variable assignment xU
appears.

3. Estimating the partition function, by summing the potentials ψ(x) of uniform
samples and finally rescaling the average potential by the size of the state space,
i.e., Ẑ = |X |Ê[ψ(X)].

4. Estimating the most likely joint state by choosing the sample with the largest
estimated density x̂∗ = maxx∈D p̂(x).

Underneath the here explained techniques lies the Monte Carlo principle. In each
of the above cases, the estimator is reduced to a sample mean estimation, i.e., the
estimation of an expected value, which is unbiased and weakly consistent [6]. It is
indeed very important that we can generate proper samples that follow a probability
measure of our choice.

The computational resource consumption of sampling stems from the number of sam-
ples N , and the actual algorithm used to generate the samples. The most basic tech-
niques are rejection sampling and inversion sampling. Rejection sampling draws samples
from a given, easy-to-sample proposal distribution F and converts them to samples from
a not necessary normalized potential function ψ, by rejecting samples from F which do

41

2 Background

Algorithm 2.3: Rejection Sampling

input Proposal measure F with density q, potential ψ, number of samples N ,
upper bound M

output Set of samples D
1: D ← ∅ ; i ← 1
2: while i ≤ N do
3: Draw sample xi ∼ F
4: Draw u ∼ U(0;1] // uniform random distribution on the interval (0; 1]
5: if u < ψ(x)/(Mq(x)) then
6: D ← D ∪ {xi} // accept sample xi

7: i ← i+ 1
8: end if
9: end while

not fit to our target distribution (Algorithm 2.3). The algorithm is easy to implement
but requires a constant bound M on the quotient ψ(x)/q(x) which might not always
be easy to obtain. Moreover, the runtime can be large when many samples are rejected.
Whenever a probability measure is sufficiently simple, we may completely omit the rejec-
tion step via inversion sampling. The procedure consists of drawing a uniform random
number u ∈ (0; 1), and inverting the distribution function P(X ≤ x) at u. I.e., when
U is uniform in (0; 1), then P−1(U) is a sample from P. In general, the inverse of P
might not be analytically available. Nevertheless, if the random variable X is discrete
with |X | distinct states, the first xl that satisfies

∑l
i=1 P(X = xi) > U is a sample

from P. Here, “first” is meant w.r.t. some arbitrary but fixed ordering of states. Of
course, when the state space X is large, say exponential in n, this technique has an
unreasonable large runtime. One may encounter situations in which some structure of
the underlying measure can be exploited to leverage this issue. This technique will be
revisited in Chapter 5, when we present a new inference method that combines numeri-
cal integration with fast inversion sampling.

If numerical data, sampled from P (the proposal), is already available, it can be converted
to samples from another measure F via importance sampling. To this end, samples x
are weighted by their importance weight f(x)/p(x). Taking the empirical expectation of
the weighted samples asymptotically cancels out the true density of the samples. This
technique can be applied to estimate the partition function. When D is a set of sam-
ples from P and ψ is the potential function, the importance sampling estimate of the
partition function is Ẑ = (1/|D|)

∑
x∈D(ψ(x)/p(x)).Note that p(x) = 1/|X | yields the

simple estimator, mentioned in the examples above. The estimator is unbiased but its
variance can be infinite whenever the divergence between p and f is large. A discussion
of importance sampling and its variants can be found in [151, 139] and references therein.

As opposed to plain Monte Carlo methods, Markov Chain Monte Carlo (MCMC) meth-

42

2.2 Graphical Models and Exponential Families

Algorithm 2.4: Gibbs Sampler

input Set of variables V , conditional marginals pv(xv) | xN (v),∀v,x,
joint state x0, number of resampling steps R

output Sample x
1: x ← x0

2: for i = 1 to R do
3: for v ∈ V do
4: Sample xv according to p(xv | xN (v)) // computed via (2.14)
5: end for
6: end for

ods generate a sequence of samples in which each sample depends on the previous one—
the samples form a chain. After B steps, the elements of the chain are valid but depen-
dent samples from our target distribution. To overcome the dependence, a fixed number
of samples may be discarded before the next sample is stored. Maybe the most popular
MCMC method is the Metropolis-Hastings algorithm [146, 87], which forms the basis
of most practical MCMC algorithms. An overview can be found in [6]. Here, we will
shortly present the Gibbs sampler [74].

For Gibbs sampling, recall that undirected models obey the (local) Markov property,
i.e., pv(xv | xV \{v}) = pv(xv | xN (v)). Moreover, let C(v) be the set of cliques which
contain vertex v, the conditional marginal is simply

p(xv | xN (v)) =

∏
C∈C(v) ψC(xv,xN (v))∑

y∈Xv

∏
C∈C(v) ψC(y,xN (v))

, (2.14)

which can be computed in time O(|Xv||C(v)|). The Gibbs sampler starts with an arbi-
trary joint state x0 and updates each variable by sampling from (2.14). If this process
is repeated multiple times, the resulting joint state x will be a valid sample from P,
independent of x0. Gibbs sampling is generic and requires only the space to store the
n-dimensional sample x, the model parameters θ ∈ Rd and the neighborhoods N (v).
The memory complexity is hence O(n+d+2m). Based on a set of samples D generated
from Gibbs sampling (or other MCMC techniques), the (inverse) partition function may
be estimated via the Ogata-Tanemura method [160, 177]:

1

Ẑ(θ)
=

1

|X ||D|
∑
x∈D

1

ψ(x)

However, an estimate of the number of samples B that have to be discarded must
be available. Determining this number is rather cumbersome. In practice one can
apply statistical test, but none of them provides entirely reliable diagnostics whether
the chain has stabilized. A body of theoretical work tries to lower bound the number of
steps required for the distribution of the Markov chain to be close to the target [108].
Nevertheless, such results are highly problem specific, and do in general not lead to an
actual number of burn-in steps, but rather asymptotic statements.

43

2 Background

Maximum a posteriori states

Sampling procedures generate joint states according to their density. Taking multiple
samples, joint states with higher density will appear more often. The most likely joint
x∗ of the model, i.e., the state of highest density, is called maximum a posteriori state.

x∗ = arg max
x∈X

pθ(X = x) = arg max
x∈X

⟨θ, ϕ(x)⟩ , (2.15)

Moreover, we may choose any subset O ⊂ V of variables whose states are known or
observed, and a set of variables H ⊂ V \ O whose states are unknown or hidden. We
could then ask for the most likely state of the hidden variables, given the observation.

x∗
H = arg max

xH∈XH

pθ(XH = xH |XO = xO) (2.16)

We call (2.16) the conditional MAP problem. By means of (2.16), any Markov random
field can be treated as a set of classifiers, where we can choose which variables repre-
sent classes and which variables represent features. This is especially helpful when the
particular prediction task is not known at learning time.

Instead of sampling the states of variables, one can try to exploit the structure of ϕ
and θ to find or estimate the (conditional) MAP. The corresponding decision problem
is NP-hard, so unless we employ exhaustive search techniques, we should in general not
expect to find the true MAP state fast. However, a large body contains sophisticated
techniques to address this problem. We will shortly summarize the most important
results.

Using the same reasoning that we employed in the derivation of belief propagation
(Section 2.2.2), one can show that BP, when we replace + by max, solves the MAP
problem exactly whenever the conditional independence structure is a tree. To distin-
guish both BP versions, we call the original messages (2.7) sum-product messages and
the maximization version max-product messages. Technically, this can be seen as a
transition from the (+,×)-semiring to the (min,+)-semiring [4, 130]. This fact is espe-
cially attractive in the context of resource-constrained systems, since the machine code
for sum-product and max-product messages is almost identical and can hence be shared
between the algorithms.

If the structure is loopy, we may indeed compute the junction tree (Algorithm 2.2)
and compute the max-product Shafer-Shenoy messages to reveal the exact maximizing
joint state. If we cannot afford to construct the junction tree, we may run loopy belief
propagation instead. As with LBP, max-product LBP delivers very good empirical
results [242].

It happens that in fact multiple x turn-out to be “most likely”, at least approximately.
Conditions and techniques have been studied under which the most likely joint state
can be uniquely decoded via simple maximization over the vertex marginals of max-
product messages [231, 223, 145, 123]. Many of them are specific to certain sub-classes
of undirected models. An important theoretical result shows, that the fixpoints of max-
product LBP on loopy conditional independence structures are so-called neighborhood

44

2.3 Numerical Optimization and Regularization

maximums of the posterior probability. This means that the posterior probability of
the max-product assignment is guaranteed to be greater than all other assignments in
a particular large region around that assignment. The region includes all assignments
that differ from the max-product assignment in any subset of nodes that form no more
than a single loop in the graph. In some graphs, this neighborhood is exponentially large
[231]. The latter result is a sound theoretical justification for the MAP approximation
via LBP. However, tight bounds on the quality are not available. Moreover, LBP might
not always converge.

Inspired by linear programming (LP) relaxations, block coordinate descent-like algo-
rithms are known to always converge and find the exact MAP state whenever there is
only one unique optimum [77, 128]. Moreover, LP approximations to the MAP problem
enjoy quality guarantees. Specifically, they provide upper bounds on the MAP value and
optimality certificates. Furthermore, they often work for graphs with large tree-width
as shown in [195].

Instead of LP relaxations, the convexified approximate variational principle can also be
applied to approximate the MAP [232]. Several analyses and convergent algorithms for
the tree-reweighted approach have been proposed [223, 126, 123, 124]. Those techniques
are based on the appealing property that (2.15) is a convex function of θ, since it is
the maximum over linear functions. Hence, Jensen’s inequality can be employed by
imposing a probability distribution over simpler conditional independence structures
(cf. Section 2.2.2). Due to its low resource overhead and guaranteed convergence, the
sequential tree-reweighted message passing (TRW-S) technique [123] is an appropriate
alternative to max-product LBP in the context of resource-constrained systems.

Finally, instead of finding or approximating one solution of (2.15), we can ask for
the top-M most probable joint states. All of the above mentioned techniques can be
modified such that a set of possible MAP assignments can be found [243, 71, 68, 16].

Since our main concern is learning, we will not investigate the MAP problem any
further in the remainder of this thesis. We will instead focus on the other inference tasks,
namely computation of the partition function, marginal probabilities, and parameter
estimation.

2.3 Numerical Optimization and Regularization

The basic terms and tools of probability theory and exponential families are now estab-
lished, and we proceed by introducing techniques from numerical optimization. These
are essential to accomplish the actual estimation of θ and G—the parameters and the
conditional independence structure. Starting point for both tasks is a multi set D—the
data set—which contains samples from an n-dimensional random variable X. We will
discuss state-of-the art methods in the context of limited resources, and review results
which have a strong impact on the resource consumption of parameter and structure
estimation.

45

2 Background

2.3.1 Parameter Estimation

It is the standard procedure in machine learning to specify a loss function ℓ, depending on
a data set D and a parameter (vector) θ. From the set of all valid parameters, we choose
θ̂, the one that minimizes the loss. In the course of estimating a probability density,
the most basic and intuitive method is the maximum likelihood (ML) principle. A key
assumption is the independence of samples; if multiple samples are known to depend on
each other, a larger model has to be constructed the takes care of these dependences.
Due to independence of the data points, the probability density of our data set factorizes
into the densities of each sample, i.e., pθ(D) =

∏
x∈D pθ(x). Choosing the parameter θ

that maximizes the joint density of D is the core of the ML estimation. The actual goal
is to find the most likely parameter, given the data, i.e.,

θ̂ ∈ arg max
θ∈Rd

p(θ | D) = arg max
θ∈Rd

p(D | θ)p(θ)

p(D)
. (2.17)

Following the original ML setting, we are agnostic about p(θ) and treat it as a constant—
an assumption that will be dropped later on. The division by p(D) is irrelevant for
the maximization, since it does not depend on θ. Due to monotonicity and numerical
convenience, we may maximize log p instead of p. Finally, to better match the intuition
of loss minimization, we minimize the negative, average log-density −(1/|D|) log p(D).
Substituting the density of exponential family members (2.3), the ML loss function
becomes

ℓ(θ;D) = − 1

|D|
∑
x∈D

(⟨θ, ϕ(x)⟩ − A(θ)) = −⟨θ, µ̃⟩+ A(θ) , (2.18)

where the last equality holds by linearity of the dot product and the abbreviation µ̃ =
1
|D|
∑

x∈D ϕ(x) for the sample mean estimator of the sufficient statistic. The gradient is

∇ℓ(θ;D) = ∇A(θ) − µ̃. Note that an exact computation of the (log) likelihood is in
general not possible due to the #P-hardness of the (log) partition function, and a large
body of work about its approximation exists ([104, 226], Section 2.2.2, Chp. 5).

Now, we would like to find the parameter θ̂ that minimizes the loss, i.e., θ̂ =
arg minθ∈Rd ℓ(θ;D). To apply methods of numerical optimization, we need to derive
expressions for the partial5 derivatives of A.

Lemma 2.3 (Moments and the Partition Function [227]) The first and second
derivatives of the log-partition function are the first moment and the second central
moment, respectively, of the random variable ϕ(X) w.r.t. the density pθ.

∂A(θ)

∂θi
= Eθ[ϕ(X)]i

∂2A(θ)

∂θi∂θj
= Cθ[ϕ(X)]ij (2.19)

Where Cθ[ϕ(X)] is the covariance matrix of ϕ(X) w.r.t. pθ.

5It might happen that the number of exponential family parameters is 1, like in a Poisson distribution.
To reduce notational clutter, we will not distinguish between a derivative and a partial derivative.
Differentiation w.r.t. a variable w is always denoted as partial derivative ∂/∂w.

46

2.3 Numerical Optimization and Regularization

Proof.

∂A(θ)

∂θi
=

∂

∂θi
log

∫
X
ψ d ν =

∂
∂θi

∫
X exp(⟨θ, ϕ(x)⟩) d ν

Z(θ)
=

∫
X
ϕipθ d ν

∂2A(θ)

∂θi∂θj
=

∂

∂θj
Eθ[ϕ(X)i] =

∫
X
ϕi
ψϕj + ψEθ[ϕ(X)j]

Z(θ)
d ν

=

∫
X
pθϕiϕj − pθϕiEθ[ϕ(X)j] d ν = Eθ[ϕ(X)iϕ(X)j]− Eθ[ϕ(X)i]Eθ[ϕ(X)j]

■
The partial derivatives of A(θ) corresponds to the expected values of ϕ(X)i and hence
∇A(θ) = Eθ[ϕ(X)] = µ̂. The same relation can be established via convex conjugacy,
i.e., µ̂ = arg supµ′∈M⟨θ,µ′⟩+H(µ′) (2.13).

It is straightforward to show via convex function calculus that A is a convex function of
θ, and as such, any local minimum is also a global minimum. When the graphical model
is tree-structured, optimal vertex and edge parameters can be computed in closed-form
[227]:

θ̂v=x = log µ̃v=x θ̂vu=xy = log
µ̃vu=xy

µ̃v=xµ̃u=y

(2.20)

If the graphical structure is not a tree, the above closed-form no longer applies. It is pos-
sible to derive approximate parameters in closed-form, based on the convex approximate
variational principle from Section 2.2.2. Those may be interpreted as the expectation
of a parameter vector over all spanning-trees of a graph G, i.e., θ̄ =

∑
T∈T (G) q(T)θ(T),

where q is some density, all parameters of θ(T) which do not correspond to edges of the
spanning tree T are 0, and the others are computed via (2.20). The closed-form of θ̄ is
then

θ̄v=x = log µ̃v=x θ̄vu=xy = qvu log
µ̃vu=xy

µ̃v=xµ̃u=y

,

where qvu =
∑

T∈T (G) q(T)1{{v,u}∈T} is the marginal probability that edge {v, u} appears

in any tree in T (G). Although the initial work on tree-reweighted approximations as-
sumed that T (G) contains all of G’s spanning trees, it suffices that T (G) is just some
set of trees such that each edge of G is contained in at least one tree in T (G) [123].

Tree structured models and approximations based on them are well understood and
the corresponding inference and parameter estimation problems allow for efficient algo-
rithms. Now, let us assume for the remainder of this chapter that no closed-form solution
can be found. In such cases, we employ (accelerated) first-order methods and proxi-
mal methods, or second-order methods like BFGS [158]. Second-order methods ensure
very fast convergence, but require an prohibitively large amount of resources for high-
dimensional models. As an example, the Hessian, e.g., the matrix of all second deriva-

tives ∇2A(θ)ij = ∂2A(θ)
∂θi∂θj

, of a model with 104 parameters requires over 380 megabytes

memory at 32 bit floating-point precision—far too much if we assume that only a few
kilobytes are available. Moreover, on highly resource-constrained systems, even the sim-
plest full-dimensional vector operations are very expensive. Approximate second-order

47

2 Background

methods like L-BFGS thus require too many resources, and we resort to (accelerated)
proximal first-order methods [153, 17, 164] or techniques which perform only partial
updates of the parameter vector [155]. Before we take a closer look at these methods,
we discuss what kind of quality we should expect from the estimate.

Properties of the Estimator

Given the undirected conditional independence structure of a random variable X, we
know by (2.8) that the true probability density factorizes according to the cliques of G,
and that it can be rewritten in the exponential family form. This suggests that there is
a “true” θ∗ which was used to generate our actual data set D. Classic statistical results
assert that maximum likelihood estimation is consistent whenever the likelihood has a
unique global optimum. In this case, the ML estimate θ̂ converges in probability to
the parameter θ∗ that generated the data. More details on estimation and consistency
can be found in [67]. Here, the objective function (2.18) is only strictly convex, if a
minimal sufficient statistic is used. While it is true that any non-minimal statistic can
be converted to an equivalent minimal statistic (cf. Appendix B.1 in [227]), the actual
conversion is rather technical and the resulting statistics loose their interpretability in
terms of marginal probabilities. Since non-minimal (overcomplete) sufficient statistics
have convenient properties that we will exploit in the sequel, we will sacrifice strict con-
vexity for interpretability. But this does not result in a harder estimation procedure. The
objective function is still convex, which means that there is a set of optimal solutions—
each corresponding to a different representation of the same model. This gives us the
freedom to choose from the set of all optimal parametrizations, the one which implies
the largest reduction in memory, arithmetic, or computational complexity. When we
find any minimizer of (2.18) based on overcomplete statistics, other optimal solutions
may be discovered via shift-invariance.

Lemma 2.4 (Shift Invariance) Let X be a random variable with exponential family
density, parameter θ ∈ Rd, and undirected structure G. For any clique C ∈ C(G) and
any vector r ∈ Rd, let rC be the sub-vector of components that correspond to the states
of C according to Definition 2.6. Let Rϕ = {r ∈ Rd | ∀C ∈ C(G) : ∃ : rC ∈ R|XC | : rC =
(rC , rC , . . . , rC)⊤}. Exponential family members with overcomplete sufficient statistics
are shift-invariant against vectors from Rϕ, that is, ∀r ∈ R : ∀x ∈ X : pθ+r(x) = pθ(x).

Proof. The overcomplete sufficient statistic contains, for all cliques C ∈ C(G), one
binary indicator for each clique state xC ∈ XC (Definition 2.5). Since any x implies
exactly one state for each clique, the vector ϕ(x) contains exactly one 1-entry per clique,
which implies ⟨r, ϕ(x)⟩ =

∑
C∈C(G) rC for all r ∈ Rϕ. Thus, for all r ∈ Rϕ and all x ∈ X ,

pθ+r(x) =
exp(⟨θ + r, ϕ(x)⟩)∑
y∈X exp(⟨θ + r, ϕ(y)⟩)

=
exp

(
⟨θ, ϕ(x)⟩+

∑
C∈C(G) rC

)
∑

y∈X exp
(
⟨θ, ϕ(y)⟩+

∑
C∈C(G) rC

) = pθ(x) .

■

48

2.3 Numerical Optimization and Regularization

Shift-invariance is also denoted by ≡, e.g., ∀r ∈ R : pθ+r ≡ pθ.
Hence, as long as we add the same constant to all parameters which belong to the

same clique, the density is unchanged. However, Rϕ does not contain all vectors which
are neutral elements w.r.t. parameter shifting. The full set R∗

ϕ of all vectors r which
satisfy pθ+r ≡ pθ is the solution set of a system of linear equations. More precisely,

pθ+r ≡ pθ ⇔ r ∈ R∗
ϕ ⇔ ∃c ∈ R :

⎛⎜⎜⎜⎝
— ϕ(x1)⊤ —
— ϕ(x2)⊤ —

...
— ϕ(x|X |)⊤ —

⎞⎟⎟⎟⎠
  

M

r =

⎛⎜⎜⎜⎝
c
c
...
c

⎞⎟⎟⎟⎠ . (2.21)

The matrix M has |X | rows and d columns. Each row of M corresponds to the (trans-
posed) sufficient statistic vector of some x ∈ X . The set R∗

ϕ contains all vectors r
with pθ+r ≡ pθ, for any arbitrary but fixed sufficient statistic—the random variable is
allowed to have any state space X . In contrast, the set Rϕ from Lemma 2.4 works only
when ϕ is the binary overcomplete sufficient statistic. The qualitative difference is that
Lemma 2.4 gives us a way to construct actual shift-invariant vectors, while R∗

ϕ from
(2.21) is of rather theoretical interest—it allows us to characterize the set of all optimal
solutions, whenever at least one minimum θ̂ of (2.18) is known.

Nevertheless, keep in mind that even when we know an exact minimizer, the model
that generated our data might differ from our estimate. A simple and intuitive notion of
how “correct” our estimate is, can be derived from the problem formulation itself. Recall
that the gradient of the ML objective is ∇ℓ(θ;D) = µ̂ − µ̃. At any stationary point,
we must have µ̂ = µ̃, which means that our model is able to reproduce the empirical
marginals, which in-turn can be shown to be close to the true marginals, as long as we
have enough data [241].

Lemma 2.5 (Estimation of Expected Statistics [241]) Let X be a random vari-
able with state space X , D = {x1,x2, . . . ,xN} a data set, and ϕ : X → Rd some
function. The true expected value of ϕ(X) is denoted by µ∗ = E[ϕ(X)] and the corre-
sponding empirical estimator via µ̃ = 1

|D|
∑

x∈D ϕ(x). Then,

∥µ̃− µ∗∥∞ ≤

√
(c+ 1) log d

2|D|

with probability of at least 1− 2 exp(−c log d) and any c > 0.

Proof. µ̃ is unbiased due to E[µ̃] = 1
|D|
∑

x∈D E[ϕ(X)] = µ∗. According to Hoeffding’s

inequality [94],
P(|µ̃i − E[µ̃]i| > t) ≤ 2 exp(−2|D|t2)

for all t > 0. Since this holds for any dimension i, we can apply the union bound to get

P(∃i ∈ [d] : |µ̃i − µ∗
i | > t) ≤ 2 exp(−2|D|t2 + log d) .

The lemma follows for t =
√

(c+ 1) log d/(2|D|). ■

49

2 Background

2.3.2 First-Order Methods

The basic idea of first-order methods is to optimize a linear approximation of the ob-
jective function. Starting from an arbitrary parameter vector θ0, an iterative procedure
generates the series θ0,θ1,θ2, . . . ; in the simplest case, the series is generated via

θi+1 = θi − κi∇ℓ(θi;D) . (2.22)

If the objective function is truly linear, we may choose κi = 1 and arrive at the optimal
solution directly after the first step. If the function is non-linear, θi will converge to
a stationary point of ℓ for a reasonable choice of step-sizes κ0, κ1, κ2, Since our
objective function ℓ is convex, each stationary point is a global minimizer. Choosing a
good series of step-sizes κi can be a delicate process and might involve non-trivial search
strategies. Luckily, conditions are known under which a single constant κ suffices.

Definition 2.10 (Lipschitz Continuity) A function f : Rd → Rl is Lipschitz contin-
uous, if there exists a constant L ∈ R such that for all a, b ∈ Rd,

∥f(a)− f(b)∥ ≤ L∥a− b∥ ,

for any arbitrary but fixed norm ∥ · ∥. If not otherwise explicitly stated, Lipschitz con-
tinuity is declared w.r.t. the l2-norm (or equivalently, the Frobenius norm in case of
matrix arguments). L is called Lipschitz constant. By the mean value inequality (cf.
Proposition 5.3.11 in [8]), if f is continuously differentiable and L = supc∈Rd ∥∇f(c)∥,
then f is Lipschitz continuous with constant L.

Results about the Lipschitz continuity of exponential family members can be found in
the literature [96]. We could, however, not find any results on the Lipschitz continuity
of the gradient of ℓ(θ;D) and hence, present our own derivation.

Lemma 2.6 (Lipschitz Continuous Log-Likelihood Gradient) Let X be a dis-
crete random variable with binary, overcomplete sufficient statistic. ∇ℓ(θ;D) is Lipschitz
continuous with constant L = 2|C(G)|.

Proof. Following Definition 2.10, we have L = supθ∈Rd ∥∇2ℓ(θ)∥F . By plugging-in the
Hessian of ℓ from Lemma 2.3, we get

L = sup
θ∈Rd

∥Cθ[ϕ(X)]∥F = sup
θ∈Rd

∥Eθ[ϕ(X)ϕ(X)⊤]− Eθ[ϕ(X)]Eθ[ϕ(X)]⊤∥F

≤ sup
θ∈Rd

∥Eθ[ϕ(X)ϕ(X)⊤]∥F + ∥Eθ[ϕ(X)]∥22

< sup
θ∈Rd

Eθ[∥ϕ(X)ϕ(X)⊤∥F] + |C(G)| = 2|C(G)| .

The second line follows from the triangle inequality, from submultiplicativity of the
Frobenius norm, and from the Forbenius norm’s invariance against matrix transposi-
tion. To derive the third line, observe that ∥Eθ[ϕ(X)]∥2F =

∑d
i=1 µ̂

2
i is the summation of

50

2.3 Numerical Optimization and Regularization

squared marginals. µ̂i ∈ (0; 1) implies
∑d

i=1 µ̂
2
i <

∑d
i=1 µ̂i. Summing up the marginals

of any clique C yields
∑

y∈XC
µ̂C=y = 1, and the summation over the marginals of all

cliques is thus the number of factors |C(G)|. Every norm is convex, and hence Jensen’s
inequality (Lemma 2.2) implies that ∥Eθ[ϕ(X)ϕ(X)⊤]∥F ≤ Eθ[∥ϕ(X)ϕ(X)⊤∥F]. Fi-
nally, ∥ϕ(x)ϕ(x)⊤∥F = |C(G)| by Definition 2.6. ■

The above lemma is derived for discrete state models with overcomplete sufficient
statistics. In case of generic statistics for arbitrary data, it is straightforward to derive
the upper bound d(ϕ2

max + µ̂2
max) on L, where ϕmax and µ̂max are upper bounds on ϕ(x)i

and µ̂i, respectively.
Based on the gradient’s Lipschitz constant, we instantiate a result from numerical

optimization to see how many iterations of (2.22) we need to achieve a specific precision.

Theorem 2.4 (Convergence of Gradient Descent [156]) Let ℓ(θ;D) be the objec-
tive function (2.18), and θ̂ ∈ Rd a globally optimal parameter vector. The iterates θi

generated by gradient descent (2.22) with fixed stepsize κ = 1/L = 1/(2|C(G)|) satisfy

ℓ(θi;D)− ℓ(θ̂;D) ≤ |C(G)|
i
∥θ0 − θ̂∥22 .

Hence, achieving ℓ(θi;D)− ℓ(θ̂;D) ≤ ϵ for any ϵ > 0 requires O(|C(G)|/ϵ) steps.

Proof. Lemma 2.6 asserts that ∇ℓ has Lipschitz constant L = 2|C(G)|. For ease of
exposition, let g(a) = (L/2)∥a∥22−ℓ(a;D). Multiplying Definition 2.10 by ∥a−b∥2, and
applying the Cauchy-Schwarz inequality yields ⟨∇ℓ(a;D)−∇ℓ(b;D),a−b⟩ ≤ L∥a−b∥22.
Plugging in ∇ℓ(a;D) = La−∇g(a) shows, that ∇g(a) is monotonically non-decreasing
and thus convex (Definition 2.8). Resubstituting g(a) into the definition of convexity
leads to a quadratic upper bound on ℓ, namely

ℓ(a;D) ≤ ℓ(b;D) + ⟨∇ℓ(b;D),a− b⟩+ (L/2)∥a− b∥22 . (2.23)

Substituting a = θi+1 (cf. (2.22)) and b = θi into this upper bound, leads to

ℓ(θi+1;D) ≤ ℓ(θi;D)− (κ− (Lκ2)/2)∥∇ℓ(θi;D)∥22 (2.24)

≤ ℓ(θ̂;D) + ⟨∇ℓ(θi;D),θi − θ̂⟩ − (κ/2)∥∇ℓ(θi;D)∥22 (2.25)

= ℓ(θ̂;D) + (1/(2κ))(∥θi − θ̂∥22 − ∥θi+1 − θ̂∥22) (2.26)

Where we used the definition of θi+1 from (2.22). We see from (2.24) that the series
of function values ℓ(θ0;D), ℓ(θ1;D), ℓ(θ2;D), . . . is non-increasing. Any function value
ℓ(θj;D) with j < i cannot be closer to ℓ(θ̂;D) than the function value of the i-th iterate
ℓ(θi;D), and so is the their average. Finally, we get

ℓ(θi;D)− ℓ(θ̂;D) ≤ 1

i

i−1∑
j=1

ℓ(θj;D)− ℓ(θ̂;D) ≤ ∥θ
0 − θ̂∥22
2iκ

(2.27)

by applying (2.26) to each term in the sum. ■

51

2 Background

Gradient descent stores the current parameter vector θi and the gradient. According
to the theorem, the number of iterations that we need until a specific distance ϵ to the
optimal function value is achieved, is linear in the size of the conditional independence
structure, linear in 1/ϵ, and indeed quadratic in ∥θ0 − θ̂∥2. Each iteration requires
access to ∇ℓ(θi;D) = Eθi [ϕ(X)]− µ̃ for computing the parameter update (2.22), which
in turn requires probabilistic inference to compute Eθi [ϕ(X)] (Section 2.2.2). There
are so-called pseudo-likelihood approaches, which destroy all but direct dependencies
between variables to ease parameter estimation [20]. Such procedures may yield very
good results in specific application. Nevertheless, breaking the random field into parts
renders the (long-range) dependencies of graphical models (Section 2.2) unreliable, and
is, in general, a crude approximation of the joint density. For comparison: using loopy
belief propagation will result in inconsistent marginals for cliques with more than two
vertices, nevertheless, long range dependencies are preserved in the sense that every
clique potential influences every marginal probability. Probabilistic inference has high
resource requirements in general, and it is hence important to understand which parts
influence the number of training iterations.

The distance to the optimum is considered as a constant, since we cannot assume to
have a priori knowledge about the location of the optimum—initializing θ0 such that it
is close to θ̂ is not possible. W.l.o.g., we initialize θ0 to the zero vector, and hence, the
convergence speed depends on the squared l2-norm of the optimal solution ∥θ̂∥22. The
first point that we can control is the desired precision ϵ. We have to keep in mind that
the optimization problem is based on data samples, and is in fact a statistical estimation
problem. Hence, the precision up to which we can estimate the true parameter is dictated
by the quality of our data, which may render arbitrary small ϵ values spurious or useless
[152, 2]. As an example, any optimum of (2.18) guarantees, that the marginals µ̂,
generated by our model, and the empirical marginals µ̃ coincide. But we know from
Lemma 2.5, that there is some discrepancy between the empirical marginals which we
observe, and the true underlying marginals µ∗. Hence, it is questionable if we really
want to match µ̃ up to very small ϵ—a topic that will also be addressed in the next
Section.

Due to the linearity in L and 1/ϵ, the runtime of ordinary first-order methods can be
large. Accelerated first-order methods exist, which achieve sub-linear convergence, i.e.,
the number of iterations required to reach ϵ precision isO(

√
L/ϵ)—this result is known to

be optimal for gradient descent-type methods for convex programs under the Lipschitz
gradient condition [156]. The acceleration is achieved, by introducing a sequence of
auxiliary variables α0,α1, . . . and weights β0, β1, β2, . . . , to include an extrapolation of
the last two iterates into the parameter update. So for β0 = 1 and arbitrary α0 ∈ Rd,
iterating

θi = αi − κi∇ℓ(αi;D), βi+1 =
1 +

√
4β2

i + 1

2
, αi+1 = θi +

βi − 1

βi+1

(θi − θi−1) (2.28)

generates the accelerated sequence of solutions θ0,θ1, . . . , which converges faster to θ̂.
Note that βi satisfies β2

i+1 = βi+1 + β2
i .

52

2.3 Numerical Optimization and Regularization

Theorem 2.5 (Convergence of Accelerated Methods [153]) Let ℓ(θ;D) be the
objective function (2.18), and θ̂ ∈ Rd a globally optimal parameter vector. The iter-
ates θi generated by accelerated gradient descent (2.28) with fixed stepsize κ = 1/L =
1/(2|C(G)|) satisfy

ℓ(θi;D)− ℓ(θ̂;D) ≤ 4|C(G)|
(i+ 2)2

∥α0 − θ̂∥22 .

Hence, achieving ℓ(θi;D)− ℓ(θ̂;D) ≤ ϵ for any ϵ > 0 requires O((|C(G)|/ϵ) 1
2) steps.

Proof. We follow the proof of Theorem 2.4 with a = θi+1 and b = αi+1 until inequality
(2.25). Rearranging the terms therein, we obtain

⟨∇ℓ(αi+1;D),αi+1 − θ̂⟩ ≥ ℓ(θi+1;D)− ℓ(θ̂;D) + (κ/2)∥∇ℓ(αi+1;D)∥22 . (2.29)

As opposed to gradient descent, the sequence of objective function values ℓ(θi;D), gen-
erated by the accelerated method, is not monotonic. We hence cannot rely on the same
arguments as in (2.27) to show the bound—a more direct relation between the iterates
is required. To derive this, let ri = (βi− 1)(θi−1− θi). By (2.24) and convexity of ℓ, we
have

(κ/2)∥∇ℓ(αi+1;D)∥22 ≤ ℓ(θi;D)− ℓ(θi+1;D)− 1

βi+1

⟨∇ℓ(αi+1;D), ri⟩ . (2.30)

Some rearrangements show, that

∥ri+1 − θi+1 + θ̂∥22 = ∥ri − θi + βi+1κ∇ℓ(αi+1;D) + θ̂∥22
= ∥ri − θi + θ̂∥22 + β2

i+1κ2∥∇ℓ(αi+1;D)∥22
+ 2(βi+1 − 1)κ⟨∇ℓ(αi+1;D), ri⟩
+ 2βi+1κ⟨∇ℓ(αi+1;D), θ̂ −αi+1⟩ .

Further rearrangements and applying (2.29) to the last line yields

∥ri+1 − θi+1 + θ̂∥22 − ∥ri − θi + θ̂∥22
= − 2βi+1κ(ℓ(θi+1;D)− ℓ(θ̂;D)) + 2(βi+1 − 1)κ⟨∇ℓ(αi+1;D), ri⟩

+ (β2
i+1 − βi+1)κ2∥∇ℓ(αi+1;D)∥22 .

Substituting (2.30) and β2
i+1 = βi+1 + β2

i , results in

∥ri+1 − θi+1 + θ̂∥22 − ∥ri − θi + θ̂∥22
≤ 2(β2

i+1 − βi+1)κ(ℓ(θi;D)− ℓ(θi+1;D))− 2βi+1κ(ℓ(θi+1;D)− ℓ(θ̂;D))

= 2κβ2
i (ℓ(θ

i;D)− ℓ(θ̂;D))− 2κβ2
i+1(ℓ(θ

i+1;D)− ℓ(θ̂;D))

53

2 Background

This inequality can now be chained to bound the distance between the i-th and the
optimal function value.

2κβ2
i (ℓ(θ

i;D)− ℓ(θ̂;D)) ≤ 2κβ2
i (ℓ(θ

i;D)− ℓ(θ̂;D)) + ∥ri − θi + θ̂∥22
≤ 2κβ2

i−1(ℓ(θ
i−1;D)− ℓ(θ̂;D)) + ∥ri−1 − θi−1 + θ̂∥22

. . .

≤ 2κβ2
0(ℓ(θ0;D)− ℓ(θ̂;D)) + ∥r0 − θ0 + θ̂∥22

≤ ∥α0 − θ̂∥22
The last inequality uses (2.29) and the fact that r0 = 0 and β0 = 1. The theorem follows
from βi ≥ (1/2)(i+ 2). ■

Recent results indicate, that the asymptotic rate of convergence is even slightly faster
then shown above [12]—o(i−2) instead of O(i−2). Moreover, monotonic accelerated first-
order methods have been developed [17].

Although Theorem 2.4 and 2.5 are known for long, we decided to reproduce them here
due to their fundamental impact on the resource consumption of parameter estimation.
While the generic versions of these Theorems are phrased with a generic gradient Lips-
chitz constant L, we presented the convergence results in terms of our own upper bound
2|C(G)|.

Improving the runtime is only possible by additional assumptions on the loss function,
e.g., strong convexity—a property that fails to hold for many loss functions and also fails
in our case. It is possible to prove faster convergence based on restricted strong convexity
[152], which holds for a broader set of loss functions [2]. The improvements are, however,
problem instance specific and so are not further discussed here.

Besides ϵ, the second point that influences the number of iterations is the number of
cliques; more specifically, the number of factors. It arises through the appearance of the
gradient’s Lipschitz constant in the quadratic upper bound (2.23).

In the following Chapters, it will be useful to conduct a block-wise optimization of
θ, where the blocks of θ are constituted from the clique factors, e.g., θ = (θC)C∈C(G).
To this end, applying the Definition of Lipschitz continuity (Definition 2.10) yields the
corresponding block Lipschitz constants.

Lemma 2.7 (Clique-wise Gradient Lipschitz Constants) Let ℓ(θ;D) be the neg-
ative log-likelihood of an exponential family with binary overcomplete sufficient statistic,
and let C be some clique in C(G). Then,

∥∇ℓ(θ;D)C −∇ℓ(θ′;D)C∥2 < ∥θ − θ′∥2 ,

which implies LC < 1.

Proof. Let us consider the entries of the covariance matrix of the random vector ϕC(X).

Cθ[ϕC(X)]i,j = Eθ[ϕC(X)ϕC(X)⊤]i,j − Eθ[ϕC(X)]iEθ[ϕC(X)]⊤j

=

(∑
x∈X

pθ(x)ϕC(X)iϕC(X)j

)
−

(∑
x∈X

pθ(x)ϕC(x)i

)(∑
x∈X

pθ(x)ϕC(x)j

)

54

2.3 Numerical Optimization and Regularization

with i, j ∈ [|XC |]. If i = j,

Cθ[ϕC(X)]i,i =

(∑
x∈X

pθ(x)ϕC(X)i

)
  

pi

−

(∑
x∈X

pθ(x)ϕC(x)i

)2

  
p2i

< pi . (2.31)

Note that if i ̸= j, the term ∑
x∈X

pθ(x)ϕC(X)iϕC(X)j

must be zero, since either ϕC(X)i = 1 or ϕC(X)j = 1, but not both. Hence, if i ̸= j,

Cθ[ϕC(X)]i,j = −

(∑
x∈X

pθ(x)ϕC(x)i

)(∑
x∈X

pθ(x)ϕC(x)j

)
= −pipj . (2.32)

Now,

1 = 12 =

⎛⎝|XC |∑
i=1

pi

⎞⎠2

=

|XC |∑
i=1

|XC |∑
j=1

pipj =

|XC |∑
i=1

p2i +

|XC |∑
i=1

∑
j ̸=i

pipj >

|XC |∑
i=1

p2i +

|XC |∑
i=1

∑
j ̸=i

p2i p
2
j .

(2.33)
Using (2.31), (2.32) and (2.33), we have

∥Cθ[ϕC(X)]∥F <

√|XC |∑
i=1

p2i +

|XC |∑
i=1

∑
j ̸=i

(−pipj)2 < 1 ,

and thus LC = supθC∈R|XC | ∥Cθ[ϕC(X)]∥F < 1. ■

2.3.3 Regularization

Maximum likelihood estimation has appealing properties, but it might be reasonable to
establish additional criteria for the model that we want to estimate. Particular subsets of
parameters can have special characteristics, which make us prefer them over others, even
when this means to sacrifice optimality in terms of (2.18). The concept of penalizing
models which lack certain desired properties is called regularization. It will turn out,
that regularization is inherent in the course of analyzing probabilistic models in the
context of resource-constrained systems.

In the literature, maybe the most famous desired property of machine learning models
is sparsity—the estimated parameter vector contains “many” 0 entries. Sparsity can have
various implications: (1) First of all, the obvious algebraic advantage that parameters
which are 0 may drastically simplify the underlying computation (Section 2.3.4), since
some parts of an expression need not be evaluated; (2) Setting parameters to 0 while
still achieving good predictive performance shows, that the data or features which are

55

2 Background

weighted by the parameters are unnecessary, hence, sparsity acts like a feature selection
[203, 222]; (3) Given the fact that most data sets are not perfect due to measurement
errors or filthy editing, we might not want a model that fits perfectly to the data and
its imperfections. Enforcing sparsity can therefore be interpreted as suppressing noisy
and shortcoming of the data to prevent overfitting; (4) Finally, theoretical insights and
practical results show, that sparsity can reduce the sample complexity of the estimation
problem. More specifically, the covering number of a parametrized family of functions
whose parameters have bounded l1-norm, is in O(log d). Based on results from [176],
it can be shown that the number of samples required to achieve a certain accuracy ϵ
is lower bounded by Ω(log d). A proof of this statement for logistic regression can be
found in [157].

Definition 2.11 (Regularization) Let f : Rd → R be the objective function of a
minimization problem. Let further R(θ) : Rd → R+ be a non-negative, convex function,
and λ > 0. The problem

min
θ∈Rd

f(θ) + λR(θ) (2.34)

is called regularization of the original optimization problem. R is the regularizer and λ
is the regularization weight.

The above definition is also called the Lagrangian form of regularization [86]. Intu-
itively, (2.34) is the Lagrangian of a constrained optimization problem [181]. To see this,
let λ = (α(B)/B), B > 0, and α : R+ → R+, then,

θ̂ = arg min
θ∈Rd

f(θ) + λR(θ) = arg min
θ∈Rd

f(θ) + λR(θ)− α(B)

= arg min
θ∈Rd

f(θ) + α(B)((1/B)R(θ)− 1) = arg min
θ∈Rd

f(θ) s.t. R(θ) ≤ B

where α(B) is akin to a Lagrange multiplier associated with the constraint R(θ) ≤ B.
When f and R are convex, and there exists at least one θ with R(θ) < B, then the
existence of a (dual-optimal) α(B) ≥ 0 is guaranteed by Slater’s condition. In case of
parameter learning for exponential families, it should thus be possible to find regular-
ization weights which correspond to feasible constraints on the parameter set when R is
convex. We investigate the effects of a particular non-convex regularization in Chapter 4.

The most frequently encountered convex regularizers are powers of lp-norms, e.g.,

∥θ∥p =

(
d∑
i=1

|θi|p
) 1

p

,

especially the l1-regularization R(θ) = ∥θ∥1 or squared-l2-regularization R(θ) = ∥θ∥22.
Squared-l2-regularization penalizes parameters with large absolute value. Moreover, it
has the extremely appealing property that any squared-l2-regularized convex objective
function becomes strictly convex. To see this, note that ∇2λ∥θ∥22 = λI where I is

56

2.3 Numerical Optimization and Regularization

the d × d identity matrix. The sum of any positive-semidefinite matrix and λI must
be positive definite since λ > 0, which implies that the regularized objective is strictly
convex.

In addition, the l2-norm is a smooth function of θ and the corresponding regularized
problem may readily be solved via (accelerated) first-order methods. Contrary to the
latter, l1-regularization is non-smooth. First-order methods for the smooth optimization
of non-smooth functions employ so-called proximal operators proxλR [154, 164]. The
plain proximal gradient method updates the model parameters according to

θi+1 = proxκλR(θi − κi∇ℓ(θi;D)) .

The actual instance of the prox-operator depends on the particular regularization R
which we like to employ.

Definition 2.12 (Proximal Operator [164]) Let R : Rd → R be a closed, proper,
convex function and λ > 0. The proximal operator proxR : Rd → Rd of R is defined via

proxκλR(θ) = arg min
γ∈Rd

λR(γ) +
1

2κ
∥θ − γ∥22 , (2.35)

where κ corresponds to the step size of an underlying first-order method. proxκλR is
strongly convex and not everywhere infinite, so it has a unique minimizer for every θ,
even if domR ⊂ Rd.

Although κ is part of prox, we will write proxλR instead of proxκλR to simplify notation.
For suitable choices of f , proxf (x) can be shown to realize first or second order opti-
mization steps for some objective function that is implied by f . Intuitively, proxλR(θ)
is a point that compromises between minimizing R and being near to θ, while λ is a
tradeoff parameter between both goals. Depending on the particular regularization, a
closed form for prox can be found. In case of l1-regularization, this closed-form is

proxλ∥·∥1(θ)i =

⎧⎪⎨⎪⎩
θi − λ ,θi ≥ +λ

0 , |θi| < λ

θi + λ ,θi ≤ −λ
, (2.36)

and for the l2 norm,

proxλ∥·∥2(θ)i =

{
1− λ/∥θ∥2 , ∥θ∥2 ≥ λ

0 , ∥θ∥2 < λ
. (2.37)

The derivation of the above closed-form and a detailed discussion of proximal operators
in general can be found in [164]. Note that the proximal operator of the l1 norm sets a
parameter to 0 whenever its absolute value lies within the interval [−λ, λ]. The behavior
of proxλ∥·∥2(θ)i is similar but more global, in the sense that the new value of the i-th
parameter depends on the overall vector θ and not just on θi.

57

2 Background

Iterating θi+1 = proxλR(θi) will converge to a minimum of R. This can be combined
with the θ-update step in gradient descent (2.22) and the accelerated first-order method
(2.28) to yield optimization algorithms for regularized objectives. In case of the ac-
celerated gradient descent on the l1-regularized likelihood (2.18), the update becomes
θi+1 = proxλ∥·∥1(α

i−κi∇ℓ(αi;D)), while the rest of the method stays as it is. It can be
shown that this procedure, known as the fast iterative shrinkage thresholding algorithm
(FISTA), inherits its convergence properties (cf. Theorem 2.5) from the underlying first-
order method [17, 12]. Moreover, in Chapter 4, we make use of the fact that proximal
first-order methods can converge to critical points even in cases when the corresponding
regularization R is non-convex [11, 25].

In summary, regularization can be incorporated with low overhead, as long as R and
proxR are easy to evaluate. In the cases explained above, the memory requirements
increase by the need to store λ, and the time required to evaluate the norms and the
corresponding proximal operators is O(d).

While the above introduction to regularization is based on a heuristic augmentation
of the objective function, we may also interpret the regularizer as the logarithm of some
prior density on the model parameters.

Probabilistic Interpretation

In maximum likelihood estimation, we choose the model that maximizes the probability
of our data (2.17). Instead of choosing a single model, one may choose a probability
density over models in order to account for uncertainty which is inherent to our estimate.
In Bayesian statistics, the likelihood p(D | θ) is combined with a prior p(θ | λ) over
model parameters, controlled by hyperparameters λ ∈ Rk. The density over the model
space—the posterior distribution—may then be derived via Bayes rule

p(θ | D,λ) =
p(D | θ,λ)p(θ | λ)

p(D | λ)
=

p(D | θ,λ)p(θ | λ)∫
Rd p(D | θ,λ)p(θ | λ) d ν(θ)

, (2.38)

where the denominator p(D | λ) is the marginal likelihood, i.e., the density of the data
for given hyperparameters. Instead of predicting the most likely state x∗ based on a
single model θ (2.15), the model in the so-called posterior predictive distribution

p(x | D,λ) =

∫
Rd

p(x | θ)p(θ | D,λ) d ν(θ) (2.39)

is marginalized out. It should be clear that the integration in (2.38) and (2.39) is rather
expensive in general, but in case of exponential families, a conjugate prior exist which
may simplify the derivation of the posterior distribution. In case of (finite) discrete state
spaces, the conjugate prior is the Dirichlet distribution—well known applications in the
field of probabilistic topic models are based on this fact [23]. In general, one could resort
to sampling methods in order to approximate the integrals (cf. Section 2.2.2).

58

2.3 Numerical Optimization and Regularization

Another way to incorporate the prior into the estimation process is known as maximum
a posteriori estimation (not be confused with MAP states, cf. Section 2.2.2).

θ̂ ∈ arg max
θ∈Rd

p(D | θ)p(θ | λ) .

Note, that if we plug-in an exponential family member for the data likelihood and
construct the negative average log-likelihood, the resulting expression

ℓMAP(θ;D) = −⟨θ, µ̃⟩+ A(θ)− log p(θ | λ) (2.40)

looks familiar. This is indeed the ordinary maximum likelihood loss plus a function
of θ, parametrized by λ. The space of possible priors is of course huge, but certain
choices will reveal objectives, which we already explained before. Assume, for ex-
ample, that p(θ | λ) is a multivariate Gaussian with zero-mean and scaled (d × d)-
identity covariance matrix (2λ)−1I. In this case λ = (2λ)−1 is 1-dimensional and
log p(θ | λ) = −(d/2) log(πλ−1) − λ∥θ∥22. Since the first term is constant (w.r.t. θ),
the sets of maximizing arguments of (2.40) and of the l2-regularized ML objective are
identical. Thus, by choosing an independent Gaussian prior we rediscover the squared-
l2-regularized ML objective. Choosing a component-wise Laplacian prior with location
0 and scale λ = λ−1 yields log p(θ | λ) = −d log(2λ−1) − λ∥θ∥1, which is equivalent to
maximum likelihood estimation with l1-regularization.

2.3.4 Structure Estimation

Samples from a distribution can not only be used to identify particular members of
an exponential family, but also to estimate the conditional independence structure G
of an n-dimensional random variable X. There are at most mmax = n!/(2(n − 2)!)
edges and thus 2mmax different possible conditional independence structures. Clearly, an
exhaustive search through the space of all structures is not feasible. Classic structure
estimation procedures are based on pairwise independence tests, i.e., if the variables Xv

and Xu satisfy a specific criterion, the edge {v, u} is included in the undirected graph.
Recent variants of this idea directly construct triangulated graphs, based on likelihood-
ratio tests [166, 167] or local search heuristics [182, 205]. Such methods usually come
without any guarantees, since a clique of k > 2 vertices may exist in the conditional
independence structure, although some of its members are independent. Formally, k
vertices are mutually independent if and only if the joint density of all subsets factorizes
into a product of vertex marginals. Cliques that contain pairs of independent edges
cannot readily be detected by methods which are based on pairwise independence tests.
In the special case of Gaussian models, some guarantees can be made for structures,
which are derived from partial correlation coefficients [234].

Optimal tree structures can be found via the Chow-Liu algorithm, which is based
on choosing the tree structure which minimizes the Kullback-Leibler divergence to the
optimal structure. Let P be the true, unknown probability measure with density p, and
FT a measure whose density qT factorizes w.r.t. to a tree structure T over the vertex

59

2 Background

and edge marginals of the true distribution, i.e., pv and pvu. According to Definition 7.7,

KL[P ∥ FT] =

∫
X
p log

p

qT
d ν = −H[P] + E[− log qT (X)] ,

and because qT factorizes over the vertex- and edge-marginals of p,

KL[P ∥ FT] = −H[P] +
∑
v∈V

H[Pv]−
∑

vu∈E(T)

I[Xv,Xu] .

The last equality can be derived via qT (x) =
∏

v∈V pv(x)−deg(v)
∏

vu∈E pvu(xv,xu) where
deg(v) is the degree of vertex v, and E(T) is the edge set of the tree T . I[Xv,Xu] is
the mutual information between vertex v and vertex u (cf. Definition 7.8). It is clear,
that H[P] is unknown—it depends on the true, unknown, conditional independence
structure. Nevertheless, it does not depend on our choice of T and neither do the vertex
entropies. Hence, minimizing the Kullback-Leibler divergence over the set of all spanning
trees is equivalent to choosing the tree whose edge set maximizes the sum of edge-wise
mutual information arg minT∈T (G) KL[P ∥ FT] = arg maxT∈T (G)

∑
vu∈E(T) I[Xv,Xu].

The latter is a maximum weight spanning tree problem over the complete graph with n
vertices. Computing the edge weights I[Xv,Xu] indeed requires access to the pairwise
marginals pvu of the true density. Those have to be estimated from the data set D
as explained in Section 2.2.2. Since the sample means are consistent estimators of
the marginal probabilities, it can be shown that the outcome of the aforementioned
procedure is a consistent estimator of the true underlying conditional independence
structure, if the true structure is a tree.

It is worth noting that the factorization of qT into vertex and edge marginals is only
valid if T is a tree. In case of arbitrary structures, a junction tree factorization over
cliques and their intersections is possible [227], but the number of possible cliques that
we could include into the model is exponential, while the number of possible edges is
only quadratic—this explains why choosing the best tree has a polynomial runtime.

The above methods are combinatorial in the sense that they enumerate possible edges
of the estimated structure. Numerical methods for the structure estimation task are
based on a simple, yet effective observation.

Lemma 2.8 (Edge Deletion) Let pθ be an exponential family member with structure
G = (V,E) and parameter θ. Assume w.l.o.g. that {v, u} ∈ E. Let further pθ− be an
exponential family member with structure G− = (V,E \ {v, u}) and parameter θ−. Let
both parameter vectors agree on the common cliques, i.e., θ = (θ−,θ+), where θ+ is
the parameter vector of all cliques C which are not in G−. If the parameters for each
C ∈ C(G) \ C(G−) are set to some constant c ∈ R, then pθ = pθ−.

60

2.3 Numerical Optimization and Regularization

Proof. Let ϕ(x)− be the sufficient statistic of cliques in C(G−), and ϕ(x)+ the sufficient
statistic of cliques in C(G) \ C(G−). For all x ∈ X ,

pθ(x) =
exp(⟨θ, ϕ(x)⟩)∑
y∈X exp(⟨θ, ϕ(y)⟩)

=
exp(⟨θ−, ϕ(x)−⟩+ ⟨θ+, ϕ(x)+⟩)∑
y∈X exp(⟨θ−, ϕ(y)−⟩+ ⟨θ+, ϕ(y)+⟩)

=
exp(⟨θ−, ϕ(x)−⟩+ c|C(G) \ C(G−)|)∑
y∈X exp(⟨θ−, ϕ(y)−⟩+ c|C(G) \ C(G−)|)

= pθ−(x) .

■
For any parameter vector θ, the lemma gives us a condition to check, if the model

that corresponds to θ contains parameters for unnecessary cliques—all parameters of
an unnecessary clique would be equal. Shift-invariance (Lemma 2.4) tells us, that we
may subtract any constant from all parameters which belong to the same clique, without
altering the probability density pθ. We may hence assume w.l.o.g., that all parameters of
an unnecessary clique are actually 0. The process of parameter estimation from data is,
however, subject to noise which arises from an insufficient amount of data (Lemma 2.5).
We therefore cannot expect that the estimated parameters of an unnecessary clique
would be exactly equal.

Ordinary l1-regularization enforces sparsity, but in order to detect unnecessary cliques
in the parametrization, enforcing single parameters to become 0 might leave us with
cliques where all but a few parameters are zero. The so-called group l1/l2-regularization
can enforce sparsity over whole blocks of parameters and may hence be applied to sup-
press the imperfections in our data and reveal which cliques might not be required to
model the density.

Rl1/l2(θ) =
∑

C∈C(G)

∥θC∥2

The corresponding proximal operator is proxλ∥·∥2(·) (2.37), applied to the parameter
vector of each clique factor separately.

proxλRl1/l2
(θ) = (proxλ∥·∥2(θC) : C ∈ C(G)) (2.41)

After learning θ under group l1/l2-regularization, we may read off the conditional in-
dependence structure by joining the edges of all clique factors which have non-zero
parameter vector. Since multiple cliques will have non-empty intersection, the resulting
edge set could be rather dense. A study of more sophisticated group regularizers which
account for the overlap between groups can be found in [13].

Various structure estimation techniques rely on the above ideas [203, 144, 189, 240].
Assuming that the true parameter vector indeed contains several zero entries, it can be
shown, that those zeros will be discovered by regularization based methods, even if the
model dimension d is much larger than the number of samples [222], and even when
approximate inference techniques are applied [241].

61

2 Background

2.4 Polynomial Approximation

The last set of basics which we discuss in this chapter is devoted to polynomials. At a
first glance, it seems that polynomials have not much in common with the exponential
family. The connection will, however, become evident in Chapter 5, when we employ a
polynomial approximation of the potential function to derive a new approximate infer-
ence algorithm. A broad treatment of polynomials, and approximation algorithms based
on them can be found in [142, 185].

Definition 2.13 (Polynomial) Let fζ : R → R be a function, parametrized by the
k + 1-dimensional vector ζ ∈ Rk+1. If fζ can be written in the form

fζ(z) =
k∑
i=0

ζiz
i = ζ0 + ζ1z + ζ2z

2 + · · ·+ ζkz
k ,

then fζ is a degree-k polynomial in z, with coefficients ζ. Polynomials are closed under
scalar multiplication and addition.

The closedness under addition follows from associativity, i.e., the sum of two polyno-
mial fζ(z) + gγ(z) is again a polynomial, by grouping the same powers of z together
and summing their corresponding coefficients. A large class of functions has a natural
representation as polynomial-like power series.

Definition 2.14 (Analytic) Let ζi be some sequence of real coefficients. A function
f : R→ R is called real analytic on [l;u] ⊂ R, if, for any z0 ∈ [l;u], the series

F (z) =
∞∑
i=0

ζi(z − z0)i

converges pointwise and locally uniform to f(z) if z is sufficiently close to z0. That is,
the distance between z and z0 should not exceed the radius of convergence.

Alternatively, analytic functions are characterized by a Lipschitz-like property; the ab-
solute value of their k-th derivative at any z is upper bounded by Ck+1k!, where C > 0
[127].

When we truncate the series expansion of an analytic function after the (k + 1)-th
term, we are left with a degree k polynomial which is a (local) approximation of f . Since
polynomials might be easier to evaluate than the original function, insights about the
general quality that we can achieve with polynomial approximations are of particular
significance.

Theorem 2.6 (Weierstrass Approximation Theorem [142]) Let f : [l;u]→ R be
a continuous function on the interval [l;u]. For every ε > 0, there exists a polynomial
fζ on [l;u] whose distance to f uniformly bounded by ε. The absolute distance between
f and its approximation, i.e., ε(z) = |f(z) − fζ(z)|, will be called approximation error
of fζ at z. Then,

∀ε > 0 : ∃fζ : sup
z∈[l;u]

|f(z)− fζ(z)| < ε .

62

2.4 Polynomial Approximation

-1x10
-7

-5x10
-8

 0

 5x10
-8

 1x10
-7

-5 -2.5 0 2.5 5

A
p

p
ro

x
im

at
io

n
 e

rr
o

r

z

Taylor Remez DCT

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

F
u

n
c
ti

o
n

 v
a
lu

e

z

T
0

T
1

T
2

T
3

T
4

Figure 2.4: Left: Visualization of the error f(z)− f̂(z) of pointwise (Taylor) and uniform
(DCT and Remez) approximations on the interval [−5, 5]. The dashed hori-
zontal lines indicate the worst case error of the uniform approximation. The
approximation with DCT coefficients does not exactly obey the equioscil-
lation property, whereas the Remez approximation cannot be distinguished
from the minimax approximation. Right: The first 5 Chebyshev polynomi-
als.

This theorem tells us that every continuous function on [l;u] can be approximated ar-
bitrary well by a polynomial—a consequence of the more general statement that the
set of all polynomials is dense in the set of real-valued continuous functions on [l;u].
Multivariate versions exist, but in the context of this thesis, univariate polynomials
suffice.

Indeed, if we want to materialize the above theorem, we need a way to find the
coefficients of a polynomial. A well known class of polynomial approximations includes
the degree k truncated Taylor series. The coefficients of a Taylor expansion can be
directly derived from the definition of analytic function. Investigating the i-th derivative
of F at z0, i.e., (∂iF (z)/∂zi)

⏐⏐
z=z0

, reveals that

T [f](z) =
∞∑
i=0

1

i!

∂iF

∂zi
(z − z0)i .

Although the convergence is called pointwise and locally uniform, the compact neighbor-
hood of z0 in which we can guarantee a reasonable accuracy is rather small. This might
be already clear from the fact, that the whole series is constructed from knowledge about
f at a single point z0. Pointwise and uniform convergence are directly related to the
error of a truncated series expansion—the difference is visualized in Figure 2.4 (left).
We can see, that the error of uniform approximations is evenly distributed over the
whole domain, while a pointwise approximation concentrates it accuracy around z0 = 0
but has unbounded error beyond a, in general unknown, neighborhood around z0. The
oscillating error shown in the figure will turn out to be an identifying property of the
best (in l∞ sense) polynomial approximation.

63

2 Background

2.4.1 Chebyshev Polynomials

In what follows, we construct (near) minimax optimal polynomial approximations. They
distinguish themselves by an oscillating approximation error. Since Chebyshev polyno-
mials oscillate on the interval [−1; 1], they are a good starting point for the construction
of (near) optimal approximations.

Indeed, it can be shown that an optimal (w.r.t. the lp-norm) degree-k polynomial
approximation hζ of any function f on [l;u] always exists [142].

Definition 2.15 (Minimax Approximation) For any continuous function f from
[l;u] to R, let hζ∗ be a polynomial approximation to f with coefficients

ζ∗ = arg min
ζ∈Rk+1

max
z∈[l;u]

|f(z)− hζ(z)| = arg min
ζ∈Rk+1

∥f − hζ∥∞ .

hζ∗ is called minimax approximation of f .

Moreover, the minimax polynomial approximation can be identified via the extrema of
it error function ε(z).

Theorem 2.7 (Polynomial Approximation and Equioscillation [110]) For any
continuous function f : [l;u]→ R, there exists a unique minimax optimal degree-k poly-
nomial approximation hζ∗, which is uniquely characterized by the equioscillation prop-
erty. That is, there are k+ 2 points in [l;u] at which f(z)−hζ∗(z) attains its maximum
absolute value with alternating signs.

The equioscillation property of the error function is both, necessary and sufficient, for
hζ∗ to be unique and minimax optimal. We will now identify a class of polynomial which
can in-turn be used to construct optimal approximations.

Definition 2.16 (Chebyshev Polynomial) The degree-k Chebyshev polynomial is
specified by the fundamental recurrence relation

T0(z) = 1, T1(z) = z, Tk(z) = 2zTk−1(z)− Tk−2(z) .

A non recursive form is Tk(x) = cos(k arccos(x)). Moreover, Tk oscillates on [−1; 1]
between its k + 1 extrema, which are the points

yi = cos
iπ

k
.

Due to their oscillation property (Figure 2.4, right), Chebyshev polynomials are an
important building block in the construction and analysis of minimax optimal approxi-
mations. The explicit, non-recursive form of Chebyshev polynomials is rather cumber-
some. However, the recursion Tk(z) eventually involves a summation of scaled powers of
z, and can hence be rewritten in the form of an ordinary polynomial (Definition 2.13).
Chebyshev polynomials have an extraordinary large variety of convenient properties, like
rapidly decreasing and individually converging coefficients [73], which make them ubiq-
uitous in virtually any field of numerical analysis. An excellent discussion of Chebyshev
polynomials in general, can be found in [142].

64

2.4 Polynomial Approximation

Definition 2.17 (Chebyshev Expansion) Let f be a function on [−1; 1]. The Cheby-
shev expansion of f is the series

H(z) =
γ0

2

∞∑
i=1

γiTi(z)

with

γi =
2

π

∫ 1

−1

(1− z2)−
1
2f(z)Ti(z) d z . (2.42)

Truncating the above series after the first k + 1 terms is called degree-k Chebyshev
approximation with exact coefficients. Note that since polynomials are closed under
scalar multiplication and addition (cf. Definition 2.13), degree-k Chebyshev approxima-
tions are itself polynomials of degree-k. There are several functions for which the exact
coefficients γi in (2.42) may be determined explicitly, although this is not possible in
general due to the integration. It is, however, always possible to perform a numerical
approximation of the integral in (2.42). If we define z = cosω, it follows that

γi =
1

π

∫ 2π

0

f(cosω)cos(iω) dω ,

since the integrand is even and has period 2π. The latter integral may be approximated
by the trapezoidal rule on a grid of 2k + 1 equally spaced points

ωj =
(j − (1/2))π

k
, j ∈ {1, 2, . . . , 2k + 1} (2.43)

which are the zeros of Tk. Some calculation [142] then yields the coefficients of a degree-k
Chebyshev approximation6.

Definition 2.18 (Chebyshev Approximation) Let f be a function on [−1; 1]. The
degree-k Chebyshev approximation of f is the polynomial

hζ(z) =
ζ0

2

k∑
i=1

ζiTi(z)

with

ζi =
2

k + 1

k+1∑
j=1

f(zj)Ti(zj), i ∈ {0, 1, 2, . . . , k} (2.44)

and zj = cosωj as specified in (2.43).

6The exact same coefficients may be derived by equating the function values f(zj) with
∑k

i=0 ζiTi(zj),
multiplying by (2/(k + 1))Tl(zj), and summing over j. Due to discrete orthogonality properties

of Chebyshev polynomials, we have
∑k

j=1 Ti(zj)Tl(zj) = 0 ⇔ i ̸= l, which leads directly to the
coefficients (2.44). Nevertheless, we preferred to emphasize the connection between the approximate
coefficients and the exact coefficients of the Chebyshev expansion.

65

2 Background

In fact, hζ(z) reproduces f exactly at the zeros zj and is hence also termed the Chebyshev
interpolation polynomial. The procedure that computes the approximate coefficients
(2.44) is also known as discrete cosine transformation (DCT).

We can now relate the above approximation to the minimax optimal one.

Definition 2.19 (Near-Minimax Approximation) For any continuous function f :
[l;u]→ R, hζ∗ its minimax approximation and hζ another polynomial approximation to
f . hζ is said to be near-minimax with relative distance ρ > 0, if

∥f − hζ∥∞ ≤ (1 + ρ)∥f − hζ∗∥∞ .

The approximation with coefficients (2.44) can be shown to be near-minimax with ρ in
O(log k) [178]. In practice, the truncated Chebyshev series with exact coefficients (2.42)
and the Chebyshev interpolation polynomial with approximate coefficients are virtually
identical and to all intents and purposes interchangeable, as long as f is sufficiently
smooth [142].

Moreover, upper bounds on the error can be given, if we incorporate knowledge about
the function that we like to approximate.

Theorem 2.8 (Polynomial Approximation Error [206, 237]) Let f : [−1; 1] →
R be a K + 1 times differentiable, absolutely continuous function, with bounded K-th

derivative ∥∂Kf
∂zK
∥T ≤ VK <∞, where the bound is w.r.t. the norm

∥g∥T =

∫ 1

−1

|∂g(z)

∂z
|/
√

1− z2 d z .

The error ε of a the degree-k Chebyshev approximation (Definition 2.18) with k ≥ K+1
is bounded via

∥f − hζ∥∞ ≤ ε =
4VK
Kπk!

.

Application Note

The coefficients ζ, which are coefficients of Chebyshev polynomials, can be converted to
coefficients ζ̃ in terms of powers of z, by collecting terms and summing the corresponding
coefficients. Every Chebyshev interpolation can thus be equivalently expressed as

hζ̃(z) =
k∑
i=0

ζ̃iz
i .

Finally, recall that we defined the Chebyshev approximation for functions over [−1; 1].
Nevertheless, the bijection Π[l;u]→[a;b] : [l;u]→ [a; b] can be composed with any function,
to project its domain from any interval [l;u] to any other interval [a; b].

Π[l;u]→[a;b](z) =
z − l
u− l

(b− a) + a (2.45)

Hence, when we want to approximate the function f with domain [l;u], we will instead
approximate f ◦Π[−1;1]→[l;u] which is a function with domain [−1; 1]. Since the resulting
approximation hζ has domain [−1; 1], the final approximation of f is the composition
hζ ◦ Π[l;u]→[−1;1].

66

2.4 Polynomial Approximation

2.4.2 Remez Algorithm

An alternative, more algorithmic, method to estimate the coefficients of the minimax
approximation, based on numerical optimization, is the Remez exchange algorithm [69].
Some nodes zi are selected, at which the polynomial approximation should exactly match
the target function. These nodes and the corresponding polynomial coefficients ζi are
then iteratively adjusted. Moreover, the procedure outputs an estimate of the worst-case
error of the resulting approximation. The pseudocode is given is shown Algorithm 2.5.
Based on the definition of minimax optimality (Definition 2.15), the algorithm constructs
a polynomial that achieves error ±ε at the nodes zi (line 6). However, the absolute error
might be larger in the neighborhood of each zi, and the nodes are hence moved towards
the next local optimum (line 8). It is important to understand, that we choose the nodes
that maximize the error of the polynomial approximation. This step can be carried out
via numerical optimization.

The procedure is reminiscent of active learning [44], but instead of adding new labeled
examples, the number of nodes is fixed. This is required, to ensure, that the system of
linear equations (line 6) that we solve to get the updated polynomial coefficients, has
a unique solution. The number of nodes is implied by the desired degree k of the
resulting polynomial. Termination of the Remez algorithm occurs, when the minimum
error, achieved at any node, is close to the maximum error. This indicates that the
approximation is close to uniform, and hence near-minimax optimal.

In terms of resource consumption, (2.44) is far easier to evaluate than Algorithm 2.5,
since DCT/FFT has a time complexity of O(k log k), and requires no storage beside the
coefficients themselves. To get an idea about the qualitative difference between both
methods, the corresponding approximations are shown in Figure 2.4 (left). Clearly,
both error functions oscillate, but the extrema of the DCT approximation are not ex-
actly equal, while the Remez approximation is minimax w.r.t. to 64 bit floating-point
precision.

67

2 Background

Algorithm 2.5: Remez Exchange Algorithm

input Twice differentiable function f , degree k, interval [l;u], threshold τ .
output Coefficients ζ and error estimate εmax.
1: for i = 1 to k + 2 do
2: ωi ← (i− (1/2))π/k
3: zi ← cosωi
4: end for
5: repeat

6: solve

⎛⎜⎜⎝
1 z1 z21 . . . zk1 (−1)0

1 z2 z22 . . . zk2 (−1)1

.
1 zk+2 z2k+2 . . . zkk+2 (−1)k+1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
ζ0

ζ1

. . .
ζk
ε

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
f(z1)
f(z2)
. . .

f(zk+2)

⎞⎟⎟⎠
7: for i = 1 to k + 2 do
8: move zi to the next local optimum of hζ(z)− f(z),

depending on sgn(ε(−1)i)
9: end for
10: εmin ← mini |hζ(zi)− f(zi)|
11: εmax ← max |hζ(zi)− f(zi)|
12: until εmax − εmin < τ

68

3 Memory Constraints

Variables, parameters, data and any miscellaneous piece of information that is required
to perform probabilistic inference, parameter or structure estimation have to be stored
in memory. Reading and writing data to random-access memory requires electric power
to charge or discharge specific parts of a memory chip. In the most common type—
dynamic random-access memory—deposited charge leaks across the parts of the chip,
and disappears. In order to store data for anything other than a very short time,
every cell must be periodically read and then re-written, a process known as refresh
[115]. Refresh has to happen multiple times per second, and is thus the major resource
consuming factor of DRAM. Alternative technologies, e.g., static random-access memory
(SRAM) or ferroelectric random-access memory (FRAM) remove the need to refresh
cells in exchange for other drawbacks. SRAM cells require more transistors per bit,
compared to DRAM cells and, at higher frequencies, SRAM can consume as much power
as DRAM. In addition to its reduced power consumption, FRAM is non-volatile—when
the power is lost, the data in its cells is kept intact. However, FRAM chips are subject
to storage capacity limitations, since the ferroelectric effects tend to disappear when the
size of an FRAM cell is above a certain threshold. Moreover, reading data from FRAM
is destructive, i.e., bits have to be rewritten directly after reading, which consumes
additional power. The total power consumption of FRAM is, however, still many times
lower compared to DRAM.

We conclude that any system which is either subject to physical size constraints,
or strong constraints regarding its power supply, cannot have a large amount of main
memory. In Chapter 6, we present results on ultra-low-power devices which offer 8 kB
SRAM for intermediate variables, and up to 256 kB FRAM for program code and data.
Having in mind that the memory consumption has an impact on the physical size and
power consumption of the resource-constrained system which should host the model,
we identify sources of memory consumption in exponential family models. Existing
approaches to reduce the memory requirements are discussed, and our own class of
approaches for the exploitation of redundancies in the parameters are presented.

We will now investigate the memory requirements of exponential family models. When
we measure the memory consumption, we assume that elements of R and N are atomic
and have constant size. This is indeed true when we assume the usage of primitive data
types (e.g., 8 bit integers, 32 bit floats, etc.). In case of multi-precision types which al-
low the representation of numbers with arbitrary precision, one has to keep track of how
much memory each variable consumes. Here, we do not consider implementation spe-
cific memory requirements for pointers, iteration counters, or overhead of dynamic data
structures. Recalling the definitions from Chapter 2, evaluating the potential function
ψ(x) = exp(⟨θ, ϕ(x)⟩) of an exponential family member requires in general

69

3 Memory Constraints

• n elements to represent the instance x,

• d elements for the intermediate representation of ϕ(x) in general, or only the |C(G)|
indices of the 1-entries whenever X is discrete,

• |C(G)| elements to represent the domain-sizes of the clique factors,

• d elements to store the parameter vector θ,

• and one element for the function value itself.

In case of discrete variables, we also store the state space sizes |Xv| of each variable—n
values in total. By denoting the memory consumption of a function f by Mf , evaluating
ψ with binary overcomplete ϕ at x requires to store at least

Mψ = 1 + 2n+ d+ 2|C(G)|

elements. For example, a 10×10 grid model with binary variables and 4 weights per edge,
assuming that each element corresponds either to a 32 bit integer or 32 bit floating-point
number, requires

Mψ× 4 Byte = (2× 100 + 2× 180 + 720 + 1)× 4 Byte = 5.124 kB.

Indeed, evaluating ψ(x) is far from tasks like probabilistic inference or parameter es-
timation. Nonetheless, Mψ can serve as a lower bound for the memory complexity of
more sophisticated tasks, especially when we want to asses the compatibility of a model
with a specific system.

Regarding the probabilistic inference, we provide lower bounds on the memory con-
sumption of various methods in Table 3.1. In almost all cases, the memory required
to compute µ̂ is the same as for the partition function, plus the additional storage
for the actual marginals. Exceptions are naive mean field, which outputs only vertex
marginals (cf. Section 2.2.2) and the junction tree method, which is assumed to output
the marginals of the junction tree vertices. Those may actually be used to compute
marginals of any vertex set via an additional marginalization step. In case of MAP esti-
mation, the memory consumption of Gibbs sampling is an outlier, as all samples have to
be stored to determine which one appeared most often. The additional |E|-term in the
TRW complexities stems from the edge appearance probabilities, required by TRW-BP.

Let us now consider regularized parameter estimation and structure estimation via
(proximal) first-order methods. Those require to store at least the gradient, the stepsize,
and the optional regularization weight λ, i.e., MGD = d + 2 (GD ≡ gradient descent).
Accelerated first-order methods, as defined in (2.28), require two additional vectors of
size d and the extrapolation weight β, hence, MAGD = MGD +2d+1 (AGD ≡ accelerated
gradient descent). If these memory requirements exceed the memory that is available in
our system, we may resort to randomized coordinate descent methods (RCDM) [155].
Those require just a single (random) component of the gradient at each iteration, and
achieve an ϵ distance to the optimum after O(d/ϵ) iterations, which is slower than

70

3.1 Sufficiency

Table 3.1: Memory requirements of inference methods and tasks.

Method Z (Partition) µ̂ (Marginals) x∗ (MAP)

BP (1 + |Nmax|)|Xmax| d+ MBP[Z] n+ MBP[Z]

LBP 2
∑

{v,u}∈E |Xv|+ |Xu| d+ MLBP[Z] n+ MLBP[Z]

JT (1 + |N J
max|)|X J

max| MJT[Z] +
∑

v∈V (J) |Xv| n+ MJT[Z]

Naive-MF
∑

v∈V (J) |Xv| MNaive-MF[Z] n+ MNaive-MF[Z]

TRW-BP |E|+ MBP[Z] d+ |E|+ MBP[Z] n+ |E|+ MBP[Z]

GIBBS 1 + MRNG d+ MRNG |S|n+ MRNG

gradient descent but has the same dependence on ϵ. Hence, such methods offer an
alternative, whenever a system cannot store multiple d-dimensional vectors.

Assuming that no closed form solution can be found, the minimal memory require-
ments to train an exponential family model is therefore

MTRAIN = Mψ + MGIBBS[µ̂i] + MRCDM = O(Mψ) .

MGIBBS[µ̂i] = 1 + MRNG is the memory required to estimate a single entry of µ̂i =
E[ϕ(X)i] via Gibbs sampling, where MRNG is the memory consumption of a random
number generator. MTRAIN is thus roughly Mψ whenever MRNG is small, which strength-
ens our intuition that Mψ is a meaningful lower bound on the memory consumption of
exponential family models.

3.1 Sufficiency

In the general machine learning setting, some data has to be stored before we start to
train our model. In case of large data sets, stochastic gradient descent (SGD) methods
update the parameter vector after a single data point (or a so-called mini batch) has
been read. The data can be discarded after the update and the next batch is constructed
to compute the next update. SGD methods are known to work well in practice, and,
moreover, some guarantees about their convergence rate can be made [27]. Nevertheless,
SGD and other mini batch methods are motivated by the fact that the computation time
complexity for evaluating the gradient depends on the number of examples—an intuition
that does not hold in case of the (regularized) maximum likelihood loss of generative
exponential families. From Section 2.3.1, we know that the gradient of exponential
family models is the difference between the empirical expectation and the expectation
computed from the model. The complexity for computing the gradient is governed by
the complexity of computing Eθ[ϕ(X)] via probabilistic inference, since the cost for
computing µ̃ = 1

|D|
∑d

i=1 ϕ(X) is neglectable.
We will now see, that the ability to learn the model from aggregated data is a unique

property of the exponential family. More specifically, any model that does not belong

71

3 Memory Constraints

to an exponential family must have unbounded memory requirements as the number of
data points tends to infinity.

Theorem 3.1 (Existence of Sufficient Statistics [175, 129]) Let X random vari-
able, n-dimensional, and with continuously differentiable density pθ. Let further D
be a data set with N samples xi from X. There is a function ϕ : X → Rd with
Φ(D) =

∑N
i=1 ϕ(xi) whose finite dimension d is independent of N . Φ is sufficient for θ,

i.e., p(θ | D,Φ(D)) = p(θ | Φ(D)), if and only if pθ belongs to an exponential family of
densities.

Proof. (⇐) Recall that the data set enters the likelihood of an exponential family
member (2.18) solely in form of µ̃ = 1

N

∑N
i=1 ϕ(xi) = 1

N
Φ(D). In other words, knowledge

of µ̃ is enough to estimate θ. Recall that the scalar 1/N was chosen just for notational
convenience. Hence, Nµ̃ and thus Φ(D) must be sufficient7 for θ.

(⇒) Now, suppose pθ is an arbitrary parametrized probability density. Assume that
Φ(D) =

∑N
i=1 ϕ(xi) is sufficient for θ, with a finite dimension d that does not depend

on N . For the log-likelihood ℓ(θ;D) =
∑N

i=1 log pθ(xi), we have

∇ℓ(θ;D) =

(
∂ℓ(θ;D)

∂θ⊤

)⊤

=
N∑
i=1

∇pθ(xi)

pθ(xi)
. (3.1)

Φ(D) is sufficient for θ, and thus ∇ℓ(θ;D) can be rewritten as a function H(Φ(D),θ)
that does depend on D only through Φ(D).

Now, consider a second data set A. From Φ(D ∪A) = Φ(D) + Φ(A), we have

H(Φ(D)+Φ(A),θ) = ∇ℓ(θ;D∪A) = ∇ℓ(θ;D)+∇ℓ(θ;A) = H(Φ(D),θ)+H(Φ(A),θ)

which implies that H is additive in its first argument. Differentiating H w.r.t. xi and
applying the chain rule, yields

∂2ℓ(θ;D)

∂θ∂xi⊤
=
∂H(Φ(D),θ)

∂xi⊤
=

(
∂Φ(D)

∂xi⊤

)⊤(
∂H(Φ(D),θ)

∂Φ(D)⊤

)⊤

.

It follows from (3.1) that the left-hand side is a function of xi and θ. By definition,
(∂Φ(D)/∂xi⊤) = (∂ϕ(xi)/∂xi⊤) is a function of xi. Since H is additive in Φ(D),
∂H(Φ(D),θ)/∂Φ(D)⊤ = h(θ) must be a matrix-valued function h, of θ only8. Inte-
grating ∂H(Φ(D),θ)/∂Φ(D)⊤ w.r.t. Φ(D), we obtain

∇ℓ(θ;D) = H(Φ(D),θ) =

∫
∂H(Φ(D),θ)

∂Φ(D)⊤
d Φ(D) = h(θ)Φ(D) + C(θ) ,

7While Φ is the actual sufficient statistic that aggregates the data set D, the function ϕ extracts
information from a single instance x. Since ϕ(x) = Φ({x}), both functions are usually called
sufficient statistic.

8To see this, recall that a partial derivative is defined via ∂f(a)/∂ai = limh→0 f(a+ eih)− f(a)/h,
where ei is the i-th unit vector. Now, if f is additive, we have ∂f(a)/∂ai = limh→0 f(eih)/h, which
is independent of a. Hence, the gradient of an additive function must be a constant w.r.t. to the
variable to which we are differentiating.

72

3.2 Reparametrization

where the constant of integration might be a function of θ. From (3.1) and Φ,

N∑
i=1

∇ log pθ(xi) =
N∑
i=1

h(θ)ϕ(xi) + C(θ)

⇔ ∇ log pθ(xi) = h(θ)ϕ(xi) + C(θ) .

We have an equivalence between the last two lines, because the order of our data points
was arbitrary. Both summations in the first line must be equal for all possible permu-
tations of the data points, which implies the second line. Finally, integrating w.r.t. θ,
we arrive at

log pθ(xi) = ⟨h(θ)⊤θ, ϕ(xi)⟩+ ⟨θ, C(θ)⟩+ C0(x
i)

⇔ pθ(xi) = b(xi) exp(⟨η(θ), ϕ(xi)⟩ − A(θ))

with η(θ) = h(θ)⊤θ, b(xi) = exp(C0(x)), and A(θ) = −⟨θ, C(θ)⟩. Thus, pθ belongs to
an exponential family of densities. ■

In a nutshell, the existence of a sufficient statistic implies that the underlying prob-
ability density belongs to an exponential family, and vice versa. The proof is based on
a proof by Pitman [175], but we provide a shorter way of proving that the gradient is
additive, which simplifies the proof. Sometimes, exponential family members are pre-
sented with the extra factor b(x) that arises from the constant of integration C0(x). We
suppress it in this thesis, since it can be absorbed into ⟨θ, ϕ(x)⟩.

The function η plays a central role in the upcoming Sections—it allows us to unpack
the actual parameter from a presumably compressed representation. In the case η(θ) =
θ, θ is called the natural parameter of the exponential family member.

Theorem 3.1 asserts that we can learn exponential family models from arbitrary large
amounts of data, while requiring a constant amount of memory. Moreover, only expo-
nential family members have this property. This is especially relevant in the context of
memory constrained systems, when we assume that new data arrives on a regular basis.

3.2 Reparametrization

The memory complexity depends crucially on the model dimension d. Nevertheless,
the dimension of the actual parameters θ and the dimension of the sufficient statistic
ϕ(x) are not necessarily equal. Equipped with an appropriate reparametrization, low
dimensional parameters may be projected to the d-dimensional space.

Definition 3.1 (Reparametrization) Let θ ∈ Rd be the natural parameters of an
exponential family member. The vector ∆ ∈ Rk is called reparametrization of θ w.r.t.
η : Rk → Rd, if η(∆) = θ. If η is a bijection, we say that the reparametrization is
universal.

Before we discuss reparametrizations further, we take a quick look at the sufficient
statistic instead. We mentioned in Section 2.4 that the sufficient statistics that we con-
sider in this thesis have almost no resource requirements, but one may ask to change

73

3 Memory Constraints

Y
1

Y
2

Y
3

Y
4

Y
5

X
1

X
2

X
3

X
4

X
5

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 3.1: Sequence structure (left) and grid structure (right).

ϕ like a reparametrization changes θ in order to save resources. However, modifying
sufficient statistics is a more delicate process than performing a reparametrization. The
reason lies in the semantics of sufficiency (Definition 2.4). Assuming that ϕ is based on
the correct undirected structure, there is not much room for changes. When we drop
components of ϕ(X), we alter the conditional independence structure and sacrifice suf-
ficiency. Some authors try to simplify ϕ by exploiting the fact that some variables can
behave alike. So-called lifting techniques can detect symmetries in the model. E.g., some
variables v, u could have the same expected sufficient statistic, E[ϕ(X)]v = E[ϕ(X)]u.
The corresponding variables may then be grouped together to lower the complexity of
probabilistic inference [3]. However, such complexity reductions are artifacts of par-
ticular applications or data sets. Two variables can only be truly symmetric, when
they are involved into exactly the same Markov blanket, and when they follow the same
marginal density. Even if all these requirements are met, symmetries will break when the
symmetric variables are conditioned on different values during probabilistic inference.
The question to what extend fractional symmetries can be used to lower the resource
consumption, is subject to ongoing research.

In short, the dimension of a sufficient statistic cannot be reduced without altering the
conditional independence structure, which is ineligible as explained in Section 1.1.

Now, we focus on the parametrization of the model. The parameter dimension decides
whether a model can run on a memory constrained system. Moreover, even on regular
workstations or servers, it is desirable to have the parameters in a fast storage, e.g.,
cache memory, since each parameter is usually accessed multiple times during inference.

3.2.1 Parameter Tying

Let us review reparametrization techniques from natural language processing (NLP) and
statistical physics. When graphical models, like hidden Markov models or conditional
random fields, are applied for segmenting and labeling sequence data, each element of
the sequence is represented by its own random variable and variables are connected to
their direct ancestor (if any). Each variable of the sequence is moreover connected to
one or more sequence features—a small sequence structure is shown in Fig. 3.1 (left).

74

3.2 Reparametrization

Such structures occur frequently in probabilistic natural language processing [132, 198].
In these applications, the sequence variables (Y i in Fig. 3.1) represent latent semantic
or grammatical states, and the sequence features X i represent words (or corresponding
features) of a sentence in some natural language. Two observations are very important
if one wants to apply such models: (1) The state space of each X i is extraordinary
large—it can involve several thousand states. (2) Different sentences will have different
lengths. Both facts prevent a naive probabilistic model to work well. First, we would
need an extra model for each possible sentence length l ∈ N. Second, each of these
models would have dl = O(l|Xo||Yh|2) parameters, where |Xo| is the number of different
words or word feature values, and |Yh| is the number of distinct states of each sequence
element. Even if we could estimate all these large sequence models separately, the
models would not perform well on data which contains words in an order that never
appeared in the training data. A solution to this problem is the so called parameter
tying, also known as parameter sharing. The key observation is that all cliques in
the model essentially represent the same predecessor/successor relation among sequence
elements—visualized by the two cliques with bold edges is Fig. 3.1. So instead of the
naive procedure described above, we can estimate one set of |Xo||Yh|2 parameters which is
shared by all predecessor cliques {Y i−1,Y i,X i}, and one set of parameters that is shared
by all successor cliques {Y i+1,Y i,X i}. Note that this defines a reparametrization with
the new parameter vector ∆ of dimension 2|Xo||Yh|2. The parameters of the naive
model are then generated from the reparametrization η(∆), which simply uses the same
parameters for all predecessor cliques and the same parameters for all successor cliques.

Another instance of reparametrization can be found in the Ising model [103]. Orig-
inally a mathematical model of ferromagnetism in statistical mechanics, Ising models
are a popular model in the graphical model literature, due to its simple characteristics.
Ising models consists of n2 binary variables, interconnected by a grid structure (Fig. 3.1,
right). The variables represent the moments of atomic spins, and the edge weights θvu
have a physical interpretation in terms of ferromagnetism. Here, we present the edge
weights in form of 2× 2 matrices.

θvu = η(βvu) =

(
0,−βvu
−βvu, 0

)
θvu = η(β) =

(
0,−β
−β, 0

)
(3.2)

In a general Ising model, each edge {v, u} is reparametrized by a separate parameter
βvu ∈ R, which allows to control the density of full joint configurations in which neigh-
boring vertices have the same state. If βvu > 0, joint configurations in which v and
u have the same state are more likely, while if βvu < 0, the opposite holds (Note that
Lemma 2.8 tells us, that βvu = 0 means that the edge is not existing at all). In a
simplified Ising model, the reparametrization is unified over all edges (cf. (3.2), right).
That is, a single scalar β ∈ R determines all edge weights via the reparametrization
η(β) ∈ Rd. In this case, β is also called the inverse temperature of the model [125].

Clearly, the reparametrizations in the above examples can reduce the memory require-
ments for the model parameters by orders of magnitude (from quadratic to constant).
Moreover, less parameters imply a simplification of the estimation problem. The idea of
variables at different locations sharing the same weights and detecting the same pattern

75

3 Memory Constraints

in different parts of an image is also inherent in deep convolutional networks [135]—a
popular machine learning technique at the time of writing this thesis.

The reparametrizations discussed so far, are motivated by specific applications. There
are multiple applications for the sequence model reparametrization, but it relies on the
fact that the states of the hidden variables Y i do not depend on the actual position
of a sequence elements. The reparametrization of Ising models is only meaningful,
when we assume that the interaction between the variables is symmetric. As soon as
θvu=10 ̸= θvu=01, η(β) cannot represent the corresponding exponential family member.
Convolutional nets are designed for images and sequences, too. Tasks which do not obey
certain positional invariances may not be learnable by convolution layers. In summary,
the major reason for why these methods will fail in certain situations is, that some
natural parameters are not contained in the image of η. In other words, the “correct”
model θ∗ has no preimage under η—the above reparametrizations are not universal.
These observations also motivate the requirement from Section 1.1 that our extensions
should not rely on properties of particular high-level applications or tasks.

Based on these insights, we present and study a universal reparametrization, which
is designed for multivariate sequence data, as it is often collected by small, ubiquitous,
resource-constrained systems. Typical scenarios include either measurements from a
single system, taken at various spatial locations at different points in time, as well as
measurements collected by multiple systems over time at fixed locations.

3.3 Multivariate Sensor Data

Typical applications of resource-constrained systems involve the collection of data from
multiple sources. Instead of collecting data only once, a system may monitor a dynamic
process, which comprises a series of measurements at multiple points in time.

Sensor-based monitoring and prediction has become a hot topic in a large variety of
applications. According to the slogan Monitor, Mine, Manage [35], series of data from
heterogeneous sources are to be put to good use in diverse applications. A view of data
mining towards distributed sensor measurements is presented in [143]. There are several
approaches to distributed stream mining based on work like, e.g., [235] or [186]. The
goal in these approaches is a general model (or function) which is built on the basis of
local models while restricting communication costs. Most often, the global model allows
to answer threshold queries, but also clustering of nodes is sometimes handled. Such
models are global and not designed for the prediction of measurements at a particular
location. In contrast, we want to a probabilistic model for full joint realizations of all
sensors at all points in time. Based on such models, we may identify unlikely situations
or outliers in a stream of sensor readings. Detecting events in streams of data [140] has
accordingly been modeled, e.g. in the context of monitoring hygiene in a hospital [228].
However, in our case, the monitoring does not imply certain events. We do not aim at
finding patterns that define an event, although they may show up as a side effect. The
analysis of mobile sensor measurements has been framed as spatio-temporal trajectory
mining by, e.g., [75]. There, frequent patterns are mined from movements of pedestrians

76

3.3 Multivariate Sensor Data

or cars. The places are not given a priori, but interesting places could be derived from
frequent crossings. Thus, multivariate sensor data appears in a multitude of tasks which
can be phrased in terms of exponential family models. Moreover, spatial relations are
naturally expressed by graphical models. For instance, discriminative graphical models
have been used for object recognition over time [56], but also generative models have
been applied to video or image data [248, 99]. We known from the previous section that
the number of training instances does not influence the model complexity. However, the
number of parameters can exceed millions easily, which emphasizes the importance of
an efficient model representation.

In the literature, approaches that aim at the reduction of model parameters are based
on the identification of sparse conditional independence structures which in turn imply
sparse parameter vectors. Some important directions are discussed in the following.
General regularization-based methods for sparse estimation [204, 70] and approaches
which are tailored for dynamic systems arose in the last decades. In time-varying dy-
namic Bayesian networks [194], the authors describe how to find the conditional inde-
pendence structure of continuous, spatio-temporal data by performing a kernel reweight-
ing scheme for aggregating observations across time and applying ℓ1-regularization for
sparse structure estimation. In subsequent work, it is shown how to transfer their ideas
to spatio-temporal data with discrete domains [121]. The objective function that is used
in the latter approach contains a regularization term for the difference of the parame-
ter vectors of consecutive time-slices. It is therefore reminiscent of the spatio temporal
reparametrization that we propose in Section 3.4. However, the estimation is performed
locally for each vertex and the resulting local models are heuristically combined to arrive
at a global model. It can however be shown that local procedures can indeed be enough
to consistently estimate the neighborhood of each vertex [180]. Other authors show
how to incorporate the non-informative Jeffreys hyperprior into the estimation proce-
dure [236]. But the resulting sparsity cannot be controlled via a regularization weight.
Their simulation results indicate, that the proposed method tends to underestimate the
number of non-zero parameters.

Approaches mentioned so far assume, that a specific segmentation of the data in
suitable time-slices is already available. Fearnhead [66] developed efficient dynamic
programming algorithms for the computation of the posterior over the number and
location of changepoints in time series. Based on this line of research, it is shown in
[239] how Fearnhead’s algorithms can be generalized to multidimensional time series.
Specifically, the authors model the conditional independence structure using sparse, ℓ1-
regularized, Gaussian graphical models. The techniques presented therein can be used
to identify the maximum a posteriori segmentation of time-series, which is required to
apply any of the algorithms mentioned above.

We will now explain the construction of a general class of undirected models for
spatio-temporal data. Therein, it is important to understand that the terms “spatial”
and “temporal” are rather metaphoric in this context. In order to avoid any ambiguity,
we call those structures generalized sequences. Afterwards, we show how sparsity can be
induced into the corresponding models without altering the structure.

77

3 Memory Constraints

a(1)

c(1)

b(1)

d(1)

a(2)

c(2)

b(2)

d(2)

a(3)

c(3)

b(3)

d(3)

a

c

b

d

Figure 3.2: Left: Exemplary base graph G0 with V0 = {a, b, c, d}. Right: Exemplary
generalized sequence of G0 with T = 3 and EST = ∅.

3.3.1 Generalized Sequence Structures

Sequence models are popular in the natural language processing community [132, 198].
There, consecutive words or corresponding word features are connected to a sequence
of labels that reflects an underlying domain of interest like entities or part of speech
tags. Now, consider a set of sensors {v1, v2, . . . , vn}, connected to a resource-constrained
system—we will identify each sensor with a random variable in a graphical model. More-
over, those sensors generate measurements over time. For simplicity, assume that the
measurements are synchronized in some way; that is, all sensors are queried at arbitrary
but fixed points in time t = 1, 2, . . . , T . Note that we ask the sequence of measurements
to be finite. One may interpret this as data collected from a finite physical process, or
other well defined time frame, e.g., data collected over one day or one week, etc. Since
we treat the sensor measurements as realizations of a multivariate random variable, they
obey, at any point in time t, some conditional independence structure G(t). If the en-
vironment (e.g. sensor positions and the underlying laws of nature) do not change over
time, it is reasonable to assume that the conditional independence assertions between
sensors do also not change over time.

In analogy to NLP models, it is appealing to think of these so-called time-slices,
like words in a sentence, to form a temporal chain G(1) − G(2) − · · · − G(T) of joint
measurements.

Definition 3.2 (Generalized Sequence) Let G0 = (V0, E0) be the conditional inde-
pendence structure and T ∈ N. G0 is called base graph. Let the graph G = (V,E) be con-
structed from G0, T , and edge sets Eh ⊂ V0×V0, according to V = {v(t) | v ∈ V0∧t ∈ [T]}
and E = ES ∪ EST with

ES = {{v(t), u(t)} | {v, u} ∈ E0 ∧ t ∈ [T]},
EST = {{v(t), u(t′)} | v, u ∈ V0 ∧ v ̸= u ∧ |t− t′| = h ∧ (v, u) ∈ Eh ∧ t, t′ ∈ [T]}.

G is called generalized sequence or spatio-temporal graph of G0. In this context, indices
t ∈ [T] are called time-points. The set of all vertices v(t) ∈ V that correspond to the
same time-point t is called t-th layer or time-slice. Edge sets Eh contains all edges
between cliques whose temporal distance is h.

The above definition allows us to construct sequences of graphs with a well-defined con-
nectivity between sequence elements. The interpretation of V and ES is rather straight-

78

3.3 Multivariate Sensor Data

a(1)

c(1)

b(1)

d(1)

a(2)

c(2)

b(2)

d(2)

a(3)

c(3)

b(3)

d(3)

a(1)

c(1)

b(1)

d(1)

a(2)

c(2)

b(2)

d(2)

a(3)

c(3)

b(3)

d(3)

Figure 3.3: Left: Exemplary generalized sequence of G0 (Fig. 3.2, left) with T = 3 and
E1 = {(a, a), (b, b), (c, c), (d, d)}. Right: Exemplary generalized sequence of
G0 (Fig. 3.2, left) with T = 3 and E1 = {(a, b), (c, d)}.

forward: V contains T copies v(t) of each vertex in V0, and ES contains T copies of
each edge in E0. To understand the role of EST and Eh, consider the situation depicted
in Fig. 3.2. Therein, we see a small base graph with four vertices (left), and a corre-
sponding generalized sequence with three time-points (right). Since vertices of different
time-points are not connected, we have EST = ∅. The edges contained in EST are con-
trolled via the sets Eh. The pairs (v, u) ∈ V0 × V0 from the set Eh act as templates
for edges between vertices at different time-points t, t′ with temporal distance h, i.e.,
|t−t′| = h. For example, if we want to connect the copies of each vertex with their direct
temporal successors (temporal distance h = 1), we set E1 = {(a, a), (b, b), (c, c), (d, d)}.
The resulting generalized sequence is shown in Fig. 3.3 (left). Note, however, that the
templates are not invariant w.r.t. the order of vertices. The set E1 = {(a, b), (c, d)}
implies that there will be edges between a(t) and b(t + 1), but not between b(t) and
a(t+ 1) (cf. Fig. 3.3, right).

With this notation, complex spatio-temporal dependencies can be defined. Simple
linear structures introduce temporal dependencies between consecutive time-points only.
They combine a simple autoregressive structure with spatio-temporal neighborhoods.

Definition 3.3 (Linear Spatio-Temporal Graph) Let G0 = (V0, E0) be a base graph
and T ∈ N. A generalized sequence with

E1 = {(v, v) | v ∈ V0} ∪ {(v, u), (u, v) | {v, u} ∈ E0}

and Eh = ∅ for h > 1, is called linear generalized sequence or linear spatio-temporal
graph.

Like vertices v(t), the dimensions of the sufficient statistic are also accessed via their
time index. More specifically,

Definition 3.4 (Sufficient Statistics of Generalized Sequences) Let G = (V,E)
be a generalized sequence of length T . Let G(t) = ({v(t′) ∈ V | t′ ≥ t}, E(t)) be the
graph that contains all edges between layer t and all layers t′ ≥ t. The sufficient statistic
of the t-th layer is then

ϕt(x) = (ϕC(x) : ∀C ∈ C(G(t))) .

79

3 Memory Constraints

In accordance with Definition 2.6, the clique statistics may appear in ϕt(x) in any arbi-
trary but fixed order—the weights in the corresponding parameter vectors θ(t) appear in
the same order. Finally, the sufficient statistic of the model is ϕ(x) = (ϕt(x) : 1 ≤ t ≤
T).

The sets of cliques per layer C(G(1)), C(G(2)), . . . , C(G(T)) are non-overlapping by
construction, which allows us to write

⟨ϕ(X),θ⟩ =
T∑
t=1

⟨ϕt(X),θ(t)⟩ .

The base graph G0, the number of layers T , the edge templates Eh, 1 ≤ h < T , and the
sizes of the vertex state spaces Xv,∀v ∈ V0 determine the number of model parameters
d. In order to compute this quantity, we consider the state spaces of the clique factors.

d =
∑

C∈C(G)

|XC | =
T∑
t=1

∑
C∈C(G(t))

|XC | (3.3)

In case of a linear spatio-temporal graph with pairwise potentials, in which all vertices
share a common state space Xv, the above expression for the dimension reduces to

d =
(
(T − 1)(|V0|+ 3|E0|) + |E0|

)
|Xv|2 . (3.4)

Generalized sequence models allow us to express various kinds of multivariate dynamical
systems. Clearly, the conditional independence structures defined above, can be seen as
an undirected version of dynamic Bayesian networks (DBN) [150]. In contrast to DBN,
we explicitly allow the parameters to change over time. Moreover, the parameters of
undirected models are not normalized. Reparametrization and regularization cannot be
applied directly to DBNs, since these techniques can hardly maintain the normalization
of conditional probability tables (which embody the parameters of a DBN). Although
Bayesian networks may be rewritten as exponential family members, the approaches pre-
sented in the sequel are not well suited for directed models with normalized parameters.

3.3.2 Redundancy

Generalized sequence models enjoy a great flexibility, because at any time step t, the
parameters may change arbitrarily. When we consider any clique C and fix one of
its states y ∈ Xc, the corresponding parameter θC=y(t) may vary as a function of t
(cf. Fig. 3.4). On the one hand, this allows the model to include sudden changes in the
marginal density pθ(X t)—here, X t are the random variables associated with the vertices
in layer G(t). When such models underlie a natural parametrization, the number of
parameters is large, since we need to store one element per clique-state-timepoint tuple
as seen in (3.3). Moreover, it turns out that the natural parameters may suffer from
a specific type of redundancy. To get an intuition for this, fix any clique C together

80

3.4 Compressible Reparametrization

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18 20 22 24

θ
C

=
y
(t

)

Time slot t

Figure 3.4: Exemplary parameter sequence θC=y(t) as a function of t for T = 24. Dashed
vertical lines indicate regions in which the parameter is constant.

with a corresponding state y ∈ XC , and some layer t. If the data is over sampled, i.e.,
the measurements where taken faster than the actual sensor value can change, or, if the
dynamics of the underlying process are simply constant over a certain time period, the
parameters for several points in time will be identical, as shown in Fig. 3.4. Therein,
the intervals {[1, 3], [10, 15], [20, 24]}, in which the parameter θC=y(t) is constant, are
indicated by pairs of dashed lines. Fig. 3.4 is indeed an idealized scenario—actual
parameter estimates will expose some variations due to finite samples, or some non-
constant but deterministic behavior between certain points in time. In practice, such
effects do occur at several sensors, states and time-points [169].

The redundancy structure cannot be exploited or detected via plain l1-regularization,
since all parameters are non-zero. However, if we would have known such deterministic
regions before parameter estimation, we could have saved a lot of memory by proposing
a reparametrization η(∆) which stores a single value per constant region, and projects
this value to all redundant parameters.

In what follows, we present a reparametrization for generalized sequence models which
is based on this idea [169]. Moreover, a priori knowledge about the deterministic regions
is not required at all. Our combined approach of reparametrization and regularization
is able to detect them automatically during parameter estimation, and will produce a
sparse parameter vector.

3.4 Compressible Reparametrization

The consistency of conditional independence structure estimates has been studied in
the literature [250, 241, 85], but the detection of sparsity that goes beyond that setting
is rather rare. Recall that if we assume that the correct structure is known, ordinary

81

3 Memory Constraints

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D(3) for C1 = x1
3× 3 matrix

. . .
D(3) for C1 = x4

3× 3 matrix
. . .

D(3) for C4 = x1
3× 3 matrix

. . .
D(3) for C4 = x4

3× 3 matrix

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Figure 3.5: Global decay matrix D◦ for the structure shown in Fig. 3.2. We denote the
edges of the corresponding base graph by C1, C2, C3, C4. Each clique (edge)
exists at three time-points, which implies that each decay matrix is 3 × 3.
We assume that all edges share a common state space Xe = {x1, x2, x3, x4}.
D◦ hence consists of 4× 4 = 16 block matrices on its diagonal and all other
entries are 0.

regularization-based sparsity induction will change the conditional independence struc-
ture, since zeros in the parameters correspond to independences in the model. Here, we
present a sparse reparametrization which keeps the structure of generalized sequences
intact. Moreover, the underlying idea can be transferred to other structures as well.
Motivated by the possible redundancy in the parameters of sequence models, we study
reparametrizations which are piecewise linear functions of the time index.

Definition 3.5 (Piecewise Linear Reparametrization [169]) Let G be a general-
ized sequence of length T , and let D(h) ∈ [0; 1]h×h be a lower unitriangular9 matrix.
D(h) is called decay matrix. The piecewise linear reparametrization of parameters for a
clique C is specified by the vector ∆C=x′ ∈ Rt via

θC=x′ = ηD(h)(∆C=x′) = D(h)∆C=x′ (3.5)

with h = T − (max{t′ | v(t′) ∈ C} − min{t′ | v(t′) ∈ C}). To extend the notation
from a single clique to the full model, we construct a d × d block diagonal matrix D◦

(Fig. 3.5), where each diagonal block is a copy of D(h), which corresponds to a clique
factor C with state x′. This allows us to write θ = D◦∆. ηD is called spatio-temporal
reparametrization. The corresponding reparametrized exponential family members are
called spatio-temporal random fields.

9An unitriangular matrix is triangular, and all entries on its main diagonal are 1.

82

3.4 Compressible Reparametrization

The natural parameters θC=x′ at time t for any clique C are hence given as weighted
sum of some entries of ∆C=x′ .

θC=x′ =

⎡⎢⎢⎢⎣
θC=x′(1)
θC=x′(2)

...
θC=x′(T)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∆C=x′(1)

D2,1(h)∆C=x′(1) + ∆C=x′(2)
...∑T

i=1DT,i(h)∆C=x′(i)

⎤⎥⎥⎥⎦
As opposed to the reparametrizations that we encountered in Section 3.2, the above can
represent any natural parameter.

Lemma 3.1 (Universality of the Reparametrization) The reparametrization pro-
vided in Definition 3.5 is universal.

Proof. Indeed, any ∆ ∈ Rd can be mapped to some θ ∈ Rd by multiplication with
D◦ according to Definition 3.5. To see that the converse also holds, note that for each
t ∈ [T], detD(h) =

∏t
i=1D(h)i,i = 1, due to unitriangularity. Each D(h) is thus

invertible and so is the block diagonal matrix D◦. So for any given natural parameter
θC=y, we can find the corresponding reparametrization via ∆C=y = D−1θC=y. That is,
ηD is bijective and hence universal. ■

Since ηD is universal, any natural parameter can be represented via some ∆. More-
over, ηD is a linear function of ∆. The convexity of a function is preserved by compos-
ing it with a linear function. Hence, the reparametrized negative average log-likelihood
ℓ(ηD(∆);D) = A(ηD(∆))− ⟨ηD(∆), µ̃⟩ is a convex function of ∆.

Up to now, we have not saved any memory since ∆ and θ have the same dimension.
By imposing l1- and l2-regularization on the reparametrized objective, we arrive at the
problem

min
∆∈Rd

A(ηD(∆))− ⟨ηD(∆), µ̃⟩+
λ2
2
∥∆∥22 + λ1∥∆∥1  

ℓST(∆;D)

. (3.6)

The following theorem shows that the intuition which we used to design our reparame-
trization (cf. Fig. 3.4) has indeed the desired effect—it allows us to convert redundancy
into sparsity by detecting neglectable changes in consecutive natural parameters. More-
over, a polynomial number of samples suffices to achieve a small estimation error with
high probability. In contrast to existing regularization-based approaches, solving (3.6)
does not alter the conditional independence structure to find a sparse model.

Theorem 3.2 (STRF Consistency) Consider a random variable X with exponential
family density, parameter θ∗ ∈ Rd whose reparametrization has minimal norm among all
equivalent parameters, and generalized sequence structure of length T . We are given a
data set D with N = |D| samples from X. Suppose ∥∇2A(θ∗)−1∥∞ ≤ κ and ∥∆∥∞ ≤ γ,
and set λ1 = 4T

√
log(d)/N and λ2 = γ−1λ1. If N ≥ 324κ4d12 log(d)/(T − d2)2, then,

for an arbitrary decay matrix D:

83

3 Memory Constraints

• The distance between the true parameter θ∗ and the estimate ηD(∆̂) is bounded,
i.e.,

∥ηD(∆̂)− θ∗∥∞ ≤ 3κd2λ1 ,

• and any sparsity in the estimate implies some redundancy in the true parameter,
i.e.,

∆̂C=x′(t) = 0⇒

|θ∗
C=x′(t− 1)− θ∗

C=x′(t)| ≤
3d2κλ1
T

+ (t− 1)

(
t−1

max
i=1
|∆̂C=x′(i)|+ 3d2κλ1

T

)
,

for any clique C and time-point t. Both statements hold with probability at least 1−(2/d).

Proof. Since our sufficient statistic is overcomplete, there are infinitely many parame-
ters θ (specified via (2.21)) which are equivalent to the true parameter θ∗, i.e., pθ ≡ pθ∗ .
Among all these equivalent parameters, one has minimal λ2

2
∥η−1

D (θ)∥22 + λ1∥η−1
D (θ)∥1

value, which we assume w.l.o.g. to be θ∗.
Due to l2-regularization, the objective function (3.6) is strictly convex. The unique

minimizer ∆̂ satisfies the subgradient condition

0 ∈ ∇A(η(∆̂))−D◦⊤µ̃ + λ2∆̂ + λ1∂∥∆̂∥1 , (3.7)

where ∂∥∆̂∥1 denotes the subdifferential10 of ∥ · ∥1 at ∆̂. The boundaries of the sub-
differential can be found via the left-sided and right-sided limits of the corresponding
difference quotient. For any subgradient G ∈ ∂∥∆̂∥1, we have Gi = ±1 if ∆̂ ≷ 0, and
otherwise Gi ∈ [−1; 1], which implies λ1⟨G, ∆̂⟩ = λ1∥∆̂∥1.
∇A(η(∆̂)) = D◦⊤∇ηD(∆̂)A(ηD(∆̂)) denotes the gradient at ∆̂, derived via the matrix

chain-rule [141]. To handle the non-linearity of our objective, we consider the first-order
Taylor expansion of ∇(A ◦ η) around the true ∆∗ = η−1

D (θ∗), i.e.,

∇A(η(∆)) = ∇A(η(∆∗)) +∇2A(η(∆∗))(∆−∆∗) +R∆∗(∆) ,

whereR∆∗(∆) is the Lagrange remainder vector of the Taylor expansion. Its i-th element
is specified by

R∆∗(∆)i =
d∑
j=1

d∑
k=j

1

1 + 1{j=k}

∂3

∂θi∂θj∂θk
A(η(∆(c)))(∆j −∆∗

j)(∆k −∆∗
k)

≤
d∑
j=1

d∑
k=j

3

1 + 1{j=k}
(∆j −∆∗

j)(∆k −∆∗
k) =

3

2
∥∆̃−∆∗∥21 ,

where ∆(c) = (1−c′)∆∗+c′∆, and c′ ∈ (0, 1) is an unknown but irrelevant constant. To
simplify notation, we set D◦⊤µ∗ = ∇A(η(∆∗)) and Q = ∇2A(η(∆∗)) in the following.

10The subdifferential of convex functions is guaranteed to exist. More details on subdifferentials and
the closure processes which define them, can be found in [149].

84

3.4 Compressible Reparametrization

Now, let us define the ball B(r) = {a | ∥a∥∞ ≤ r} that contains all vectors whose
uniform norm is at most r. We further define the function

F (a) = a−Q−1 arg min
g∈∂ℓST(∆∗+a;D)

∥g∥∞ .

Note that when a point ∆̂ satisfies the subgradient condition (3.7), a = ∆̂ −∆∗ is a
fixpoint of F . We show that any point a = ∆ −∆∗ ∈ B(r) is mapped into B(r). Let
r = 3κd2λ1/T , then

∥F (∆−∆∗)∥∞ = ∥(∆−∆∗)−Q−1 arg min
g∈∂ℓST(∆;D)

∥g∥∞∥∞

= ∥ −Q−1(R∆∗(∆)−W + λ2∆ + λ1G)∥∞
≤ ∥Q−1∥∞(∥R∆∗(∆)∥∞ + ∥W ∥∞ + λ2∥∆∥∞ + λ1∥G∥∞)

≤ (3d2/2)κr2 + 3κλ1 ≤ r .

The last two inequalities follow from the upper bounds on ∥Q−1∥∞ and ∥∆∥∞ as asserted
by the Theorem, the upper bound on ∥W ∥∞ via Lemma 2.5, as well as ∥G∥∞ ≤ 1 via
G ∈ ∂∥∆∥1.

Brouwer’s fixpoint theorem asserts that at least one fixpoint of F is contained in
B(3κd2λ1/T). Since the objective is strictly convex, there is only a single unique point
∆̂ satisfying the zero subgradient condition 0 ∈ ∂ℓST(∆̂;D). Thus, ∥∆̂ − ∆∗∥∞ ≤
3d2κλ1/T .

Based on this, we derive a bound in terms of θ∗. The matrix D◦ is invertible, since it
is block diagonal with unitriangular blocks. Hence,

∥ηD(∆̂)− θ∗∥∞ = ∥D◦(∆̂−∆∗)∥∞ ≤ ∥D◦∥∞∥∆̂−∆∗∥∞ ≤ 3d2κλ1 ,

with ∥D◦∥∞ ≤ T , which proves the first part of the theorem. Moreover, ∆̃i and ∆∗
i will

have the same sign, whenever ∆∗
i > 3d2κλ1/T .

By definition of ηD,

|θ∗
C=x′(t)− θ∗

C=x′(t− 1)| =

⏐⏐⏐⏐⏐
t∑
i=1

Dt,i∆
∗
C=x′(i)−

t−1∑
j=1

Dt−1,j∆
∗
C=x′(j)

⏐⏐⏐⏐⏐
≤ |∆∗

C=x′(t)|+

⏐⏐⏐⏐⏐
t−1∑
i=1

(Dt,i −Dt−1,i)∆
∗
C=x′(i)

⏐⏐⏐⏐⏐ ,
for any clique C, where we suppressed the dimension of the decay matrix to simplify
notation, i.e., D = D(h). Due to ∥∆̂ −∆∗∥∞ ≤ 3d2κλ1/T , ∆̂i = 0 implies |∆∗

i | <
3d2κλ1/T . According to Hölder’s inequality and the definition of decay matrices, we
have ⏐⏐⏐⏐⏐

t−1∑
i=1

(Dt,i −Dt−1,i)∆
∗
C=x′(i)

⏐⏐⏐⏐⏐ ≤ (t− 1)
t−1

max
i=1
|∆∗

C=x′(i)|

≤ (t− 1)(
t−1

max
i=1
|∆̂C=x′(i)|+ 3d2κλ1/T) ,

85

3 Memory Constraints

 0

 0.25

 0.5

 0.75

 1

1 t/4 t/2 3t/4 t

inverse

regular

D
t,

i

i

 0

 0.0125

 0.025

 0.0375

 0.05

1 t/4 t/2 3t/4 t

D
t-

1
,i
 -

 D
t,

i

i

Figure 3.6: Left: Various decay types: linear, quadratic, cubic, rational, and exponential.
The inverse decay types are depicted with dashed lines. Right: Differences
Dt−1,i −Dt,i for various decay types. The plot is cutted at 0.05 to improve
readability.

which proves the second part of the Theorem. ■
Within the proof, we assumed that the true parameter θ∗ has smallest l2 and l1-

norm among all equivalently optimal solutions. Note, however, that this was just to
simplify the statement of the Theorem. By dropping this assumption, the statement of
the theorem changes, such that the unique estimator ηD(∆̂) has bounded distance to
the unique parameter θ∗∗ that minimizes λ2

2
∥η−1

D (θ)∥22 + λ1∥η−1
D (θ)∥1 among all “true”

parameters.

Besides the nice properties asserted by the Theorem, our reparametrization introduces
some computational overhead, due to the summation in (3.5). In particular, whenever
an algorithm has to read a parameter θC=x′(t), it has do be decompressed instantly,
which adds asymptotic runtime complexity O(t) to the access. However, if the available
memory is small, the compressed representation ∆ could be the only way to hold the
model in memory. On workstations or servers, the reparametrization can be beneficial
when the compressed model fits into the CPU cache memory and the full parameter
vector does not.

3.4.1 Decay Types

The statement of Theorem 3.2 is independent of the choice of the decay matrix D(h).
Up to now, the only requirement on D(h) ∈ [0; 1]h×h is its unitriangularity11. We now
discuss some specific choices and their implications. In particular, we consider decay
matrices in which the entries below the main diagonal are a non-decreasing function of
the column index, that is Dt,i ≤Dt,i+1 whenever i ≤ t and 0 otherwise. This is implies,
that the influence of each ∆C=y(i) on any θC=y(t) is stronger, the smaller t − i is. To
put it differently, the influence decays with increasing distance.

11We will again suppress the dimension t when we denote the decay matrix, i.e., we write D instead of
D(h).

86

3.4 Compressible Reparametrization

1
1
2

1
1
3

2
3

1
1
4

2
4

3
4

1
1
5

2
5

3
5

4
5

1

1
1
4

1
1
9

4
9

1
1
16

4
16

9
16

1
1
25

4
25

9
25

16
25

1

1
1
8

1
1
27

8
27

1
1
64

8
64

27
64

1
1

125
8

125
27
125

64
125

1

1
1
2

1
1
3

1
2

1
1
4

1
3

1
2

1
1
5

1
4

1
3

1
2

1

1
1
e1

1
1
e2

1
e1

1
1
e3

1
e2

1
e1

1
1
e4

1
e3

1
e2

1
e1

1

Figure 3.7: Exemplary decay matrices for T = 5, regular decay. From left to right:
linear, quadratic, cubic, rational, and exponential. Omitted entries are zero.

Here, we consider linear flin(x, z) = x/z, quadratic fqua(x, z) = (x/z)2, cubic fcub(x, z)
= (x/z)3, rational frat(x, z) = 1/(z − x + 1), and exponential fexp(x, z) = exp(x − z)
decay.

Definition 3.6 (Decay Matrix Types) Let gf = Π[1;T]→[f(1,T);1] be the projection from
[1;T] to [f(1, T); 1] (2.45), and let P [f] = gf ◦ f ◦ gf be the pre and post composition of
a function f with gf . For all i ≤ t, a decay matrix D is called

• linear, if Dt,i = flin(i, t),

• quadratic, if Dt,i = fqua(i, t), and inverse quadratic if Dt,i = P [f−1
qua](i, t),

• cubic, if Dt,i = fcub(i, t), and inverse cubic if Dt,i = P [f−1
cub](i, t),

• rational, if Dt,i = frat(i, t), and inverse rational if Dt,i = P [f−1
rat](i, t),

• and exponential, if Dt,i = fexp(i, t), and inverse exponential if Dt,i = P [f−1
exp](i, t).

The non-inverse decay types are also called regular decay types.

Plots of the decay functions are illustrated in Fig. 3.6, and exemplary decay matrices
D(5) are shown in Fig. 3.7. We can see in the plot, that for inverse decays, the weights
of preceding parameters ∆(i) have more impact on θ(t), compared to their regular
counterparts. In case of regular rational and regular exponential decay, only those ∆(i)
with a small difference between i and t have a strong influence of on θ(t). Moreover, all
decay types are non-zero for 1 ≤ i ≤ t, and hence, a fraction of every ∆(i) is eventually
inherited by θ(t).

Beside these intuitive observations, the decay types have an impact on the parameter
estimation and on the quality guarantees. Regarding the latter, any appearance of
the factor T in Theorem 3.2 arises through the upper bounds on ∥D◦⊤∥∞ and ∥Dt −
Dt−1∥∞, respectively. Recall that the uniform matrix-norm of a d × d-matrix M is
the maximal row-wise l1-norm maxdi=1 ∥M i,·∥1, and that D◦ is block diagonal whose
blocks are constituted from the decay matrices of each clique. It follows that ∥D◦⊤∥∞ =

87

3 Memory Constraints

Table 3.2: Upper bounds on the l∞-norm of decay matrices and on the l1-norm of their
row-wise differences. Entries shown in this table are immediate consequences
of the arithmetic series, the harmonic series, monotonic decay, and Defini-
tion 3.6.

Decay Type ∥D(T)⊤∥∞ (I) ∥D(T)t −D(T)t−1∥1 (II)

Linear 2 + T exp(−1) 3/2

Quadratic (T/4) + 1 7/4

Cubic T/3 15/8

Rational log(T) + 1 2

Exponential (exp(−T)− 1)/(exp(−1)− 1) 2

Inv. Quadratic (T/2) + 1 7/4

Inv. Cubic 3T/4 15/8

Inv. Rational T 3/2

Inv. Exponential T 1− exp(−1) + 1

∑T
i=1 |Di,T |. While this can readily be seen in Fig. 3.6 to be very close to T in case of

inverse exponential or inverse rational decay, the norm is smaller in case of their regular
counterparts. More precisely, in case of the regular rational decay,

∥D◦∥∞ =
T∑
i=1

|frat(i, T)| =
T∑
i=1

1

i
< 1 + log T ,

which follows from an upper bound on the harmonic series. Moreover,

∥DT−1,·−DT,·∥1 =
T∑
i=1

|frat(i, T − 1)− frat(i, T)| = 1+
T−1∑
i=1

1

T − i
− 1

T − i+ 1
= 2− 1

T
.

Upper bounds on the these norms for other decay types are given in Table 3.2. Based
on these bounds, we can devise a specialized version of Theorem 3.2.

Corollary 3.1 (STRF Consistency with Rational Decay) Suppose the precondi-
tions of Theorem 3.2 hold, but with λ1 = 4(log(T) + 1)

√
log(d)/N . In case of rational

decay, and N ≥ 324κ4d12 log(d)/(log(T) + 1− d2)2:

∆̂C=x′(t) = 0⇒

|θ∗
C=x′(t− 1)− θ∗

C=x′(t)| ≤
3d2κλ1

log(T) + 1
+ 2

(
t−1

max
i=1
|∆̂C=x′(i)|+ 3d2κλ1

log(T) + 1

)
,

for any clique C and time-point t with probability at least 1− (2/d).

88

3.4 Compressible Reparametrization

Hence, the choice of decay type influences the sample complexity, and the necessary
condition for sparsity. This motivates our empirical investigation of different decay types
in Section 3.6.

After discussing reparametrizations of generalized sequence models with fixed decay
types, one may argue that there is the possibility to estimate an appropriate decay
matrix D from data. In this case, the optimization problem becomes non-convex, and
we would not be able to state any consistency guarantees for the estimated parameters.
If we fix either D or ∆ during optimization, the problem becomes convex, since the set
of all unitriangular matrices over [0; 1] is convex. In this form, the problem is reminiscent
of matrix factorization, and local optima of the regularized problem can be found via
proximal alternating linearized minimization [25, 93]. However, we will not investigate
this direction any further within this thesis, since it delivers no new insights into the
inherent resource consumption of exponential families.

3.4.2 Reparametrization and Optimization

Before we proceed to the next topic, let us have short look at the impact of the
reparametrization on the conditions for optimization. More specifically, the gradient,
Hessian and Lipschitz constant of the reparametrized log-likelihood are products of the
decay matrix and the derivatives of the ordinary log-likelihood. Let θ = η(∆). The first
two derivatives of the reparametrized likelihood are then

∇∆ℓ(η(∆);D) = D◦⊤∇θℓ(θ;D) and ∇2ℓ∆(η(∆);D) = D◦⊤∇2
θℓ(θ;D)D◦ . (3.8)

These equations follow directly from matrix differential calculus [141]. We see, that
each element of ∇(ℓ ◦ η) is a weighted sum of elements of ∇ℓ. This becomes more clear
when we focus on a single partial derivative w.r.t. ∆C=x′(t), which corresponds to a
clique assignment at time point t—w.l.o.g., we assume that the clique exists at all T
time-points. Since the transposed decay matrix (which is upper triangular) appears in
the gradient, all summands which correspond to time indices t′ < t are 0. The first
partial derivative is thus

∂ℓ(η(∆);D)

∂∆C=y(t)
=

T∑
i=t

Di,t
∂ℓ(θ;D)

∂θC=y(i)
.

∂ℓ(η(∆);D)/∂∆C=y(t) is hence influenced by all partial derivatives w.r.t. θC=x′(t′)
with t′ ≥ t—this shows how gradient information is inherited from all successive points
in time which rely on ∆C=y(t) to reconstruct their natural parameter. The particular
choice of decay type implies the strength of the influence, though.

For the Hessian, we restrict ourselves to binary sufficient statistics. We known from
Section 2.3.1, that the Hessian of the log-likelihood (2.19) is the covariance matrix of the
random variable ϕ(X). The second partial derivatives of the reparametrized likelihood

89

3 Memory Constraints

are

[
∇2

∆ℓ(η(∆);D)
]
ij

=
d∑

k=1

D◦⊤
i,k

d∑
l=1

C[ϕ(X)]k,lD
◦
l,j =

d∑
k=1

d∑
l=1

C[ϕ(X)]k,lD
◦
k,iD

◦
l,j

≤
d∑

k=1

d∑
l=1

D◦
k,iD

◦
l,j =

T∑
k=1

Dk,i

T∑
l=1

Dl,j ≤ ∥D⊤∥2∞ ,

where the first inequality holds, because ϕ(X) is assumed to be binary, and the last
equality holds, because all but T entries in each row and column of D◦ are zero (by
construction of D◦). We upper bound both summations by the l∞-norm of D⊤, which
is tight, whenever the indices i and j belong to maximum l1-norm rows of D⊤. The cor-
responding values for various decay types can be found in column (I) of Table 3.2. Most
decay types imply, that the second partial derivatives of the reparametrized objective
are in O(T 2). Exceptions are the rational decay, with O(log(T)2), and exponential decay
with 1 − O(exp(−2T)). This implies that the differences of curvature over time-points
can be large for any but rational and exponential decay. Considering the contours of
the corresponding objective functions, the latter obey better scaling: in other words,
the corresponding objective functions will look more elliptical which results in faster
convergence. We refer to [158] for more details about the relation between the scaling
of objective functions and convergence rates.

Moreover, we can observe a change in the gradients Lipschitz constant.

Lemma 3.2 (Lipschitz Continuity of Linear Sequence Models) Let ∆ be the pa-
rameter of an exponential family with linear sequence structure (Definition 3.3), T > 2,
and decay matrix D. The gradient ∇ℓ(η(∆);D) is Lipschitz continuous with constant
L = 2dT |C(G)|.

Proof. Using (3.8), it readily follows that

sup
θ∈Rd

∥∇2ℓ∆(η(∆);D)∥F = sup
θ∈Rd

∥D◦⊤∇2
θℓ(θ;D)D◦∥F ≤ 2|C(G)|∥D◦∥2F .

To find an upper bound on ∥D◦∥2F , recall that the d × d-matrix D◦ contains one copy
of D for each of the

∑T−1
h=1

∑
C∈C+h

|XC | clique-state combinations—all other entries of
D◦ are zero. Since the decay matrix D is triangular with values ≤ 1, we have

∥D◦∥2F =

number of blocks in D◦  
T−1∑
h=1

∑
C∈C+h

|XC | ∥D∥2F ≤ T (T + 1)

2

T−1∑
h=1

∑
C∈C+h

|XC |

=
T (T + 1)

2

d− |E0||Xv|2

(T − 1)
≤ dT

The last inequality follows from (3.4), from
∑T−1

h=1

∑
C∈C+h

|XC | = (|V0| + 3|E0|)|Xv|2
(due to the assumed linearity of the STRF), and from (T + 1)/(T − 1) ≤ 2. ■

90

3.5 Continuous State Spaces

Note that the derived Lipschitz constant is rather large. This is mainly because the
squared Frobenius norm of each decay matrix was upper bounded by (T (T+1)/2). In an
actual implementation, one may simply compute the exact Frobenius norm of D to derive
a smaller Lipschitz constant. Recall that a small Lipschitz constant is desirable, because
it implies a larger stepsize and hence, faster parameter learning, while guaranteeing
convergence to an optimal solution.

3.5 Continuous State Spaces

No matter what type of data is modeled, as long as the conditional independence struc-
ture is a generalized sequence, the spatio-temporal reparametrization can be applied to
the underlying exponential family member. In regression tasks—no matter if the tar-
get variable is univariate or multivariate—a basic approach is to model the conditional
density of the target variable Y , given an observed variable X as an exponential fam-
ily member. Any choice of exponential family member can be interpreted as a specific
additive random error on the target variable. This technique is also known as gener-
alized linear model (GLM). Special kinds of GLM for sequential continuous data have
been developed, so-called linear dynamical systems. In what follows, we discuss how the
reparametrization of generalized sequences can be transferred to these kind of models
[173].

Definition 3.7 (Linear Dynamical System) Let x = (x1,x2, . . . ,xT) be a length T
sequence of n-dimensional real-valued vectors. Suppose that x is a realization of the
random variable X = (X1,X2, . . . ,XT), and assume that its autonomous dynamics
are fully specified by a finite, discrete-time, affine matrix equation

xt = At−1xt−1 + εt for 1 < t ≤ T

with transition matrices12 At ∈ Rn×n and noise εt ∈ Rn. x1 is the initial state of the
system, and each εt is drawn from the same multivariate Gaussian distribution εt ∼
N (0,Σ). Any random variable X that is generated via the above process, is called linear
dynamical system (LDS). The dynamics are time invariant, if At = At−1,∀1 ≤ t ≤ T .

The system generates a random variable due to the stochasticity in ε. Moreover, the
density of each X t | xt−1 is inherited from εt. E.g., if εt is multivariate Gaussian
with mean 0, then X t is multivariate Gaussian with mean At−1xt−1. With the above
definition, the full joint density of X factorizes over time and may be written as

p(X = x) = p(X1 = x1)
T−1∏
t=1

p(X t+1 = xt+1 |X t = xt) . (3.9)

12We will use A := (A1,A2, . . . ,AT−1) to denote the concatenation of all transition matrices of the
system.

91

3 Memory Constraints

Within this Section, we assume w.l.o.g. that X1 and each εt has multivariate Gaussian
density with mean 0 and covariance matrix Σ.

pΣ(ε) =
1√

(2π)n det Σ
exp(−(1/2)ε⊤Σ−1ε) (3.10)

We will call (3.10) the standard form. In this case, pΣ(X1 = x1) and each pΣ,At−1(X t =

xt |X t−1 = xt−1) are Gaussian too, and their product—the joint density of X—is also
Gaussian. The Gaussian is indeed in the exponential family, but note that (3.10) is not
in exponential family form. Let the operator vec : Rm×n → Rmn transform a matrix
into a vector by stacking the columns of the matrix one underneath the other—vec(M)
represents the matrix M in column-major order. Parameter and sufficient statistic
ϕ : Rn → Rd of the multivariate Gaussian are then

θ =

(
−1

2
vec(Σ−1)
Σ−1µ

)
and ϕ(x) =

(
vec(xx⊤)

x

)
,

respectively. Moreover, a closed form of the log partition function can be derived by the
n-dimensional Gaussian integral:

logZ(θ) = log

∫
exp (⟨θ, ϕ(x)⟩) dx

= log

∫
exp

(
−1

2
x⊤Σ−1x + x⊤Σ−1µ

)
dx

= log

(√
(2π)n det Σ−1 exp

(
1

2
µ⊤Σ−1µ

))
.

Plugging this into (2.3) and rearranging, the identity between the exponential family
form and the standard form of the multivariate Gaussian density becomes evident.

pθ(x) = exp (⟨θ, ϕ(x)⟩ − logZ(θ))

=
1√

(2π)n det Σ
exp

(
−1

2
x⊤Σ−1x + x⊤Σ−1µ − 1

2
µ⊤Σ−1µ

)
=

1√
(2π)n det Σ

exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
= pµ,Σ(x) .

Based on this equivalence, the joint density (3.9) of an LDS can also be rewritten in
terms of exponential families (2.3)

pA,Σ(X1 = x1,X2 = x2, . . . ,X t = xt) = pΣ(x1)
T−1∏
t=1

pAt,Σ(xt+1 | xt)

= pθ1(x1)
T−1∏
t=1

pθt+1(xt+1 | xt)

= exp

(
T∑
t=1

⟨θt, ϕt(xt,xt−1)⟩ − logZ(θt)

)
,

92

3.5 Continuous State Spaces

with

θ(t) =

(
−1

2
vec(Σ−1)

vec(Σ−1At−1)

)
and ϕt(xt,xt−1) =

(
vec(xtxt⊤)

vec(xtxt−1⊤)

)
. (3.11)

This representation has several drawbacks when compared to the standard form. An
obvious disadvantage is, that multiple copies of Σ−1 are encoded into the parameters.
When we go ahead and estimate the parameters θ(t), additional constraints are required
to ensure that the parts of θ(t) that correspond to a copy of Σ−1 agree with each other.
Moreover, Σ−1 needs to be invertible and hence, parts of θ(t) are restricted to the cone of
positive definite matrices. In short, the direct estimation of the natural LDS parameters
is not beneficial, and we will focus on the standard form instead.

3.5.1 Parameter Estimation

Due to the standard form, the estimation procedure looks slightly different to the
generic estimation of exponential family parameters. Objective function and gradi-
ent are affected by this alternative representation. The parameters A and Σ−1 are
indeed estimated by minimizing the negative average log-likelihood ℓLDS(A,Σ−1;D) =
− 1

|D|T log pA,Σ−1(D), where we additionally divide by T for notational convenience. Sub-

stituting the standard form into ℓLDS, yields the objective function

ℓLDS(A,Σ−1;D) = − 1

|D|T
log
∏
x∈D

pA,Σ(x)

= − 1

|D|T
∑
x∈D

(
log pΣ(x1) +

T−1∑
t=1

log pA,Σ(xt+1 | xt)

)

= C − 1

2
log det Σ−1 +

1

2|D|T
∑
x∈D

T∑
t=1

rt⊤Σ−1rt

with residual vector rt = xt − At−1xt−1 and constant C = 1
2
n log 2π. To simplify

notation, pΣ(x1) is absorbed into the summation by setting x0 := 0 and A0 := 0. As
with the generic objective function, the above is a convex function of the transition
matrices and the inverse noise covariance matrix, due to the convexity of − log det Σ−1.
The partial derivative13 of ℓLDS w.r.t. each transition matrix At, for 1 ≤ t < T , is then

∂ℓLDS(A,Σ−1;D)

∂ vec
(
At
)⊤ =

1

2|D|T
∑
x∈D

∂
(
rt+1⊤Σ−1rt+1

)
∂ vec

(
At
)⊤

= − 1

|D|T
vec

(
Σ−1

∑
x∈D

(xt+1 −Atxt)xt⊤

)⊤

13Please be aware that the notation for a derivative w.r.t. a matrix is notoriously inconsistent and
prone to errors. Here, we adopt the notation of [141] in that only derivatives w.r.t. vectors are
allowed. Matrices must hence be vectorized before we take the derivative. A detailed discussion of
this topic can be found in [141], pages 194–215.

93

3 Memory Constraints

and its partial derivative w.r.t. Σ−1 is

∂ℓLDS(A,Σ−1;D)

∂ vec
(
Σ−1

)⊤ = −1

2

∂ log det Σ−1

∂ vec
(
Σ−1

)⊤ +
1

2|D|T
∑
x∈D

T∑
t=1

∂
(
rt⊤Σ−1rt

)
∂ vec

(
Σ−1

)⊤
=

1

2
vec

(
−Σ +

1

|D|T
∑
x∈D

T∑
t=1

rtrt⊤

)⊤

(3.12)

An intuitive implication of the first-order condition ∂ℓLDS(A,Σ−1;D)/∂ vec
(
Σ−1

)⊤
= 0

is, that the minimizer Σ∗ must be equal to the empirical second moment of the residual
vector. We are now ready to discuss the spatio-temporal reparametrization of LDS.

3.5.2 Linear Dynamical Systems and Undirected Models

The reparametrization is defined for undirected generalized sequences. The LDS, how-
ever, defines a directed model, which follows directly from its factorization (cf. The-
orem 2.1). Moreover, the corresponding undirected structure is not a generalized se-
quence.

Lemma 3.3 (LDS Non-Generality) The undirected structure of an LDS is not a
generalized sequence.

Proof. The inverse covariance matrix C−1 of any multivariate Gaussian contains the
partial correlation coefficients between all pairs of variables. Any off-diagonal entry C−1

i,j

of the inverse covariance matrix is zero, if and only if X i ⊥⊥ X−j | XV \{i,j}. Hence,
the conditional independence structure is given by the non-zero pattern of C−1 (cf.
[133, 234]). Whenever two (multivariate) random variables W ,Y are jointly Gaussian
with mean µ = (µW ,µY) and covariance matrix

C =

(
CW ,W CW ,Y

CY ,W CY ,Y

)
,

the conditional mean and covariance of Y |W are

µY |W=w = µY + CY ,WC−1
W ,W (w − µW)

CY |W=w = CY ,Y − CY ,WC−1
W ,WCW ,Y .

Now, by setting Y = X2, W = X1, and µ = 0, we see that A2x1 = µX2|X1=x1 =

CX2,X1C−1
X1,X1x

1, which implies A2 = CX2,X1C−1
X1,X1 . CX2|X1=x1 equals Σ by construc-

tion, and thus Σ = CX2,X2 − CX2,X1C−1
X1,X1CX1,X2 . Moreover, CX1,X1 equals Σ (by

assumption on X1), and hence

C =

(
Σ + A2Σ⊤A2⊤ A2Σ

Σ⊤A2⊤ Σ

)
. (3.13)

94

3.5 Continuous State Spaces

So we derived the covariance matrix of (X1,X2). In generalized sequence models, the
spatial structure, i.e., the conditional independences between variables in the same time-
slice, is constant over time. Here, the spatial structure is defined by the diagonal blocks
of C−1. By inversion of block matrices in 3.13, we see that the diagonal blocks of the
inverse covariance matrix are equal, if and only if

Σ−Σ⊤A2⊤(Σ + A2Σ⊤A2⊤)−1A2Σ = Σ + A2Σ⊤A2⊤ −A2ΣΣ−1Σ⊤A2⊤

⇔ Σ−1 + A2⊤Σ−1A2 = Σ−1 .

The equivalence follows from the Woodbury matrix identity. Nevertheless, the last
equality can only hold, if A2⊤Σ−1A2 = 0, which is not true in general. The diagonal
blocks of C and thus the undirected spatial structure of the LDS are hence allowed to
change over time, which contradicts the definition of generalized sequence models. ■

Nevertheless, we will see that the reparametrization can still be applied.

3.5.3 Reparametrization

Despite its directedness, 3.13 shows, that the undirected structure between time-slices
is influenced by the transition matrices At. Like with ordinary exponential families,
regularization can be used to detect the non-zero pattern in At. If we aim at a reduc-
tion of model parameters, any further regularization, e.g., with a higher regularization
weight, will affect the conditional independence structure of the model. According to the
requirements that we stated in the Chapter 1, the conditional independence structure
should be kept intact.

The natural (exponential family) LDS parameters (3.11) are not well suited for repara-
metrization, due to the redundant encoding and positive-definiteness of the noise covari-
ance matrix. Instead, we perform a reparametrization of the transition matrices, which
can be used directly for the prediction of future states of the system, or to study the
evolution of particular interactions between variables.

In analogy to Definition 3.5, the reparametrization is defined by n × n vectors ∆i,j,
each of dimension T − 1. Let Ai,j ∈ RT−1 be the vector that contains the (i, j) entry of
each of the T − 1 transition matrices, and let D be a decay matrix for T − 1 time steps.

Ai,j = ηD(∆i,j) = D∆i,j (3.14)

We use A = ηD(∆) to denote the full reparametrization of all transition matrices. To
this end, we again construct the matrix D◦ such that ηD(∆) = D◦∆. This results in
the objective function

ℓS-LDS(ηD(∆),Σ−1;D) = ℓLDS(ηD(∆),Σ−1;D) +
λ2
2
∥∆∥22 + λ1∥∆∥1 .

The inverse covariance matrix Σ−1 is not reparametrized. On the one hand, maintaining
its symmetry and positive definiteness within the reparametrization requires non-trivial
changes to the reparametrization. Results on the estimation of sparse inverse covariance
matrices where such topics are discussed may be found in [70, 34, 251].

95

3 Memory Constraints

Here, the partial derivative of ℓS-LDS w.r.t. Σ will be the same as in (3.12). The partial
derivative w.r.t. ∆ follows directly from the chain rule (see, e.g., [141]).

∂ℓS-LDS(ηD(∆),Σ−1;D)

∂∆⊤
i,j

=

(
∂ηD(∆)

∂∆⊤
i,j

)⊤(
∂ℓLDS(ηD(∆),Σ−1;D)

∂ηD(∆)⊤i,j

)⊤

+ λ2∆i,j + λ1∂|∆i,j|

= − 1

|D|T
D⊤ vec

(
Σ−1

∑
x∈D

(xt+1 −Atxt)xt⊤

)⊤

+ λ2∆i,j + λ1∂|∆i,j|

The non-smooth part that arises from the l1-regularization is handled by the proximal
operator (2.36) as before. To estimate the Lipschitz constant, we derive an upper bound
on the norm of the Hessian of ℓS-LDS(ηD(∆),Σ−1;D). First, consider ℓS-LDS(A,Σ−1;D).

∇2
AtℓS-LDS(A,Σ−1;D) =

∂ℓS-LDS(A,Σ−1;D)

∂vec(At)∂ vec(At)⊤
= Σ−1 1

|D|T
∑
x∈D

xtxt⊤ + λ2I . (3.15)

The Hessian w.r.t. A is thus the product of the inverse noise covariance matrix and the
empirical second moment of the data in time-slice t. An upper bound on this expression
cannot be meaningful without any assumptions on ∥x∥ and ∥Σ−1∥. However, in a
practical setting, computing the Frobenius norm of (3.15) is rather straightforward,
whenever Σ−1 is available. Given that this can be done, the Lipschitz constant (w.r.t.
∆) is then

L ≤ sup
∆
∥∇2

∆ℓ
S-LDS(ηD(∆),Σ−1;D)∥F = sup

∆
∥D◦⊤∇2

ηD(∆)ℓ
S-LDS(ηD(∆),Σ−1;D)D◦∥F

≤ sup
∆
∥D◦∥2F (∥∇2

ηD(∆)ℓ
S-LDS(ηD(∆),Σ−1;D)∥F + λ2) .

Experimental results for the reparametrized LDS can be found in [173]. Since the LDS
is not an undirected model, we restrict ourselves to models for discrete data for the
remainder of this Chapter.

3.6 Experimental Demonstration

The theoretical results that we derived in this section show that regularized spatio-
temporal reparametrizations of generalized sequence models will detect temporal redun-
dancies in the parameters. These results are independent of the specific choice of decay
matrix and conditional independence structure. We conduct a series of experiments
to demonstrate this behavior on synthetic and real-world data. More precisely, we are
interested in answering the following questions empirically:

Q1 Can we observe an increase in sparsity (and hence, a reduction of memory con-
sumption)?

96

3.6 Experimental Demonstration

Q2 Do compressed models still provide a reasonable quality?

Q3 How does the spatio-temporal reparametrization influence the computational com-
plexity?

The first two questions are motivated by Theorem 3.2, that is, regularization will push
the reparametrization towards zero whenever the variation of natural parameters is small
over time. Moreover, the full, decompressed parametrization should be close to the true
parameters. However, due to overcompleteness, there is an affine set of equivalent param-
eters, specified by (2.21), which represent the same density. It is hence not guaranteed
that our estimate will be close to the parameter that was actually used to generate
the data. Due to the relation between a parameter vector θ and the induced vector
of marginals µ, we will instead consider the normalized squared Euclidean distance—
equivalent to the mean squared error (MSE)—between our estimated marginals µ̂ and
the empirical marginals µ̃ to investigate the quality of different models and to find an
answer to question Q2. In terms of sparsity, optimization of the regularized objective
finds a compromise between maximum likelihood and maximum sparsity. The true pa-
rameter vector might not obey small changes over time and will hence not allow for a
compressed representation. However, due to overcompleteness, there might be an equiv-
alent but compressible solution, even if θ∗ is not. We should hence expect to answer Q1
in the affirmative. To measure the actual sparsity of any parameter vector θ ∈ Rd, we
consult its proportion of non-zero components (NNZ-Ratio), denoted by ∥θ∥0/d—this
notation is common in the literature, although ∥ · ∥0 is not homogeneous and hence not
a norm.

Finally, by definition of the spatio-temporal reparametrization, each access to θi(t)
involves a decoding overhead of O(t), which indicates that the actual runtime of the
compressed model will degrade compared to the vanilla MRF. Caching effects could
nonetheless amortize this performance penalty. On the other hand the effective number
of parameters (or degrees of freedom) is smaller in case of the regularized model [86].
Hence, the actual number of parameter updates can decrease and thus speed up the
estimation procedure. Based on these considerations, we will report the total runtime
(in milliseconds).

To summarize, our evaluation incorporates

• the relative number of non-zero components of θ to measure the memory consump-
tion of a model,

• the mean squared error between estimated and empirical marginals: MSE(θ) =
1
d

∑d
i=1(µ̂− µ̃)2 to quantify the general quality of a model,

• and the runtime per training iteration in milliseconds, to measure the computa-
tional complexity.

97

3 Memory Constraints

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Figure 3.8: Base graphs for synthetic data generation. From left to right: chain, star,
grid, full. The full structure contains all possible edges, although some of
them are not visible in the figure.

3.6.1 Setup

The basic model that underlies each experiment is a discrete state exponential family
with linear sequence structure and overcomplete sufficient statistic. Its parameters are
estimated via accelerated first-order optimization. We investigate the following variants
of the basic model:

M1 No regularization, no reparametrization—a vanilla MRF on spatio-temporal data

M2 Regularization, no reparametrization

M3 Regularization with spatio-temporal reparametrization—the STRF approach

In case of models M2 and M3, we consider various regularization weights λ ∈ {10−2 ×
20, 10−2 × 21, . . . , 10−2 × 27}. Furthermore, model M3 is instantiated with all decay
types that we discussed in Section 3.4.1. Data from different sources is considered to
demonstrate the robustness of the reparametrization. Each experiment is performed
on an Intel Xeon E5-2697 v2 system. We provide a docker image with our own C++
implementation of models M1–M3 for download at https://sfb876.tu-dortmund.

de/px.

Synthetic Data

We conduct a series of experiments on synthetic data which allows us to embed temporal
redundancies into the true parameter. For simplicity, all synthesized models contain only
pairwise factors ψvu. The number of variables per time-slice is fixed to n0 = 9 and the
number of states per variable is fixed to 2. We consider four different temporal depths T ,
i.e., number of temporal layers, from small (T = 16) to large (T = 128). Small models
consists of n = 144 variables and large models of n = 1152 variables.

We consider four different base graphs G0, representing the spatial conditional inde-
pendence structure, shown in Fig. 3.8. The graphs are chosen to cover different levels
of complexity. In the simplest structure (chain), each vertex has degree at most 2. The
star structure exhibits one vertex with relatively high degree. Grid structures consist of
multiple loops but obey a vertex degree which is independent of n, while spatial neigh-
borhood sizes in fully connected structures depend on the number of spatial variables.

98

https://sfb876.tu-dortmund.de/px
https://sfb876.tu-dortmund.de/px

3.6 Experimental Demonstration

The ground truth linear sequence structures G = (V,E) are synthesized according to
Definition 3.2, with base graph G0 ∈ {chain, star, grid, full} and T ∈ {16, 32, 64, 128}.
We consider overcomplete representations in which each edge e(t) is parametrized by a
4-dimensional vector θe(t) whose entries are sampled independently from a Gaussian with
mean 0 and variance 1. Here, e(t) denotes an edge from time-slice t (cf. Definition 3.2).

Finally, we inject some temporal redundancies into the random model parameters.
Recall that the sequence model contains up to T copies of each edge e(t) ∈ E. Redun-
dancies are injected by visiting each temporal copy of each edge in increasing temporal
order t = 2, 3, Then, we draw a Bernoulli random variable B with parameter
q ∈ [0; 1]. Whenever B = 1, the edge at time t, e.g., e(t), inherits the parameters of its
temporal predecessor e(t− 1), i.e., θe(t) ← θe(t−1) ⇔ B = 1.

Note that the parameter q allows us to control the amount of temporal redundancies
in a compact manner. If q = 0, no edge will inherit the parameters from its predecessor,
and all parameters are independent realizations of a standard normal random variable.
By increasing q, dependencies between the parameters of consecutive edges arise. When
q = 1, the parameters are actually time invariant—they are identical at each time step.
In our experiments, we consider q ∈ {0, 0.25, 0.5, 0.75, 1} to study the effects of different
redundancy levels.

Eventually, 1000 samples are generated from each model via Gibbs sampling (Al-
gorithm 2.4). During data generation, the first 100 samples are discarded. Between
consecutive samples, all variables are resampled 16 times in a round-robin fashion to
enforce independence of consecutive samples.

Although the true underlying graphical structure is known, the finite synthetic data
sets might not capture all true conditional independences. Hence, we apply a closed-form
l1-regularized structure estimation [240] with regularization weight λ = 10−1.

Real-World Data

In the second set of experiments, we estimate the models on data, collected from real
sensor networks, namely:

D1 INSIGHT—Dublin City SCATS Data14

D2 VaVeL—Warsaw City Mobile Network Cell Data15

D3 Intel Lab—Temperature and Humidity Data16

While the memory consumption of the model is of rather minor importance in large,
wired sensor networks, sparse models are still of interest when overfitting has to be
avoided. Considering a process that generates one independent sample per day, only
365 training instances can be generated per year. If the corresponding sensor network is
large, the number of training examples is likely to be too small for consistent maximum

14Section 4.1.1 in http://www.insight-ict.eu/sites/default/files/deliverables/D5-1.pdf
15Section 3.15 in http://www.vavel-project.eu/sites/default/files/VaVeL_D1_3.pdf
16http://db.csail.mit.edu/labdata/labdata.html

99

http://www.insight-ict.eu/sites/default/files/deliverables/D5-1.pdf
http://www.vavel-project.eu/sites/default/files/VaVeL_D1_3.pdf
http://db.csail.mit.edu/labdata/labdata.html

3 Memory Constraints

Table 3.3: Summary of real-world data sets.

Name # variables (n) # readings # data points (N)

D1 INSIGHT 2367 316632468 134

D2 VaVeL 4988 3934145 43

D3 Intel Lab 56 2313682 36

likelihood estimation. This is indeed true for the data sets considered here, whose
characteristics are shown in Table 3.3. Nevertheless, incorporating prior knowledge in
form of regularization (Section 2.3.3) can help to prevent overfitting.

Let us shortly summarize some details about the sensor networks and the data col-
lection. More details about the data can be found in the referenced online sources. The
first set (D1) was collected between Jan 1 and Mai 14 in 2013 from SCATS (Sydney
Coordinated Adaptive Traffic System) traffic sensors, which are embedded into several
streets in the city of Dublin, Ireland. Each sensor outputs the average vehicle speed
(D1.A) and relative sensor occupation (traffic density) (D1.B) per minute. Secondly,
the set D2 was collected between Mai 15 and June 26 of 2016 from selected mobile
network cells, located in the urban area of the city of Warsaw, Poland. The measured
data represents subscriber activity on the basis of network events which are triggered
together with voice and xMS communication. For each cell, the number of events per
hour was recorded. The last set (D3) was collected between Feb 28 and April 2 of
2004 from sensors deployed in the Intel Berkeley Research lab. Temperature (D3.A),
humidity (D3.B), light and voltage values were collected once every 31 seconds. More-
over, we ignore sensor readings with implausible values, e.g., unreasonable high indoor
temperatures.

For each of these data sets, we construct a linear sequence model with T = 12 layers,
representing 24 hours, i.e., each layer corresponds to a two hour interval of a day. The
data of each 2 hour interval is averaged and discretized via quantiles. To this end, we
compute 0.0-, 0.2-, 0.4-, 0.6-, 0.8-, and 1.0-quantiles of 2-hour-averages for each sensor.
These quantiles define up to 5 non-overlapping intervals, and each 2-hour average is then
replaced by the corresponding interval number. Finally, missing values are replaced by
the median measurement of the corresponding sensor.

Due to the small number of available data points (Table 3.3), the regularization based
structure estimation that we used for the synthetic data did not result in meaningful con-
ditional independence structures—the models where almost fully connected. Instead, we
choose the optimal tree structure as base graph, computed via the Chow-Liu algorithm
(cf. Section 2.3.4).

100

3.6 Experimental Demonstration

-1

-0.5

 0

 0.5

 1

-10 -5 0 5 10

M1

Linear

Quadratic

Cubic

Rational

Exponential

Inv. Quadratic

Inv. Cubic

Inv. Rational

Inv. Exponential

M2

Figure 3.9: Key for Figures 3.10 to 3.17 to indicate the results for models M1, M2,
and M3 with various decay types. Each decay type corresponds to an M3
model.

Table 3.4: Empirical upper bounds on the variances of each experiment on synthetic
data.

Name Ṽ∗[MSE] Ṽ∗[NNZ Ratio] Ṽ∗[millis/iter]

Chain 0.0008128239666544 0.16065211567913 29.3399973505194

Star 0.000968238996476002 0.158395315017228 176.53025861319

Grid 0.000789754555558402 0.127438307225791 11.6477079330723

Full 0.0007800014778184 0.114628416485514 18.2190416116637

3.6.2 Results

Results on the synthetic data sets are presented in Figures 3.10–3.13, and results on
the real-world data sets are shown in Figures 3.16–3.17. The dashed line indicates
the result for model M1, black solid circles represent results for model M2, and other
symbols correspond to results for model M3—the common key of all plots is shown in
Fig. 3.9. In total, the results represent 32805 learning runs. Error bars are ommited in
favor of readability. Instead, we provide the empirical worst-case variances in Table 3.4.
While variances of mean squared error and runtime-per-training-iteration are small, the
variance of the number-of-non-zero-ratio (parameter density) sticks out. This is not a
surprise, since the achievable sparsity depends on the actual parameters, and we compute
the variances over random model parameters. The MSE and the runtime do indeed not
depend on the actual model parameters and have hence much lower variances.

We explain and discuss the results w.r.t. to the questions stated at the beginning of
this Section.

Q1 Can we observe an increase in sparsity?

Converting redundancy into sparsity is the main motivation for our regularized reparame-
trization approach. First, we investigate the response of M1–M3 to an increase in the
regularization weight λ. Corresponding results can be found in the NNZ-Ratio plots
of Figures 3.10–3.17. And indeed, increasing λ leads to a lower proportion of non-zero

101

3 Memory Constraints

parameters, and thus an increased sparsity. In all cases, M2 and M3 models exhibit a
lower NNZ-ratio than the unregularized baseline MRF M1. Moreover, the sparsity of
regularized models increases at the same rate.

Inverse decay types take more information from previous time steps into account. One
could hence expect that they may lead to an increased sparsity, compared to their regular
counterparts. But taking a closer look at the different decay types reveals, that there is
no strict order between inverse and non-inverse decay types. All sparsity levels are close
to each other, with the regular exponential decay leading to the highest sparsity, followed
by the regular rational decay. In most cases, the M2 models deliver a lower sparsity
than our proposed reparametrized models. This behavior is stable over all graphical
structures that we considered in our experiments.

Similar observations can be made when we consider sparsity as a function of the
model’s redundancy (Fig. 3.11). The rate at which the sparsity of M2 and M3 models
increases is now different. M2 models are almost rigid against an increased redundancy.
At very high redundancy, the NNZ-Ratio drops at least for star and full structures, and
stays at the same level on chain and grid structures. Instead, the average sparsity of
M3 models increases with increasing sparsity and exhibits a large increase in regimes of
high redundancy on all graphical structures.

Lastly, we investigate how sparsity behaves as a function of the model’s depth T
(Fig. 3.12). For a low number of time steps (T < 64), the sparsity of models with
regular linear, quadratic, and cubic decay is lower than that of the M2 model and
models with inverse decay. However, this changes when the depth is increased. In all
experiments, the difference in sparsity between M2 and M3 models (with regular decay)
diverged. This is a strong evidence for the intuition that deep spatio-temporal models of
type M2 become more complex with increasing depth, while M3 models tend to become
less complex (easier) when reparametrizations with regular decay types are used.

Altogether, we can conclude that an increase in sparsity can be observed for both, M2
and M3 models. Regular rational and exponential decays deliver the highest sparsity.
But being sparse alone is not enough, sparse models should still provide a reasonable
quality.

Q2 Do compressed models still provide a reasonable quality?

We do now investigate the quality of sparse models. To this end, we compare the mean
squared error ∥µ̃−µ̂∥22/d between the empirical marginals µ̃ and the model’s estimate µ̂
for M1, M2 and M3 models, estimated via 1000 iterations of loopy belief propagation.

Results for M2 and M3 models can be found in the MSE plots of Figures 3.10–
3.17). Treating the MSE as a function of λ (Fig. 3.10,3.15–3.17), it becomes evident
that sparse M2 models exhibit a considerably larger MSE than almost all M3 models.
The only exception constitute models with regular exponential decay. This confirms our
intuition which we used to design the reparametrization. Strong regularization leads to
very sparse M2 models, but destroys the underlying conditional independence structure,
while sparse M3 models keep this structure intact. The plot also reveals that the decay
types which provided the highest sparsity, namely rational and exponential decay, have

102

3.6 Experimental Demonstration

also the largest MSE. However, the MSE of regular rational models is still below the
MSE of models with plain l1-regularization. It is also interesting that the uncompressed
M1 models provide a superior low MSE of ≈ 10−10 on synthetic data (the dashed line
is so close to 0 that it cannot be seen in the plots), but on all real-world data sets, their
error has the same order of magnitude than that of M2 and M3 models. This could
indicate that the parameters of the model that generated the real-world data follow a
substantially different distribution than the one that we used to generate the synthetic
data.

Regarding the redundancy that we injected into our synthetic data, we can see from
Fig. 3.11 that the MSE is almost constant w.r.t. the redundancy. If anything, then a
slight decreasing trend can be observed for all models types. The same applies to the
MSE as a function of the models depth (Fig. 3.12). Again, models with exponential
decay and rational decay show a larger error than the other decay types.

All in all, M2 models trade sparsity against quality, while our proposed M3 mod-
els, especially those with rational decay, are capable of being sparse and achieving a
reasonable small error at the same time.

Q3 How does the spatio-temporal reparametrization influence the computational
complexity?

Since most things are not for free, we may reckon that some kind of tradeoff exists.
We hence investigate the empirical runtime of the models. More precisely, we consider
the average runtime (in milliseconds) per training iteration as shown in Figures 3.13–
3.17. Results on MSE and NNZ-ratio are very close for different decay types. This
changes when we consider the runtime. The experimental results on the synthetic data
(Figures 3.13 and 3.14) reveal an ordering of decay and model types. In fact, M2
models have the shortest runtime per iteration, followed by the M1 model, followed by
M3 models with regular decay, followed by M3 models with inverse decay. In some
cases, the runtime difference between sparse M3 models with rational or exponential
decay and M1 is below one millisecond.

This result is intuitive if one recalls what kind of computation has to be performed
for each model. The asymptotic complexity of M1 and M2 models is equivalent, and
since arithmetic which involves many zeros can be carried out faster, sparse M2 models
are faster than their dense M1 counterparts. On the other hand, M3 models have
to “decode” the natural exponential family parameters at runtime and hence suffer
from a computational overhead. Regular decay types assign the coefficient ≈ 0 to
parameters which are far from the parameter at time t. Hence, decoding their natural
parameters enjoys the same effects which make M2 models faster than M1 models.
Inverse decay types assign non-zero weights to almost all preceding parameters and are
hence inherently slower than reparametrizations with regular decay. This behavior can
be observed in all experiments on synthetic data, no matter if we treat the runtime as a
function of the regularization weight, as a function of the redundancy, or as a function
of the models depth.

Similar observations can be made in the experimental results on real-world data.

103

3 Memory Constraints

But in some cases, the order is not preserved, e.g., models with regular decay can
sometimes be slower than models with inverse decay. This can be explained with the
rather shallow depth of our real-world models (T = 12), since a higher depth implies a
larger performance penalty for inverse decay types.

More surprising is that in some cases, M3 models are actually faster than M1 and
even M2 models on the real-world data. This signifies that the parameters learned by
M3 models may ease the computation of loopy belief propagation in some undiscovered
way—at least on our real-world data. However, we cannot preclude the possibility that
this behavior is triggered by imperfections in the real-world data which are not present
in the synthetic data.

To sum up, the theoretical runtime penalty of M3 models can be observed in our
experiments. In many cases, this penalty amounts to a few milliseconds, and in some
other cases, the penalty is not existing at all. Our reparametrized models are thus a
practical alternative to classic undirected models.

3.7 Discussion

Resource constraint systems can have highly limited storage capabilities. In this chap-
ter, we investigated the inherent memory requirements of exponential family members.
This led to a principled overview on the memory complexity of potential functions and
inference methods. The concept of sufficient statistics allows the memory complexity
of exponential family models to be independent of the number of training data points.
Instead, we identified the model parameter vector as the most relevant source of mem-
ory consumption. Techniques for the reduction of the parameter dimension are known
from applications in statistical physics and natural language processing—both based on
the reparametrization technique and are restricted to specific applications. Multivariate
sensor data arises frequently in resource-constrained systems, but a direct application of
the known techniques is not possible. We proposed generalized sequence structures, a
sub-class of exponential family models with a special type of conditional independence
structure for multivariate sensor data. By combining piecewise linear reparametriza-
tions and regularization, redundant parts of a model could be identified and converted
to sparsity, which reduces the memory requirements of the model. We showed how these
models can be estimated consistently with various reparametrization types, character-
ized via different decay matrices. Theoretical properties of some canonical decay types
were investigated. We explained how the proposed technique can be applied to con-
tinuous state space models and discussed the relation to dynamic Bayesian networks.
Extensive experiments on synthetic and real-world multivariate sequence data showed,
that we are capable to learn sparse models while preserving a high quality. This could
not be achieved with existing regularization techniques, since those destroy the under-
lying conditional independence structure while our models keep this structure intact.
Our reparametrization has to be decoded at run time and hence exhibit a penalty on
their time complexity that is proportional to the models depths. Nevertheless, when the
memory of the underlying resource-constrained system is too small for the full model,

104

3.7 Discussion

our compressed models might be the only practical way. In such situations, a time-
space-tradeoff can be acceptable.

The reparametrization was first published in [169]. Therein, essential theoretical prop-
erties like universality of reparametrizations and consistent estimation were omitted and
the discussion and experiments were restricted to the rational decay type. Here, we
put a strong emphasis on the learning of models, which is also reflected in the exper-
iments that were conducted in this Chapter. Orthogonal results on the classification
performance of generalized sequence models can be found in [147, 169, 7, 174, 173, 137].

A more technical approach to reduce the effective memory consumption of a model
is the reduction of the bit-width of the underlying data type, e.g. 16 bit instead of
64 bit. We will discuss this opportunity further in the upcoming chapter in the context
of arithmetic constraints.

105

3 Memory Constraints

M
S
E

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

chain

 0

 0.0025

 0.005

 0.0075

 0.01

 0 0.1 0.2

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

star

 0

 0.0025

 0.005

 0.0075

 0.01

 0 0.1 0.2

M
S
E

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

grid

 0

 0.0025

 0.005

 0.0075

 0.01

 0 0.1 0.2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

full

 0

 0.0025

 0.005

 0.0075

 0.01

 0 0.1 0.2

N
N
Z
-R

at
io

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

chain

 0

 0.05

 0.1

 0.15

 0.2

 0.31 0.32 0.33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

star

 0

 0.05

 0.1

 0.15

 0.2

 0.31 0.32 0.33

N
N
Z
-R

at
io

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

grid

 0

 0.05

 0.1

 0.15

 0.2

 0.31 0.32 0.33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

full

 0

 0.05

 0.1

 0.15

 0.2

 0.31 0.32 0.33

Figure 3.10: Average mean squared error in estimated marginals (y-axis, first two rows),
and average number of non-zero parameters (y-axis, last two rows), as a
function of the regularization weight λ (x-axis). The results are averaged
over multiple runs for different time-slices T ∈ {16, 32, 64, 128}, and five
levels of redundancy {0, 1/4, 1/2, 3/4, 1}. Different colors indicate different
decay types (see Fig. 3.9).

106

3.7 Discussion

M
S
E

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.2 0.4 0.6 0.8 1

Redundancy

chain

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 0.2 0.4 0.6 0.8 1

Redundancy

star

M
S
E

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 0.2 0.4 0.6 0.8 1

Redundancy

grid

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 0.2 0.4 0.6 0.8 1

Redundancy

full

N
N
Z
-R

at
io

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.2 0.4 0.6 0.8 1

Redundancy

chain

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.2 0.4 0.6 0.8 1

Redundancy

star

N
N
Z
-R

at
io

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.2 0.4 0.6 0.8 1

Redundancy

grid

 0.35

 0.4

 0.45

 0.5

 0.55

 0 0.2 0.4 0.6 0.8 1

Redundancy

full

Figure 3.11: Average mean squared error in estimated marginals (y-axis, first two rows),
and average number of non-zero parameters (y-axis, last two rows), as a
function of the redundancy (x-axis). The results are averaged over multiple
runs for different time-slices T ∈ {16, 32, 64, 128}, and various regulariza-
tion weights {20 × 10−2, 21 × 10−2, . . . , 27 × 10−2}. Different colors indicate
different decay types (see Fig. 3.9).

107

3 Memory Constraints

M
S
E

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100 120

Layers

chain

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100 120

Layers

star

M
S
E

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0 20 40 60 80 100 120

Layers

grid

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 20 40 60 80 100 120

Layers

full

N
N
Z
-R

at
io

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 20 40 60 80 100 120

Layers

chain

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 20 40 60 80 100 120

Layers

star

N
N
Z
-R

at
io

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 20 40 60 80 100 120

Layers

grid

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 20 40 60 80 100 120

Layers

full

Figure 3.12: Average mean squared error in estimated marginals (y-axis, first two rows),
and average number of non-zero parameters (y-axis, last two rows), as a
function of the number of time-slices T (x-axis). The results are averaged
over multiple runs for five levels of redundancy {0, 1/4, 1/2, 3/4, 1}, and various
regularization weights {20×10−2, 21×10−2, . . . , 27×10−2}. Different colors
indicate different decay types (see Fig. 3.9).

108

3.7 Discussion

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
o
n

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

chain

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

star

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

grid

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

full

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.2 0.4 0.6 0.8 1

Redundancy

chain

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

Redundancy

star

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.2 0.4 0.6 0.8 1

Redundancy

grid

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.2 0.4 0.6 0.8 1

Redundancy

full

Figure 3.13: Average runtime per training iteration (milliseconds, y-axis) as a function
of the regularization weight λ (x-axis, first two rows), and as a function
of the redundancy (x-axis, last two rows). The results are averaged over
multiple runs. Different colors indicate different decay types (see Fig. 3.9).

109

3 Memory Constraints

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120

Layers

chain

 0

 2

 4

 6

 8

 10

 12

 0 20 40 60 80 100 120

Layers

star

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 20 40 60 80 100 120

Layers

grid

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100 120

Layers

full

Figure 3.14: Average runtime per training iteration (milliseconds, y-axis) as a function
of the model depth T (x-axis, first two rows). The results are averaged over
multiple runs. Different colors indicate different decay types (see Fig. 3.9).

110

3.7 Discussion

M
S
E

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

insight.A

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

insight.B

N
N
Z
-R

at
io

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

insight.A

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

insight.B

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

insight.A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

insight.B

Figure 3.15: Experimental results on the INSIGHT data. Average MSE between es-
timated and empirical marginals (first row), average number of non-zero
parameters (second row), and average runtime per training iteration in mil-
liseconds (last row), as a function of the regularization weight (x-axis).
Different colors indicate different decay types (see Fig. 3.9).

111

3 Memory Constraints

M
S
E

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

 0.011

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

intel.A

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

intel.B

N
N
Z
-R

at
io

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

intel.A

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

intel.B

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

intel.A

 0

 100

 200

 300

 400

 500

 600

 700

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

intel.B

Figure 3.16: Experimental results on the Intel Lab data. Average MSE between es-
timated and empirical marginals (first row), average number of non-zero
parameters (second row), and average runtime per training iteration in mil-
liseconds (last row), as a function of the regularization weight (x-axis).
Different colors indicate different decay types (see Fig. 3.9).

112

3.7 Discussion

M
S
E

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

vavel

N
N
Z
-R

at
io

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

vavel

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 0.2 0.4 0.6 0.8 1 1.2

Regularization weight λ

vavel

Figure 3.17: Experimental results on the VaVeL data. Average MSE between estimated
and empirical marginals (first row), average number of non-zero parameters
(second row), and average runtime per training iteration in milliseconds
(last row), as a function of the regularization weight (x-axis). Different
colors indicate different decay types (see Fig. 3.9).

113

4 Arithmetic Constraints

Computing the probability of joint states, marginal probabilities, and parameter esti-
mation, require the arithmetic evaluation of the model, in particular, the evaluation of
clique potentials ψC(x) = exp(⟨θC , ϕC(x)⟩). Any system on which we want to evalu-
ate ψC should at least be able to perform multiplication, addition, and exponentiation.
Moreover, since θ ∈ Rd and ϕ(x) ∈ Rd are real-valued vectors, a simulation of real-
valued arithmetic is required via, say, the IEEE standard for floating-point arithmetic
(IEEE 754). Although very basic, these operations can become prohibitively expensive
when we consider computationally weak systems. In particular, ultra-low-power systems
may not have hardware circuits for floating-point arithmetic. An obvious reason for such
a constraint is the sheer physical size of a floating-point coprocessor—we might have to
use a very small system whose size constraints have no room for a floating-point logic.
Another reason is indeed the additional energy consumption, provoked by the additional
hardware. It can be seen in Table 4.1 that the execution of floating point instructions
consumes more energy than corresponding integer instructions.

Systems without floating-point units have to emulate the corresponding arithmetic
operations in software, based on low level logic operations and integer arithmetic. Even
if we resort to fixed-point arithmetic, multiple integer instructions have to be composed
to emulated real-valued arithmetic. Compared to hardware implementations, the emu-
lation requires substantially more clock cycles and hence, more time and more energy.
Consequently, if we are forced to work with such constraints, we should resort to simple
algorithms which do not require any real-valued arithmetic at all. At a first glace, this
seems to inherently contradict our goal to study exponential family models on resource-
constrained systems, since the evaluation of ψC requires d real-valued multiplications,
d real-valued additions and one evaluation of the exponential function. Nevertheless,
based on the very definition, we will derive and study a proper sub-class of the exponen-
tial family, in which the potential function can be evaluated solely with unsigned integer
arithmetic17.

Based on the integer subclass of exponential families, we propose and analyze proba-
bilistic inference and optimization procedures, which allow us to learn parameters with-
out any need for real-valued computation. To be more precise, we devise a variant of BP,
called bit-length propagation, to compute approximations to the marginal probabilities
and the maximum a posteriori assignment. Moreover, we derive an integer upper bound
on the negative log-likelihood and investigate its minimization via our novel integer gra-
dient descent method. In our experiments, we consider different levels of integrality to

17Note that each system with random-access memory must have at least one integer unit to perform
address calculations.

115

4 Arithmetic Constraints

Table 4.1: Approximate energy consumption of arithmetic instructions in picojoule for
45nm chips [97].

Data type int float

Bit-width 8 bit 32 bit 16 bit 32 bit

Addition 0.03pJ 0.1pJ 0.4pJ 0.9pJ

Multiplication 0.2pJ 3.1pJ 1.1pJ 3.7pJ

characterize which models can reliably be learned with our new methods.
This opens up the opportunity of running probabilistic models on very small, resource-

constrained systems. Moreover, the reduction of available decimal digits removes spuri-
ous arithmetic precision, which may readily be interpreted as regularization—it prevents
the model to overfit to numerical particularities of the data. As a side-effect, the memory
consumption is reduced by the use of data types with low bit-width.

4.1 Low-Precision Machine Learning

Understanding the impact of low-precision arithmetic, e.g. fixed-point arithmetic, is an
active research area in machine learning [80, 37, 138]. However, most aspects of this
topic have not been studied rigorously. The results are mostly heuristic, empirical and
not directly applicable to undirected probabilistic models.

Probabilistic classifiers based on directed models, so called Bayesian network classifiers
(BNC), have been analyzed w.r.t. the implications of parameter quantization [209, 208].
More precisely, worst-case and probabilistic bounds on the classification error for dif-
ferent bit-widths have been derived. Moreover, the authors compared the classification
performance and the robustness of BNCs with generatively and discriminatively opti-
mized parameters, i.e. parameters optimized for high data likelihood and parameters
optimized for classification, with respect to parameter quantization. While this study
delivers valuable theoretical insights about the effects of parameter quantization, the an-
alyzed models require real-valued computation for parameter estimation and inference.

Similar results have been observed for neural networks [116, 80, 138]. The authors
investigate different types of rounding. Their results suggest, that the classification
performance of neural networks with 16 bit fixed-point arithmetic can deliver state-of-
the art performance w.r.t. the prediction error on a test set. Moreover, it is shown that
using low-precision arithmetic allows for energy efficient hardware implementations of
deep neural networks, compared to ordinary CPU/GPU implementations. In [187], the
authors provide a bound on the misclassification rate in presence of limited precision, for
networks whose parameters are estimated under full precision, without any arithmetic
constraint.

Some authors go even further and restrict the parameters or activation functions of

116

4.2 Integer Exponential Families

neural networks to the domain {−1,+1} [49, 100]. Despite this apparently strong limi-
tation, near state-of-the-art results on typical benchmark data sets are achieved. Never-
theless, these methods rely internally on real-valued computations for both, parameter
estimation and prediction.

In what follows, we close this gap, at least for undirected models, by proposing a
proper sub-class of the exponential family, for which pure unsigned integer arithmetic
suffices.

4.2 Integer Exponential Families

To construct a model that does not require any real-valued computation, we assume
that our random variable X has a discrete state space X . However, any density value
generated by an exponential family member is, by definition, a fractional number18. To
overcome this fact, our first intermediate goal is the derivation of exponential family
members which are restricted to output rational density values.

As an initial step towards this goal, consider the derivation of the exponential families
via the maximum entropy principle (Theorem 2.3) or from sufficient statistics (Theo-
rem 3.1). In either way, the exponential function arises through the inversion of a log p
term. The log p term itself originates from either the entropy or the log-likelihood.

An important observation is, that no matter which road we take to derive the exponen-
tial family, the choice of the logarithm’s base is arbitrary. Without any specific reason,
the natural logarithm (to the base e) is chosen in the proofs of Theorems 2.3 and 3.1.
If we select logb instead, it is straightforward to walk through the proofs and derive the
base-b exponential family.

Corollary 4.1 (Base-b Families) The exponential family is independent of the base.
All exponential family densities can be written in base-b form, i.e.,

pb,θ(X = x) = b⟨θ,ϕ(x)⟩−Ab(θ)

with

Ab(θ) = logb Zb(θ) = logb

∫
X
b⟨θ,ϕ(x)⟩ d ν(x) .

Moreover, we may transition arbitrarily between bases via the reparametrization

ηa,b(θ) =
log b

log a
θ .

I.e., ∀x ∈ X : pa,θ(x) = pb,ηa,b(θ)(x). The set of all base-b densities is denoted by Fb.
The set of all base-b densities with b ∈ N is called the base-N exponential family.

Of course, the above reparametrization is a direct consequence of xz = exp(z log x).
The next step towards integer exponential families is a restriction of our parameter

space to the set of integers. Maybe surprising, the following lemma shows that we
already reached our first goal.

18Recall that exp is never 0, and hence, pθ(x) cannot be zero or one if p is in the exponential family.

117

4 Arithmetic Constraints

Theorem 4.1 (Integer Parameters and Exponential Families [170, 171]) Let
X be a discrete random variable with base-N exponential family density pb,θ(x). When
θ ∈ Nd, then, for each x ∈ X , pb,θ(X = x) ∈ Q+ ∩ (0; 1). Moreover, for any set of
variables U ⊆ V , the corresponding marginals pb,θ(XU = xU) are also in Q+ ∩ (0; 1).

Proof. The base-b density can be rewritten as a quotient pb,θ(X = x) = ψb(x)/Zb(θ).
Binary overcomplete sufficient statistics (Definition 2.6) can represent any conditional
independence structure of multivariate discrete random variables. Hence ∀x ∈ X :
ϕ(x) ∈ {0, 1}d. Thus, ⟨θ, ϕ(x)⟩ is integer, and since b ∈ N, we can conclude that the
numerator of pb,θ(X = x) is also integer. Moreover, N is closed under addition and
hence the denominator Zb(θ) =

∑
x∈X b

⟨θ,ϕ(x)⟩ must be an integer too. This shows that
pb,θ(X = x) is in Q, and since pb,θ is normalized and always non-zero, the density of any
x must be in Q∩ (0; 1). Any sum of rational numbers is rational and thus the marginals
of pb,θ are rational too. ■

Choosing an integer base and imposing the constraint that our model parameters are
integers implies that each density is a rational number. According to Corollary 4.1, we
may choose an integer base without sacrificing the expressiveness of our model class.
Allowing only integer parameters, however, seems to be a rather strong restriction of
the model space—the sub-class of exponential family members with integer parameters
is small in the sense that it has Lebesgue measure 0. Let us analyze the impact of this
restriction.

Definition 4.1 (Integer Reparametrization) Let θ ∈ Rd be the parameter of some
exponential family member. The unsigned integer reparametrization η⌊·⌋ consists of floor-
ing θ, and shifting it into the non-negative orthant.

η⌊·⌋(θ)i = ⌊θi⌋+ ⌈|
d

min
j=1

θj|⌉

Indeed, η⌊·⌋(·) is not a bijection, and hence not universal according to Definition 3.1.
One may ask whether η⌊·⌋(θ) delivers integer parameters which are not arbitrary far
from θ in terms of log-likelihood (2.18). The following intuitive result shows, that the
amount of sacrificed likelihood depends on the number of cliques scaled by the flooring
error.

Theorem 4.2 (Log-Likelihood Error) Let ⌊θ⌋ be the element-wise flooring of the
entries in θ ∈ Rd, and let further ϵ = θ− ⌊θ⌋. Suppose θ is the parameter of a discrete
exponential family member with overcomplete binary sufficient statistic. Then,

ℓ(η⌊·⌋(θ);D)− ℓ(θ;D) ≤ 2∥ϵ∥2|C(G)| ,

where equality is attained when θ is in Nd.

118

4.3 Integer Probabilistic Inference

Proof. By Definition 4.1, each component of η⌊·⌋(θ) is shifted by ⌈|mindj=1 θj|⌉. Recall
that exponential family models with overcomplete sufficient statistic are shift-invariant
(Lemma 2.4). Thus, ℓ(η⌊·⌋(θ);D) = ℓ(⌊θ⌋;D). Combining this with the quadratic upper
bound on convex functions with Lipschitz continuous gradient (2.23), we get

ℓ(η⌊·⌋(θ);D)− ℓ(θ;D) = ℓ(⌊θ⌋;D)− ℓ(θ;D) ≤ ⟨µ, ϵ⟩+
L

2
∥ϵ∥22 ,

where µ = ∇ℓ(θ;D). We know from Lemma 2.6, that the Lipschitz constant of the
gradient is upper bounded by 2|C(G)|. The statement of the theorem follows by ap-
plying the Cauchy-Schwarz inequality to ⟨µ, ϵ⟩, and observing that ∥µ∥2 = |C(G)| (by
overcompleteness) and ∥ϵ∥22 ≤ ∥ϵ∥2, since ϵ ∈ [0; 1)d. ■

The result formalizes the idea that integer models should deliver reasonable results
whenever the true parameter is not too far from being integer. However, this statement
has some caveats. Clearly, the worst-case distance for any number to the nearest integer
is 1/2. At a first glace, it seems that the worst-case for the integer reparametrization
would hence be any parameter vector with θi = wi + 1/2 and w ∈ Nd. But in this case,
we can simply invoke the shift-invariance lemma (Lemma 2.4) to get an equivalent pure
integer parameter vector θ + (1/2, 1/2, . . . , 1/2)⊤. It is thus not obvious if the error of an
integer model will be large in practice—we will revisit this question in our experimental
demonstration.

Before we discuss the probabilistic inference and parameter estimation in integer mod-
els, we make an observation that strengthens our hope in that integer models require
simpler arithmetic operations than ordinary exponential family members.

Remark 4.1 (Left Bit-Shifts) The potential function of base-2 exponential families,
i.e.,

ψ2(x) = 2⟨θ,ϕ(x)⟩ ,

can be evaluated via a left bit-shift, denoted by a≪ b for a, b ∈ N. E.g.,

ψ2(x) = 1≪ ⟨θ, ϕ(x)⟩ .

No arithmetic unit for exponentiation is required.

4.3 Integer Probabilistic Inference

We discuss how to compute the partition function and the marginal probabilities of inte-
ger models. In particular, we review the inference methods from Section 2.2.2 and check
if they can be applied to perform inference without the need for real-valued arithmetic.

4.3.1 General Variational Inference

One can think about at least two orthogonal interpretations of variational inference in
the context of integer models. First, we may define the rational marginal polytope

MQ
b = {µ ∈ Qd | ∃F ∈ Fb : EF[ϕ(X)] = µ} ,

119

4 Arithmetic Constraints

which contains all marginals, realizable by members of Fb. Indeed, MQ
b ⊂ M. Let

us fix the parameter θ ∈ Rd of an arbitrary exponential family member. The rational
variational approximation of pθ is then

logZ(θ) ≤ sup
µ∈MQ

b

⟨θ,µ⟩+H(µ) ,

where equality can only hold if and only if ∇A(θ) ∈MQ
b . Without any further approx-

imation of ⟨θ,µ⟩ or H, this procedure inherently requires real-valued arithmetic.

On the other hand, suppose that θ̄ ∈ Nd is the integer parameter vector of some base-
N model. Assume that T Q

b ⊃ M
Q
b is some tractable superset of the rational marginal

polytope, like the naive mean field approximation, or the pairwise consistent Bethe
approximation that corresponds to loopy belief propagation (cf. [227]). More precisely,
consider the marginalization constraints

∀v ∈ V :
∑
x∈Xv

µv=x = 1 and ∀{v, u} ∈ E : ∀x ∈ Xv : µv=x =
∑
y∈Xu

µvu=xy . (4.1)

The rational set of locally consistent marginals is then

T Q
b = {µ ∈ Qd | µ satisfies (4.1)} .

Combining this with the tree-based entropy decomposition19

HTree(µ) =
∑
v∈V

Hµ[Xv]−
∑

vu∈E(T)

Iµ[Xv,Xu] ,

known from Section 2.3.4, we arrive at the rational Bethe variational problem

sup
µ∈T Q

b

⟨θ,µ⟩+HTree(µ) .

Due to the entropy term, real-valued arithmetic is still required to solve the above
problem in its current form. It can be shown, however, that any fixpoint of loopy be-
lief propagation corresponds to a critical point of the above problem [247, 227]. And
if the underlying conditional independence structure is a tree, LBP delivers the exact
marginals. Indeed, this result has been derived for general Markov random fields. Never-
theless, according to Theorem 4.1, marginals of base-N models with integer parameters
are rational, and so are the LBP fixpoints. It will be revealed in the following Section,
that not only the fixpoints, but any intermediate result is rational, since the messages
itself are integer-valued.

19Here, Hµ[Xv] is the entropy of a vertex v, computed from the marginals in µ; and Iµ[Xv,Xu] is
the mutual information between vertices v and u, based on their marginals in µ.

120

4.3 Integer Probabilistic Inference

4.3.2 Message Passing Algorithms

In what follows, we focus our discussion on plain belief propagation. Nevertheless, the
exact same reasoning applies to the Shafer-Shenoy junction tree messages. Message pass-
ing algorithms are well suited to compute the rational marginals and the integer partition
function of base-N exponential families, without requiring any real-valued computation.

Lemma 4.1 (Message Integrality [170, 171]) Let θ ∈ Nd be an integer parameter
vector, and let pθ be the density of a base-N model. Suppose that all messages are
initialized with natural numbers. Any message computed via the update

mu→v(xv) =
∑

xu∈Xu

ψvu(xv,xu)
∏

w∈N (u)\{v}

mw→u(xu) ,

for vertices u, v, w ∈ V , or via the Shafer-Shenoy update

mU→C(xC\U) =
∑

xU\C∈XU\C

ψU(xU)
∏

W∈N (U)\{C}

mW→U(xU\W) , (4.2)

for cliques U, V,W ∈ C(G), are integer.

Proof. ψ is integer-valued in base-N models with integer parameters, and sums of
products of integers are integer, too. ■

Hence, LBP is already stated without any real-valued computation, whenever the un-
derlying potential function is integer-valued. Nevertheless, recall that the integer width
of a CPU is constrained by its word size ω, e.g., ω = 64 in current 64 bit workstation
CPUs. This means that 2ω − 1 is the largest, natively representable, unsigned integer.
The default behavior for values larger than 2ω − 1 is to wrap them around, which corre-
sponds to integer arithmetic modulo 2ω. Instead, we may simply concatenate multiple
words together via software libraries20 for arbitrary precision arithmetic. If we are will-
ing to use such a library, we are done here and could proceed to the topic of integer
parameter estimation. Nevertheless, on small systems, such software libraries can incur
an inacceptable performance overhead, similar to software emulated floating-point arith-
metic. We hence assume that our system is too weak to emulate integers with arbitrary
precision and take a closer look at the avoidance of overflows.

4.3.3 Bit-Length Propagation

The main reason for overflows is the summation of “large” numbers in (4.2)—the value of
ψvu(xv,xu)

∏
w∈N (u)\{v}mw→u(xu) can quickly exceed 2ω−1 when the magnitude of the

parameters or the number of neighbors is large enough. Simply ignoring overflows will
destroy the semantics of the messages, rendering the resulting marginals unusable. An
investigation of practical BP implementations reveals, that numerical instabilities also

20An open source implementation of arbitrary precision integer and rational arithmetic can be found
here: https://gmplib.org.

121

https://gmplib.org

4 Arithmetic Constraints

appear in the ordinary floating-point version. To compensate for numerical issues, BP
messages are often computed in the log-domain, i.e., logmu→v is computed instead of
mu→v. But first, it is still required to exponentiate the log messages before summation—
which still incurs overflows; and second, taking logarithms is not possible with integer
arithmetic. Nevertheless, the base-2 logarithm can be bounded efficiently via a simple,
integer based operation, which helps us to avoid this particular source of overflows.

Definition 4.2 (Bit-Length) Let n ∈ N be any integer. The bit-length of n, i.e., the
minimum number of bits required for the base-2 binary representation of n, is

bl(n) = ⌊log2(n)⌋+ 1 .

The bit-length of a positive integer is moreover equivalent to the position of the leftmost
non-zero bit in the corresponding binary representation. Real-world processing units
often support a hardware operation for the determination of the first non-zero bit. We
can use this efficient operation to bound the base-2 logarithm.

Corollary 4.2 (Bit-Length Bound on the Logarithm) Let n ∈ N be any integer.
The base-2 logarithm is bounded by the bit-length.

bl(n)− 1 ≤ log2(n) < bl(n)

Based on this relation, we define new, approximate, messages, whose magnitude is
logarithmic in the magnitude of the original messages [171]. Hence, overflows can be
mostly avoided.

Definition 4.3 (Bit-Length Messages) Let θ be the parameter of a base-b exponen-
tial family. The variates βu→v(xv), computed via

βu→v(xv) = bl

⎛⎝ ∑
xu∈Xu

b⟨θvu,ϕ(xvu)⟩
∏

w∈N (u)\{v}

bβw→u(xu)

⎞⎠ (4.3)

are called bit-length messages.

Before we discuss how these messages can avoid overflows, let us analyze the resulting
marginal probabilities. Any bit-length message is an upper bound on the corresponding
true log-message. We “invert” the bit-length via base-2 exponentiation. To simplify
notation in the following, let M f

u (x) =
∏

w∈N (u) 2fw→u(x), where f could be any type of

message. In addition, let M f
uv(x) = M f

u (x)/2fv→u(x). The approximate vertex marginals
are computed according to (2.8), i.e.,

p̂v(xv) =
Mβ

v (xv)∑
x′∈Xv

Mβ
v (x′)

,

122

4.3 Integer Probabilistic Inference

and the edge marginals via

p̂uv(xuv) =
2θuv=xuvMβ

uv(xu)M
β
vu(xv)∑

x′∈Xu

∑
y′∈Xv

2θuv=x′y′Mβ
uv(x′)M

β
vu(y′)

.

Although bl is not too far from log2, the error in the resulting marginals is hard
to quantify, since multiple errors accumulate during message propagation. Our result
on the error are hence rather existential. We show that under certain conditions, the
expected divergence is small.

As a first step, let us analyze the difference between the true log2-messages and our
bit-length messages.

Lemma 4.2 (Message Errors) Let Euv(x) = βu→v(x)− log2mu→v(x) be the message
propagation error. Then,

1− εuv(x) ≤ Euv(x) ≤ 1− εuv(x) + max
y∈Xu

∑
w∈N (u)\{v}

Ewu(y) ,

where εuv(x) is the flooring error, inherent in the bit-length computation of βu→v(x).

Proof. Let ε be the fractional part of a positive real z, defined via ⌊z⌋ = z−ε, i.e., the
flooring error. Moreover, let εuv(x) be the corresponding flooring error, of the flooring
involved in the bit-length computation of βu→v(x). We can then rewrite the message
propagation error as

Euv(x) = bl
∑
y∈Xu

2⟨θvu,ϕvu(x,y)⟩+log2M
β
uv(y) − log2

∑
y∈Xu

2⟨θvu,ϕvu(x,y)⟩+log2M
log2 m
uv (y)

= 1− εuv(x) + log2

∑
y∈Xu

2⟨θvu,ϕvu(x,y)⟩+log2M
β
uv(y)∑

y∈Xu
2⟨θvu,ϕvu(x,y)⟩+log2M

log2 m
uv (y)

,

with

log2M
β
uv(y) =

∑
w∈N (u)\{v}

βw→u(y) =
∑

w∈N (u)\{v}

log2mw→u(y) + Ewu(y)

= log2M
log2m
uv (y) +

∑
w∈N (u)\{v}

Ewu(y) .

Combining this with the above and applying Hölder’s inequality, yields

Euv(x) = 1− εuv(x) + log2

∑
y∈Xu

2⟨θvu,ϕvu(x,y)⟩+log2M
log2 m
uv (y)+

∑
w∈N (u)\{v} Ewu(y)∑

y∈Xu
2⟨θvu,ϕvu(x,y)⟩+log2M

log2 m
uv (y)

≤ 1− εuv(x) + max
y∈Xu

∑
w∈N (u)\{v}

Ewu(y) .

123

4 Arithmetic Constraints

Moreover, positivity of the error can be shown via induction over the order of message
computation, assuming that all messages are initialized by 1. In this case, the error of the
first computed message arises from Corollary 4.2, i.e., the magnitude of the bit-length
message βu→v will be larger than the corresponding ordinary message mu→v. Hence, all
upcoming bit-length messages will have an increased magnitude as well. The error Euv
must thus be positive (≥ 0). ■

In addition, we can establish a connection between the difference in marginals and the
message propagation error.

Lemma 4.3 (Marginal Errors) Let Euv(x) = βu→v(x)−log2mu→v(x) be the message
propagation error. The differences of log marginals computed from the true and the bit-
length messages, respectively, are bounded via

log pv(x)− log p̂v(x) ≤

⎛⎝max
x′∈Xv

∑
u∈N (v)

Euv(x
′)

⎞⎠− ∑
u∈N (v)

Euv(x) ,

and

log pvu(x, y)− log p̂vu(x, y) ≤

⎛⎝ max
x′y′∈Xvu

∑
w∈N (v)\{u}

Ewv(x
′) +

∑
w∈N (u)\{v}

Ewu(y
′)

⎞⎠−
⎛⎝ ∑
w∈N (v)\{u}

Ewv(x)
∑

w∈N (u)\{v}

Ewu(y)

⎞⎠ .

Proof. We start from the definition of BP vertex marginals and apply some algebra.

log pv(x)− log p̂v(x) = log
M

log2m
v (x)∑

x′∈Xv
M

log2m
v (x′)

− log
Mβ

v (x)∑
x′∈Xv

Mβ
v (x′)

= log

∑
x′∈Xv

M
log2m
v (x′)2

∑
u∈N (v) Euv(x′)∑

x′∈Xv
M

log2m
v (x′)

−
∑

u∈N (v)

Euv(x)

≤

⎛⎝max
x′∈Xv

∑
u∈N (v)

Euv(x
′)

⎞⎠− ∑
u∈N (v)

Euv(x)

Again, the inequality follows from Hölder’s inequality. The bound for the edge marginals
follows from exactly the same reasoning, and is hence omitted. ■

We can now combine the above lemmas to devise the following theorem.

Theorem 4.3 (Expected Kullback-Leibler Divergence) Assume that the conditio-
nal independence structure G = (V,E) is a tree. Suppose that the rounding errors,
involved in each bit-length computation, are realizations of a uniform random variable
ε. Moreover, assume that all rounding errors incurred in the message computation are

124

4.3 Integer Probabilistic Inference

independent of each other. Let further s be the largest vertex state space, l the length of
the longest path in G, and let r = maxv∈V |N (v)| be the maximum vertex degree. Then

E[KL[pv ∥ p̂v]] ≤ r

l−1∑
i=0

(r − 1)i − l − 1

s+ 1
,

where pv are the BP marginals, p̂v are the marginals computed from bit-length messages,
and the expectation is taken w.r.t. the random rounding error ε.

Proof. By the definition of Kullback-Leibler divergence, and Lemma 4.3, we have

E

[∑
x∈Xv

pv(x) log2

pv(x)

p̂v(x)

]
≤ E

⎡⎣∑
x∈Xv

pv(x)

⎛⎝⎛⎝max
x′∈Xv

∑
u∈N (v)

Euv(x
′)

⎞⎠− ∑
u∈N (v)

Euv(x)

⎞⎠⎤⎦
≤
∑
x∈Xv

pv(x)

⎛⎝ ∑
u∈N (v)

E
[(

max
x′∈Xv

Euv(x
′)

)
− Euv(x)

]⎞⎠ . (4.4)

To establish the latter inequality, we made use of maxx′
∑

uEuv(x
′) ≤

∑
u maxx′ Euv(x

′),
where the value can only increase if we maximize the terms of the sum individually. By
Lemma 4.2, Euv(x) ≥ 1− εuv(x), which simplifies the above inequality to

≤
∑
x∈Xv

pv(x)

⎛⎝ ∑
u∈N (v)

E
[

max
x′∈Xv

Euv(x
′)

]
− 1 + E [εuv(x)]

⎞⎠
≤ −|N (v)|

2
+
∑

u∈N (v)

E
[

max
x′∈Xv

Euv(x
′)

]
  

(I)

. (4.5)

The second step results from uniform and independent rounding errors, i.e.,
E [εuv(x)] = 1/2. Applying the upper bound from Lemma 4.2, we arrive at

≤ −|N (v)|
2

+
∑

u∈N (v)

E

⎡⎣max
x′∈Xv

1− εuv(x′) + max
x′′∈Xu

∑
w∈N (u)\{v}

Ewu(x
′′)

⎤⎦
= −|N (v)|

2
+
∑

u∈N (v)

1− E
[

min
x′∈Xv

εuv(x
′)

]
+ E

⎡⎣max
x′′∈Xu

∑
w∈N (u)\{v}

Ewu(x
′′)

⎤⎦ .

For M uniform random variables U i on [0; 1], we have E[maxMi=1U i] = 1/(M + 1).
Together with the max-sum inequality, known from (4.4), we rewrite the bound to

≤ |N (v)|
2
− |N (v)|
|Xv|+ 1

+
∑

u∈N (v)

∑
w∈N (u)\{v}

E
[

max
x′′∈Xu

Ewu(x
′′)

]
  

(II)

. (4.6)

125

4 Arithmetic Constraints

Comparing (4.5) and (4.6), we see that the terms (I) and (II) are similar. And indeed,
by applying the very same reasoning to (II) that we already applied to (I) yields

≤ |N (v)|
2
− |N (v)|
|Xv|+ 1

+ |N (v)|(|N (u)| − 1)− |N (v)|(|N (u)| − 1)

|Xu|+ 1

+
∑

u∈N (v)

∑
w∈N (u)\{v}

∑
h∈N (w)\{u}

E
[

max
x∈Xw

Ehw(x)

]
  

(III)

.

Again, we may proceed with unrolling term (III). Given that l is the length (number
of vertices) of the longest path in the underlying graphical structure, we may apply the
above reasoning at most l times until we hit at a leaf vertex. Collecting alike terms and
using the bounds on |N (v)| and |Xv| finally yields

≤ r

2
+ r

l−1∑
i=1

(r − 1)i − l − 1

s+ 1
,

where we used the fact that all inner vertices of the path have at least two neighbors,
and that the magnitude of the l − 1 negative terms is at least 1/(s+ 1). ■

The same reasoning can be applied to higher-order marginals as well. Independence
and uniform distribution of rounding errors are merely technical assumptions. We may
choose any other distribution for which expectation and expected minimum of ε can
be computed in closed-form. Nevertheless, the theorem tells us how the error of our
approximate messages is influenced by the graphical structure and the state space. When
the state space increases, the negative part of the bound approaches 0, i.e., the influence
of the state space size disappears. On the other hand, the influence of the conditional
independence structure is unbounded in the sense that larger structures always imply
larger errors. The extreme cases are chains and stars. For chain structures of length
l = n, we have r = 2 and the error is dominated by the number of terms in the sum.
For star graphs, we have l = 3 and the bound is dominated by the large degree of the
center vertex. If G contains a single edge, the error at each vertex is strictly less then
1/2. In case of other graphs, the bound depends crucially on both l and r.

Despite these facts, one has to keep in mind that the integer exponential family is
designed for ultra-low-power devices—a setting in which large graphical structures might
not even fit into the main memory.

If the method is applied to loopy graphs, the variable l can essentially be replaced
by the number of iterations for which we run the message passing algorithm. Since we
cannot assume the existence of leaf vertices in loopy graphs, the summation has l terms
instead of l − 1. But since running BP on loopy graphs is anyhow highly approximate,
bounding the KL between LBP and BLprop marginals might not be meaningful.

A generic analysis of how error is propagated by BP has been conducted in [102].
Their measure of error, the dynamic range of potential functions, does not cover the KL
between arbitrary marginals. Hence, we conducted the analysis above.

126

4.3 Integer Probabilistic Inference

Algorithm 4.1: Computation of Bit-Length Messages with Sparse Integer
Representation

input (u, v), x
output βu→v(x)
1: B ← ∅ // this structure stores the non-zero bits of the message
2: for y ∈ Xu do
3: i ← ⟨θvu, ϕ(x, y)⟩+

∑
w∈N (u)\{v} βw→u(y)

4: while B contains i do
5: Remove i from B
6: i ← i+ 1
7: end while
8: Insert i into B
9: end for
10: return (maxB) + 1

4.3.4 Computing Bit-Length Messages

Bit-length messages have computationally convenient properties. In fact, we will now see
how to employ an efficient sparse data structure to exploit that all summands in (4.3) are
powers of two. The main bit-length propagation (BLprop) algorithm is mostly identical
to LBP (Algorithm 2.1), whereas the ordinary messages are replaced by βu→v(x), and ϵ
has to be provided as a rational number to check for convergence. Our algorithm for the
actual message computation is shown in Algorithm 4.1. The most important property of
this algorithm is the use of a sorted list structure to represent the message. While this
might sound odd at first, each message βu→v(x) is the bit-length of a sum of |Xv| powers
of two. Hence, the binary representation of the sum that corresponds to βu→v(x) has
at most |Xv| bits set to 1. Storing the bit positions in a sorted list allows us to access
the highest bit, which represents the bit-length of the sum—and hence βu→v(x)—in
time O(1). For the list, we need O(|Xv|) temporary storage for the computation of
arbitrary large messages. Note that a plain 64 bit integer will overflow soon if the
number of neighbors or the magnitude of incoming bit-lengths is large. The sparse
integer representation of the sum via a list cannot overflow, as long as the underlying
type is large enough to hold the position of a bit. As an example, if the underlying integer
type has 16 bits, the list allows us to represent any number whose binary representation
requires less than 216 bits. Without the list structure, only messages of to 16 bits would
be representable. The list itself can be discarded after computation, and only its largest
element is propagated.

Theorem 4.4 (Correctness of Message Computation) Algorithm 4.1 computes
the bit-length message βu→v(xv) for a base-2 exponential family.

127

4 Arithmetic Constraints

Proof. By definition,

βu→v(xv) = bl
∑

xu∈Xu

2⟨θvu,ϕ(xvu)⟩+
∑

w∈N (u)\{v} βw→u(xu) .

βu→v(xv) is the bit-length of a sum of powers of 2. In line 1 we allocate a list structure
(or a tree, or a hash map) B, to store the sparse integer representation of the message.
Here, sparsity is meant w.r.t. to the binary encoding of the message it self. The actual
summation takes place in lines 2–9. In line 3, we load the exponent i of the current
summand, and lines 4–8 represent raw binary addition of 2i to the current sum which
is stored in B. Checking if i is already contained in the list takes at most O(log |Xu|)
steps via binary search in the sorted list. Since the summation is over |Xu| terms, the
final outcome can only have |Xu| non-zero bits. Even if the result of this summation is a
1 million bit number, only O(|Xu|) storage is required during message computation. In
the last line, we return 1 plus the position of the most significant bit stored in B, which
is the bit-length of a binary number. Accessing the position of the most significant bit
is performed in constant time by using a pointer to the end of the list. ■

Note that at the end of each message computation, +1 is added to the most signifi-
cant bit position. This leads to an increased message magnitude. To see this, consider
a simple chain model with n binary state vertices and a zero parameter vector θ = 0.
Any outgoing message β1→2(x) from vertex 1 to vertex 2 has the value 1. The message
β2→3(x) has the value 2, and so on, until the last message β(n−1)→n(x) is n − 1. This
behavior is not problematic due to our sparse message representation, but it shows that
the magnitude of messages depends on the size of the graph. Without our sparse repre-
sentation, the bit-length propagation would be restricted to small graphs and parameters
with small magnitude.

The above procedure allows for nearly arbitrary large messages, but it does not guar-
antee a seamless computation of marginal probabilities. Recall that (vertex) marginals
are computed via

pv(x) =
2
∑

u∈N (v) βu→v(x)∑
y∈Xv

2
∑

u∈N (v) βu→v(y)
.

While we can easily compute the (possibly very large) denominator via the sparse integer
representation that we used in Algorithm 4.1, the result cannot be processed natively on
the CPU due to the fixed word-size ω. In order to allow for native subsequent processing
of the marginals (e.g., in another application without sparse integer support), we can
shift numerator and denominator to the right until both fit into native CPU registers
with, say, ω = 16 bit word-size.

Definition 4.4 (Right Bit-Shifts) Let a, b ∈ N. The right bit-shift operation a ≫ b
is defined as

a≫ b =
⌊ a

2b

⌋
.

128

4.3 Integer Probabilistic Inference

Whenever a b bit sparse integer a has to be transferred to native program code, we
store a≫ (b−ω) instead whenever a does not fit into a native ω bit register. While this
procedure introduces a large error into any single number, shifting two numbers a and
c by the same amount of bits b leaves their ratio almost intact, i.e., a/c ≈ (a≫ b)/(c≫
b). The following lemma formalizes this observation in the context of probability mass
functions.

Lemma 4.4 (Probability Shifting) Let a be some vector of integers, such that p(x) =
2ax/

∑
y∈X 2ay for some random variable X with state space X . Let further ω be the

word-size of the underlying CPU, and b = bl
∑

y∈X 2ay . If b > ω and

p̂(x) =
2ax ≫ (b− ω)(∑
y∈X 2ay

)
≫ (b− ω)

,

is a shifted version of p, then

|p(x)− p̂(x)| < 2−ω+1 ,

i.e., the error introduced by the shifting is bounded and exponentially small in the word-
size.

Proof. First, assume (2ax ≫ (b− ω)) = 0. In this case,

|p(x)− p̂(x)| = p(x) =
2ax∑
y∈X 2ay

<
2b−ω∑
y∈X 2ay

≤ 2−ω+1,

because 2ax < 2b−ω and
∑

y∈X 2ay ≥ 2b−1. Now, let (2ax ≫ (b − ω)) > 0. In this case,

according to Definition 4.4, we have (2ax ≫ (b− ω)) = 2ax−b+ω. Thus,

|p(x)− p̂(x)| = 2ax−b+ω(∑
y∈X 2ay

)
≫ (b− ω)

− 2ax∑
y∈X 2ay

, (4.7)

where the | · | disappears because((∑
y∈X

2ay

)
≫ (b− ω)

)
  

⌊c⌋

=

⌊
2−b+ω

∑
y∈X

2ay

⌋
≤ 2−b+ω

(∑
y∈X

2ay

)
  

c

.

Multiplying p(x) in (4.7) with 1 = 2−b+ω/2−b+ω, and observing that ⌊c⌋ > c− 1, yields

|p(x)− p̂(x)| = 2ax−b+ω

⌊c⌋
− 2ax−b+ω

c
≤ 2ax−b+ω

(c− 1)c
≤ 2ax−b+ω

(2b−1 − 1)2b−1
≤ 2ax−3b+3+ω .

Finally, the lemma follows from ∀x ∈ X : ax < b and b ≥ ω + 1 (due to integrality of b
and ω). ■

It is thus rather safe to pass shifted marginals to native code. An orthogonal approach
is the restriction of the parameter space to the set {0, 1, . . . , k−1}d ⊂ Nd. This prevents
the parameters and the messages from becoming arbitrary large—a topic that we will
revisit in Section 4.4.

129

4 Arithmetic Constraints

4.3.5 Gibbs Sampling

Before we discuss different ways of learning integer parameters, we want to point out
that inference via integer-valued Gibbs sampling is also possible. Recall that random
number generation is inherently integer-valued. Generating random samples from a
discrete state space can hence be done with integer arithmetic by, e.g., inversion sampling
with rational probabilities. Reviewing the Gibbs sampler (Algorithm 2.4), we see that
a familiar problem could arise.

p(xv | xN (v)) =

∏
C∈C(v) b

⟨θC ,ϕC(xv ,xN (v))⟩∑
y∈Xv

∏
C∈C(v) b

⟨θC ,ϕC(y,xN (v))⟩
(4.8)

More precisely, the summation in the denominator may lead to overflows in the native
integer arithmetic. However, nearly the complete discussion about overflows from the
previous section applies also to Gibbs sampling. That is, if the native word-size does
not suffice to compute the denominator of (4.8), we can employ the sparse integer
representation together with right bit-shifts. This allows us to apply integer-valued
Gibbs sampling with exponentially small errors (cf. Lemma 4.4). Nevertheless, Gibbs
sampling is slow compared to message passing, due to the large number of samples
which must be discarded to achieve independence, and the inherently sequential nature
of MCMC algorithms.

4.4 Integer Parameter Estimation

While probabilistic inference provides information that we need to compute or to approx-
imate the marginals and the partition function, updating the parameters of an integer
model is a demanding task on its own. The major problem in the course of integer
parameter learning via first-order methods is the inherently fractional parameter update
θti = θt−1

i − κ∂ℓb(θ;D)/∂θi (2.22). Different ways to circumvent this problem will be
devised and discussed in this Section.

Let us start by reviewing the negative, average, log-likelihood in base-b form,

ℓb(θ;D) = −

⟨
θ,

1

|D|
∑
x∈D

ϕ(x)

⟩
+ logb Z(θ) ,

together with its partial derivatives

∂ℓb(θ;D)

∂θi
= µ̂i − µ̃i = p̂b,θ(ϕ(x)i = 1)− 1

|D|
∑
x∈D

ϕ(x)i .

Therein, the negative term is the empirical expectation of the i-th sufficient statistic. It is
denoted in this particular way to make it obvious that it is a rational number. The other
term is the corresponding marginal probability, computed via probabilistic inference. As
known from the previous Section, this is a rational number as well, whenever integer-
valued inference procedures are used, e.g., our BLprop algorithm.

130

4.4 Integer Parameter Estimation

k-1

k-1
0

Integer solution

P1

P2

P3

Figure 4.1: Exemplary parameter space. Solid points indicate integer solutions, i.e., ele-
ments of the set {0, 1, . . . , k − 1}2. Lines represent shift-invariant maximum
likelihood solutions of three different synthetic estimation problems. The
solid line (P1) crosses the integer parameter space and at least five integer
solutions are equally close to it. The upper dashed line (P2) is far from
the set of possible solutions; k has to be increased in order to find a pa-
rameter with reasonable quality. The lower dashed line (P3) does also not
cross the integer grid. However, the integer solution at (0, k− 1) is close and
corresponds to a model with high likelihood.

Similar to the simulation of real-valued arithmetic, real-world compute architectures
cannot cope with the full integer space N. Instead, the space of possible unsigned
integers is restricted by the architecture’s word-size ω. One could employ the sparse
integer structure the we proposed for the BLprop algorithm. However, in BLprop, the
number of non-zero bits was small, constant, and known in advance, which allows for
an efficient implementation. When arbitrary integers have to be stored, the sparse
structure would be as inefficient as storing a dense matrix in a sparse matrix format. As
explained in Section 4.3.2, one could always increase the range of representable numbers
via appropriate software libraries, at the cost of additional resources. But here, we like
to investigate what can be achieved with the available hardware. Instead of optimizing
the parameters over {0, 1, . . . , 2ω − 1}d, we will find it convenient to optimize over the
even more restrictive space [k − 1]d = {0, 1, . . . , k − 1}d with 1 ≤ k ≤ 2ω. On the one
hand, limiting the parameter bit-width restricts the magnitude of the potential function,
and hence, prevents overflows during message and marginal computation. On the other
hand, memory requirements can be reduced by storing θ as, say, 8 bit unsigned integers
instead of the native ω bit representation.

The optimal parameter vector might indeed lie outside of [k− 1]d—a simplification of
this situation is depicted in Fig. 4.1. Therein, each line represents a set of optimal solu-

131

4 Arithmetic Constraints

tions, specified via θ∗ +αc for some optimal θ∗, some constant vector c = (c, c, . . . , c)⊤,
and all real scalars α ∈ R. Due to shift-invariance (Lemma 2.4), all points on each line
are equivalent to the corresponding θ∗. The topmost line is far from the integer grid and
the nearest integer solution in [k− 1]d will have a low likelihood—k has to be increased
in order to find an integer solution that is close to a maximum likelihood estimate. The
solid line crosses the set of feasible points. Multiple equally good integer solution can be
found. Due to shift-invariance, the five integer solutions which are closest to the solid
line will have the same quality in terms of objective value. Considering Theorem 4.2,
the quality of those solutions should be quite good. Despite the fact that the third line
does not cross the feasible set, integer parameters can be found that are still close to an
optimal fractional solution.

By relaxing the integrality constraint, one could invoke the Karush-Kuhn-Tucker and
Slater’s conditions, to declare the existence of an optimal solution in [k − 1]d. How-
ever, optimizing and refining relaxations of (4.4) via standard mixed-integer non-linear
programming techniques, like outer-approximation, branch-and-bound, or cutting plane
algorithms [111, 26], is not feasible with integer-only arithmetic. Standard relaxation-
based techniques make use of rounding, intermediate non-integer solutions, and con-
vex hulls, respectively—each of which cannot be natively represented via integer-only
arithmetic. Instead, we propose a special regularization, whose corresponding proxi-
mal operator enforces integrality. But beforehand, we present an approximation to the
closed-form solution for tree-structured models.

4.4.1 Tree-Structured Models

As explained in Section 2.3.1, the optimal vertex and edge parameters of tree-structured
models can be computed in closed-form. In case of base-b models, this closed-form reads
as follows:

θ∗
v=x = logb µ̃v=x and θ∗

vu=xy = logb
µ̃vu=xy

µ̃v=xµ̃u=y

. (4.9)

We will of course focus on b = 2 to apply the bit-length-based lower and upper bounds
on log2, and to derive an upper bound on the optimal parameters [170]. Let fi =∑

x∈D ϕ(x)i, then µ̃i = fi/|D| and thus

θ∗
v=x = log2 fv=x − log2 |D| ≤ bl fv=x − bl |D|+ 1 = θ̂v=x , (4.10)

and

θ∗
vu=xy = log2(fvu=xy|D|)− log2(fv=xfu=y)

≤ bl(fvu=xy|D|)− bl(fv=xfu=y) + 1 = θ̂vu=xy . (4.11)

The +1 arises from the lower bound bl(z) − 1 ≤ log2(z). We devise a specialized
version of Theorem 4.2 to show that this approximation is not too far from the optimal
parameters.

132

4.4 Integer Parameter Estimation

Corollary 4.3 (Tree-Structured Integer Approximation) Consider a discrete,
tree-structured exponential family with binary overcomplete sufficient statistic. Let θ∗ be
computed via (4.9) and θ̂ via (4.10) and (4.11). Moreover, let c = (1, 1, . . . , 1, 1)⊤ be
the vector of 1s, and ε = θ∗ − (θ̂ − c). Then

ℓ(θ̂;D)− ℓ(θ∗;D) ≤ 2∥ϵ∥2|C(G)| ,

Proof. Due to shift-invariance, ℓ(θ̂;D) = ℓ(θ̂ − c;D), so we may prove the inequality
for θ̂ − c instead of θ̂. For the vertex parameters, we have

θ∗
v=x − (θ̂v=x − 1) = (log2 fv=x − log2 |D|)− (bl fv=x − bl |D|+ 1) + 1

≤ (log2 fv=x − ⌊log2 fv=x⌋ − 1)− (log2 |D| − ⌊log2 |D|⌋ − 1)

= ϵv=x − ϵ|D| ,

where ϵz denotes the flooring error logz −⌊log2 z⌋. And for the edges,

θ∗
vu=xy − (θ̂vu=xy − 1) = log2(fvu=xy|D|)− log2(fv=xfu=y)−

(bl(fvu=xy|D|)− bl(fv=xfu=y) + 1)

=ϵvu=xy,|D| − ϵv=x,u=y .

Since any flooring error ϵz is always in [0; 1), it follows that ∥ε∥∞ < 1 and we can apply
the proof of Theorem 4.2 with ε = θ∗ − (θ̂ − c) to derive the corollary. ■

Our closed-form parameters θ̂ could be negative. While in principle, the integer model
supports weights from Z, we may prefer to save the sign bit on systems which anyhow
have a low word-size. One can employ the shift-invariance lemma once more, to find
equivalent parameters in the positive orthant, i.e., we subtract c = mindi=1 θ̂i from each
parameter. The final closed-form integer parameters for tree-structured models are then
θ̄i = θ̂i − c for 1 ≤ i ≤ d.

We will now investigate how parameters can be estimated in case of loopy graphs.

4.4.2 The Integer Gradient Descent Method

When closed-form solutions are not available, we have to conduct numerical methods.
Standard techniques from integer non-linear programming inherently require real-valued
arithmetic. We derive a new, integer first-order method to estimate the parameters
without the need for real-valued arithmetic.

Optimizing the log-likelihood over N corresponds to constrained optimization. In fact,
we can write the problem as ordinary optimization over Rd subject to an integrality con-
straint, e.g., minθ∈Rd ℓ(θ;D) s.t. θ ∈ Nd. Instead of handling the constraint explicitly,
we will establish a regularization which penalizes the distance to the next integer so-
lution. Moreover, we show that for appropriate choices of stepsize and regularization
weight, the result in any iteration is purely integer. This allows us to rely on conver-
gence results from numerical optimization while eliminating the need for floating-point
arithmetic.

133

4 Arithmetic Constraints

To get an idea of why such a procedure is possible, consider the l1-regularization.
Whenever the regularization weight λ is “large enough”, any solution will be mapped to
the zero vector 0. Here, we will exploit this behavior, in that we choose the regularization
weight such that the corresponding proximal operator will map any fractional solution to
the nearest integer solution. Indeed, a larger regularization parameter implicitly removes
importance of the log-likelihood. However, when we assume that integer parameters are
all we can handle, it does not matter if better fractional solutions exist.

We will first propose the integer regularization and derive the convergence of the cor-
responding proximal method. Afterwards, we derive the proximal operator. Finally, we
will show that the corresponding algorithm does not involve any real-valued arithmetic.

Integer Regularization and Convergence

We define the following regularization, which penalizes any parameter proportional to
its absolute distance to the nearest integer.

Definition 4.5 (Integer Regularization) Let θ be a parameter vector. The integer
regularization which penalizes the distance from any parameter θi to the nearest integer
value is given by

Rint(θ) =
d∑
i=1

ρint(θi)

with

ρint(θi) = 1− |1− 2(⌈θi⌉ − θi)| . (4.12)

The regularization is visualized in Fig. 4.2, left. It assigns maximum penalty to each
integer multiple of 1/2. At integers, the penalty is zero. Clearly, Rint(θ) is non-convex.

One might or even should expect, that this would harm the correctness and conver-
gence results of proximal optimization schemes. Luckily, it can be shown that proxi-
mal algorithms with non-convex regularization will converge to a critical point of the
composite objective function (in our case ℓ(θ;D) + λRint(θ)), whenever it satisfies the
Kurdyka-Lojasiewicz property [9, 11, 25].

Definition 4.6 (Kurdyka-Lojasiewicz Property) Let ϵ > 0, and let φ : [0, ϵ)→ R+

be a concave, continuous function with φ(0) = 0, differentiable on (0; ϵ), and with positive
derivative on (0; ϵ). Let f be a function, subdifferentiable at z′ ∈ dom ∂f21. If, for all z
in a neighborhood N (z′), with f(z′) < f(z) < f(z′) + ϵ, the function h : Rd → R with

hz′(z) =
∂φ(x)

∂x

⏐⏐
f(z)−f(z′)

satisfies
hz′(z) min

g∈∂f(z)
∥g∥2 ≥ 1 , (4.13)

then, the function f has the Kurdyka-Lojasiewicz property at z′.

21Here, ∂f(z) is the subdifferential of f at z, and dom ∂f contains all subdifferentiable points z with
∂f(z) ̸= ∅. See, e.g., [149, 25].

134

4.4 Integer Parameter Estimation

 0

 0.25

 0.5

 0.75

 1

 0 1 2 3 4 5 6 7 8 9 10

ρ
i
n
t
(θ

i)

Parameter θ
i

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6

c
e
il

(θ
i)

Parameter θ
i

Figure 4.2: Left: Plot of the integer regularization ρint(θi) on [0; 10]. Any θi ̸∈ N
is penalized proportionally to its absolute distance to the nearest integer.
Right: Visualization of lower semicontinuousness of ⌈·⌉. The filled circles
represent values of ⌈·⌉ at discontinuities, i.e., left sided limit points.

The rather cumbersome form of the above definition stems from the fact that we have
to work with multimodal functions, like Rint, and the fact that the minimum of ℓ is > 0.

One can get an intuition for the above definition by assuming that the subdifferential
contains just a single point. In this case, g is the gradient ∇f(z), and (4.13) guarantees
that there exists a scale function φ, such that the scaled norm of the gradient at any
point z is greater than 1, no matter how close z is to z′.

Before we verify that our composite objective indeed has this property, let us clarify
some prerequisites.

Definition 4.7 (Lower Semicontinuity) A function f : Rd → (−∞; +∞] is lower
semicontinuous at z0, if

lim inf
z→z0

f(z) ≥ f(z0) .

Continuous functions are lower semicontinuous.

The negative average log-likelihood (2.18) is continuous. Rint is the composition of
affine functions and | · | (both continuous), with ⌈·⌉, which is lower semicontinuous (cf.
Fig. 4.2, right). Their composition has no discontinuities (cf. Fig. 4.2, left), and is thus
continuous. Lower semicontinuous functions satisfy the Kurdyka-Lojasiewicz property
at any non-critical point in Rn ([10], Remark 4(b)). We only have to check whether
a lower semicontinuous function satisfies the property at its critical points. Here, a
subdifferentiable point z of a function f is critical, whenever 0 ∈ ∂f(z).

Any real-analytic function satisfies the Kurdyka-Lojasiewicz (KL) property [10] every-
where on its domain. While the log-likelihood falls in this class, ρint(z), is not analytic
at any z ∈ N. We hence need a broader characterization of KL-functions.

It can be shown, that functions with bounded domain, definable in some order-minimal
(o-minimal) structure over R, obey the Kurdyka-Lojasiewicz property [131, 24]. O-
minimal structures are a principled way to define families of subsets of Rd, which are

135

4 Arithmetic Constraints

closed under various operations. A discussion of basics and advanced results on this kind
of model theoretic framework can be found in [216, 217, 59]. Real functions which con-
tain exp and log are definable in the o-minimal structure (Ran, exp) [214, 233]. Moreover,
sums, products, inverse, and composition of definable functions are again definable in the
same structure. Classical statements from real analysis also hold true in the o-minimal
setting, e.g., the mean value theorem, L’Hospital’s rule, and the implicit function the-
orem. Without going deeper into this branch of model theory, we state the relevant
theorem.

Theorem 4.5 (O-Minimality and Kurdyka-Lojasiewicz Functions) Let U ⊂ Rd

and f : K → R be an either smooth or non-smooth and lower semicontinuous function,
definable in an o-minimal structure over R. Suppose w.l.o.g. that f(θ) > 0 for all
θ ∈ K, and that the function φ (from Definition 4.6) is definable in the same o-minimal
structure as f . Then, f is a Kurdyka-Lojasiewicz function.

A proof for non-smooth, lower semicontinuous functions f can be found in [24]. The
corresponding result for differentiable functions f can be found in [131]. Therein, the
concavity of φ—which is required by Definition 4.6—is not derived. It is, however,
always possible to construct a concave φ—a corresponding proof can be found in [10],
Theorem 14.

Having said all this, we can devise our main result.

Theorem 4.6 (Kurdyka-Lojasiewicz Integer Regularization) The function
ℓ(θ;D)+λRint(θ), i.e., the sum of (2.18) and (4.12), is a Kurdyka-Lojasiewicz function
on U = [0; k − 1]d ⊂ Rd.

Proof. Lower semicontinuity of ℓ and Rint follows directly from their corresponding
definitions. Moreover, since both functions are lower bounded by 0, their sum ℓ(θ;D) +
λRint(θ) is also lower semicontinuous. Now, let us investigate the definability of

ℓ(θ;D) =

(
log
∑
x∈X

exp(⟨θ, ϕ(x)⟩)

)
− ⟨θ, µ̃⟩ .

W.l.o.g., let X ⊂ Rn be some discrete subset of Rn. The states x of X are treated
as arbitrary but fixed constants within any o-minimal structure. This implies that the
vectors ϕ(x) are constants too (and not actual functions of x), and we do not have
to bother with the definability of ϕ. Each inner product ⟨θ, ϕ(x)⟩ is hence a sum of
monomials, and as such definable in any (reasonable) structure over R. The remaining
part of ℓ is a log-sum-exp function with a summation over the finite, constant set X .
Altogether, ℓ on the set [0; k−1]d ⊂ Rd is definable in the o-minimal structure (Ran, exp).
Details on (Ran, exp) and examples of definable functions can be found in [214, 131, 162].
More on definability of functions within o-minimal structures can be found in [114].

In case of Rint, the reasoning is slightly different, since | · | and ⌈·⌉ are not (native)
operations in (Ran, exp). We will instead establish that Rint is component-wise semi-
algebraic, which implies its definability. One can see in Fig. 4.2 (left), that the set

136

4.4 Integer Parameter Estimation

F = {(z, ρint(z)) : z ∈ [0; k − 1]}, is a union of line segments in [0; k − 1] × [0; 1].
Namely the lines between the points (x, 0) and (x + (1/2), 1), and the lines between
(x + (1/2), 1) and (x + 1, 0), for each x ∈ {0, 1, . . . , k − 2}. The corresponding lines
in R2 are given by fj(x, y) = 2(x − j) − y and gj(x, y) = 2(1 + j − x) − y. Then,
F = (∪k−2

i=0 {(x, y) : fi(x) = 0} ∪k−2
i=0 {(x, y) : gi(x) = 0}) ∩ ([0; k − 1] × [0; 1]), which

shows that F is a semialgebraic set. Consequently, ρint(θi) is a semialgebraic function,
and hence definable in (Ran, exp). Finally, ℓ(θ;D) + λRint(θ) is lower semicontinu-
ous and definable in the o-minimal structure (Ran, exp). According to Theorem 4.5,
ℓ(θ;D) + λRint(θ) must be a Kurdyka-Lojasiewicz function. ■

At a first glace, the language of o-minimal structures might seem unreasonably power-
ful. However, several natural functions, which are based on non-elementary and improper
integrals, are not definable in (Ran, exp). Among them, the gamma function Γ(z) on the
interval (0,+∞), the (scaled) error function erf(z) =

∫∞
0

exp(−z2), and the Riemann
zeta function on (1,+∞). Proofs of these statements can be found in [215]. Moreover,
any non-constant periodic function (like sin(z)) is not definable in any o-minimal struc-
ture. However, on finite compact subsets of their domains, all of the above examples are
definable.

We may now invoke the following theorem (cf. Theorem 3.1 in [25]).

Theorem 4.7 (Convergence of the Alternating Proximal Method [25])
Suppose f : Rd → R is a continuous differentiable function with Lipschitz continuous
gradient and g : Rd → R is a (proper) lower semicontinuous function with infRd(f+g) >
−∞. Let the bounded sequence z1, z2, . . . be generated by a Gauss-Seidel block proximal
method, i.e., ∀C ∈ C(G) : zi+1

C = prox
1/LC
g (ziC − 1

LC
∇f(zi)C) with block Lipschitz

constant LC. If f + g is a Kurdyka-Lojasiewicz function, then the sequence z1, z2, . . .
will converge to a critical point z∗, i.e., 0 ∈ ∂(f + g)(z∗).

Note, that being definable in an o-minimal structure is not sufficient, since the functions
in question must be differentiable and lower semicontinuous, respectively, and f must
have a Lipschitz continuous gradient. However, these requirements are fulfilled by our
objective function, and we may state this result as a corollary.

Corollary 4.4 (Convergence of Integer Estimation) The block-wise proximal min-
imization of f(θ) = ℓ(θ;D) + λRint(θ) over U = [0; k − 1]d will either converge to a
critical point of f or to a boundary point of U .

Proof. The boundedness of the sequence, as required by Theorem 4.7, results from
the fact that we are optimizing over U . Since U is a nonempty, closed, and convex
subset of Rd, we may apply Euclidean projection to keep solutions within U . Hence,
if the proximal algorithm converges to a solution which lies on the boundary of U , it
might not be a critical point. We may, however, choose k large enough to exclude this
pathological case (cf. Fig. 4.1)—recall that the lower bound 0 on the parameter space
is not restrictive due to shift-invariance. According to Theorem 4.7, any non-boundary
solution must be critical point of ℓ(θ;D) + λRint(θ). ■

137

4 Arithmetic Constraints

The Integer Proximal Operator

Corollary 4.4 asserts that the proximal optimization of the integer regularized log-
likelihood has a well defined result: whenever it outputs a non-boundary point, we
found a critical point of ℓ(θ;D) + λRint(θ). Hence, it is worth to derive a closed-form
for proxλRint

with λRint. In what follows, κ is the step size of the underlying first-order
method and λ is the regularization weight.

Theorem 4.8 (Closed-Form Proximal Operator) The proximal operator that cor-
responds to the integer regularization (4.12) with λ = 1/(4κ), has a closed-form that is
given by

prox(4κ)−1Rint
(θ)i =

{
⌊θi⌋ ,θi ∈ (⌊θi⌋ − 1

2
; ⌊θi⌋+ 1

2
]

⌈θi⌉ ,θi ∈ (⌈θi⌉ − 1
2
; ⌈θi⌉+ 1

2
]
. (4.14)

The image of Rd
+ under prox(4κ)−1Rint

is Nd.

Proof. According to Definition 4.5 and the description of proximal operators in Sec-
tion 2.3.3, the closed-form is a solution to the following optimization problem:

proxκλRint
(θ) = arg min

γ∈Rd

λRint(γ) +
1

2κ
∥θ − γ∥22

= arg min
γ∈Rd

λ

(
d∑
i=1

ρint(γi)

)
+

1

2κ
∥θ − γ∥22

= arg min
γ∈Rd

d∑
i=1

λ− λ|1− 2(⌈γi⌉ − γi)|+
1

2κ
(θi − γi)

2  
gλ,κ(γi,θi)

. (4.15)

Due to its sum form, proxλRint
is separable among the dimensions of θ, and we may

solve the above problem for each dimension separately. Let us derive the minimizer of
(4.15). Observe that | · | is not differentiable at 0 and ⌈·⌉ is not differentiable at any
x ∈ N. To reduce the inconveniences that arise through the composition of non-smooth
functions, we conduct a piecewise analysis of (4.15). Fix an arbitrary integer z ∈ N and
consider the open interval Iz = (z− 1/2; z+ 1/2). Denote values x ∈ Iz by x = z+ ϵx with
ϵx ∈ (−1/2; +1/2). The partial subdifferential w.r.t. x ∈ Iz is

∂gλ,κ(x, y) = ∂(λ− λ|1− 2(⌈x⌉ − x)|+ 1

2κ
(y − x)2)

= ∂(2λ|x− z|+ 1

2κ
(y − x)2) =

{
2λ sgn(x− z) + 1

κ
(x− y) , ϵx ̸= 0

[−2λ; 2λ] + 1
κ
(x− y) , ϵx = 0

The above holds for all real numbers x with ϵx ∈ [0; 1/2). (Sub)derivatives at points
with ϵx = ±1/2 are, however, not required, since they are local maxima of gλ,κ(x, y). By
resubstitution of γi and θi, we get the optimality condition

0 ∈ [−2κλ; 2κλ] + γi − θi , (4.16)

138

4.4 Integer Parameter Estimation

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

P
ro

x
im

al
 O

b
je

ct
iv

e
V

al
u

e

γ
i

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

P
ro

x
im

al
 O

b
je

ct
iv

e
V

al
u

e

γ
i

Figure 4.3: Left: Exemplary proximal problem (4.15) for ρint(θi) with θi = 3.1 and λ =
1/(4κ). The solid curve is the objective function value (4.15) for γi ∈ [0; 8],
and its minimum is indicated by the solid vertical line. The dashed curve
shows the value of the quadratic term (θi − γi)

2, and the dashed vertical
line indicates the position of its minimum. The horizontal line shows the
function value of the optimal γi, which is γ∗

i = 3. Right: The same plot for
the situation θi = 4.5—two different γi values are globally optimal, namely
γ∗
i ∈ {4, 5}.

at any integer γi. We can now devise the closed-form, based on the above relation.
Setting γi to ⌊θi⌋ or ⌈θi⌉ in (4.16), reveals under which conditions these choices are
optimal. Hence, whenever θi ∈ [⌊θi⌋ − 2κλ; ⌊θi⌋ + 2κλ], it is optimal to set γi to ⌊θi⌋.
And whenever θi ∈ [⌈θi⌉− 2κλ; ⌈θi⌉+ 2κλ], it is optimal to choose ⌈θi⌉. Now, plugging
λ = 1/(4κ) into these conditions results in a complete coverage of the real line. At the
boundaries of the intervals, i.e., at integer multiples of 1/2, both neighboring integers are
optimal, as depicted in the right plot of Figure 4.3. W.l.o.g., we choose the value that
is closer to zero. Thus,

prox(4κ)−1Rint
(θ)i =

{
⌊θi⌋ ,θi ∈ (⌊θi⌋ − 1

2
; ⌊θi⌋+ 1

2
]

⌈θi⌉ ,θi ∈ (⌈θi⌉ − 1
2
; ⌈θi⌉+ 1

2
]
.

■
λ = 1/(4κ) is not the only choice which results in integer parameters, but it is the

smallest λ that achieves this. Let us see what happens if we depart from λ = 1/(4κ). On
the one hand, λ > 1/(4κ) will still produce pure integer solutions, but downweights the
importance of the log-likelihood. From this point of view, the utility of driving λ beyond
1/(4κ) is questionable. However, empirical evaluation shows that a slightly stronger
integer regularization with λ = 3/(8κ) > 1/(4κ) gives superior results in practice. This
can be explained as follows: if θi is already an integer, the regularization will update
the value to θi ± 1 only if the gradient step is large enough, e.g., outside of θi ± 1/2.
This can be too strict in many settings. By choosing a larger λ values, say λ = 3/(8κ),
the optimal regions for θi and θi ± 1 will overlap (cf. (4.16)). Hence, we are free to
tighten the region in which we will stay at θi to θi ± 1/4, which reduces the rigidity of

139

4 Arithmetic Constraints

the proximal gradient update.

On the other hand, whenever λ < 1/(4κ), there will be cases in which θi is neither in
[⌊θi⌋−2κλ; ⌊θi⌋+2κλ] nor in [⌈θi⌉−2κλ; ⌈θi⌉+2κλ]—the regions in which it is optimal to
set θi to an integer would not touch each other. That would result in fractional solutions
whenever the update falls in this void region. While this observation is not relevant in
the setting of constraint arithmetic, the proposed technique can be used for general
mixed-integer programming as well. Moreover, this allows us to investigate meaningful
regularization paths for increasing values of λ. We regard this direction as future work.

One could imagine a theorem similar to Theorem 3.2, stating that for an appropriate
choice of lambda, the method will detect the “true” integer parameters while bounding
the distance to the parameter that generated the data. However, in the context of
restricted arithmetic, we are not really interested if and which dimensions of the true
parameter vector are actually integer. Instead, we employ the regularization to have a
principled and theoretically sound way of generating integer solutions with well-defined
properties, i.e., being critical points of the regularized log-likelihood.

4.4.3 Learning with Integer Arithmetic

Based on the insights that we gained about exponential families under arithmetic con-
straints, we devise a learning procedure that requires no real-valued computation. The
corresponding pseudocode is shown in Algorithm 4.2. Therein and in what follows, λ
is fixed to (4κ)−1. Nevertheless, as explained in the previous Section, other choices,
e.g., λ = 3/(8κ), are possible. We begin in line 1 by initializing the sum of all suf-
ficient statistics, parameters, and temporary variables. In each iteration of the main
loop, rational marginals are computed via bit-length propagation or another integer-
based inference technique. Lines 5–10 correspond to a coordinate-wise application of
the proximal operator for the block of parameters that corresponds to the current clique
C. Let us explain how prox(4κ)−1Rint

(θj − κ∇ℓ(θ;D)j) (4.14) is implemented. To this
end, we first check which new values are possible for θj after the update. The image
of ∇ℓ(θ;D)j is (−1; 1)—it is the difference of empirical and inferred marginal probabil-
ities. In accordance to Theorem 4.7, our algorithm updates the parameters blockwise,
where each block is constituted by one clique. This requires the clique-wise Lipschitz
constants which we derived in Lemma 2.7. For each block, the Lipschitz constant is < 1
which implies that any block-wise stepsize κC that satisfies κC ≤ 1 < 1/LC suffices to
guarantee convergence. Algorithm 4.2 hence uses κC = 1 to ensure that the gradient
steps will be within (−1; 1) which facilitates integer proximal steps.

Now, the integer proximal operator will map the gradient step to the nearest integer.
Possible new parameter values are θj−1,θj,θj +1, where the new value is θj−1, if and
only if κ∇ℓ(θ;D)j ≥ 1/2. The new value is instead θj+1, if and only if κ∇ℓ(θ;D)j < −1/2.
Let us write the rational marginal µj as aj/bj. We can then rewrite the condition for

140

4.4 Integer Parameter Estimation

Algorithm 4.2: Integer Parameter Estimation via Integer Gradient Descent

input Data set D, max. weight k, max. iterations I, desired precision ε ∈ Q
output Integer parameters θ∗ ∈ Nd

1: f ←
∑

x∈D ϕ(x); ϵ ← ∞; ϵ∗ =∞; θ ← 0; θ∗ = 0 ; i ← 1
2: Compute rational marginals µ with µi = ai/bi ∈ Q // via, e.g., Algorithm 2.1 +

Algorithm 4.1
3: repeat
4: for C ∈ C(G) do
5: for j ∈ [d] : ∃x ∈ XC : j ≡ {C = x} do
6: if

(
2f jbj − 2aj|D| > bj|D|

)
and (θj + 1 ≤ k − 1) then

7: θj ← θj + 1
8: else if

(
2aj|D| − 2f jbj ≥ bj|D|

)
and (θj ≥ 1) then

9: θj ← θj − 1
10: end if
11: end for
12: Recompute rational marginals µ with µi = ai/bi ∈ Q
13: ϵ ← ∥µ− f/|D|∥∞
14: if ϵ < ϵ∗ then
15: θ∗ ← θ ; ϵ∗ ← ϵ
16: end if
17: end for
18: until ϵ∗ < ε or i > I

θj − 1 as

κ∇ℓ(θ;D)j = µ− µ̃ ≥ 1

2
⇔ 2

(
aj
bj
− 1

|D|
∑
x∈D

ϕ(x)j

)
≥ 1

⇔ 2aj|D| − 2bjf j ≥ bj|D|

with f =
∑

x∈D ϕ(x), which is the condition in line 8. The corresponding condition for
θj + 1 in line 6 is derived likewise. Both conditions are extended by boundary checks,
to guarantee that θ ∈ [k− 1]d. By applying the equality a/b− c/d = (ad− bc)/(bd), and
the equivalence a/b > c/d⇔ ad > bc, we can compute the l∞-norm of the gradient (line
13) with integer-valued arithmetic. Finally, the same rules apply when we evaluate the
termination criterion in line 18. We may conclude that we achieved the goal of native
integer parameter estimation.

Lemma 4.5 (Integer-Only Learning) Algorithm 4.2 estimates integer parameters of
a discrete base-2 exponential family member with binary, overcomplete sufficient statis-
tics. Running the algorithm does not involve any real-valued computation.

Our algorithm terminates after a maximum number of iterations I has been reached,
or when the gradient’s uniform norm is below a prescribed threshold ε. We know that

141

4 Arithmetic Constraints

any optimal parameter θ∗ has gradient norm 0, and due to Lipschitz continuity of the
gradient, we know further that

∥∇ℓ(θ;D)−∇ℓ(θ∗;D)∥2 ≤ 2|C(G)|∥θ − θ∗∥2 .

This implies that ∥∇ℓ(θ;D)∥∞ < ε is a necessary condition for the case that we are
close to the true optimizer, i.e., ∥θ − θ∗∥2 < ε/(2|C(G)|) [171].

As indicated in [221], considering the gradient norm as a quality measure during
parameter estimation can compensate for errors which are induced via approximate
probabilistic inference. E.g., our bit-length approximation and probability shifting
(Lemma 4.4) both introduce errors into our marginals µ̂. These defective marginals
could be closer to µ̃ than the exact marginals µ, which are actually encoded by θ.
Taking the norm of the gradient ∥µ̂ − µ̃∥ to guide the optimization procedure may
hence compensate for the fact that our approximated marginals might be far from µ.
This statement is indeed true for any parameter learning that is based on approximate
inference.

4.4.4 Alternative Integer-Valued Estimation Procedures

Algorithm 4.2 performs block-wise parameter updates, but coordinate-wise updates are
conceivable, too. Different strategies for deciding which coordinates have to be updated
lead to different methods. Obvious choices are cyclic updates, where a window of l
parameters is updated in each iteration, and random updates, where a random subset
of parameters is updated in each iteration. Convergence analysis for different scenarios
can be found in [210, 155, 18].

An extreme case of randomized parameters updates are evolutionary algorithms (EA)
[28]. We denote these methods as “extreme”, because information about the gradient is
not used at all. Such methods are also called zero-order methods. Here, we will shortly
explain parameter learning via the so-called (1+1)-EA. For ease of exposition, assume
that k = 2K is a power of two and consider the binary representation bin(θ) of the
parameter vector θ ∈ [k− 1]d. The length of bin(θ) is hence dK, i.e., bin(θ) ∈ {0, 1}dK .
In its simplest form, the (1+1)-EA works directly on this binary representation, as
shown in Algorithm 4.3. In contrast to the integer gradient descent, parameter updates
are performed randomly. For each bit of the binary representation of the parameter
vector, we sample a Bernoulli random variable Y with p(Y = 1) = q. If the sample
is 1, we flip the corresponding bit. Afterwards, the quality of the resulting parameter
vector is measured via its gradient norm. In each iteration i, the probability to jump
to any arbitrary point in [k − 1]d is strictly greater 0, since q ∈ (0; 1). The procedure
may hence find a globally optimal solution in any iteration. The expected number of
iterations until the EA generates a globally optimal solution depends, however, heavily
on q and the problem itself. Common choices are q = 1/(dK) and q = log(dK)/(dK).
The convergence of evolutionary algorithms under different choices of q and different
problem types has been studied [21, 57]. In general, one should expect a number of steps
that is exponential in the length of the binary representation of θ. There are, however,

142

4.5 Experimental Demonstration

Algorithm 4.3: Integer Parameter Estimation via (1+1)-EA

input Data set D, iterations I, precision ε ∈ Q, mutation probability q ∈ (0; 1)
output Integer parameters θ∗ ∈ Nd

1: f ←
∑

x∈D ϕ(x); ϵ ← ∞; ϵ∗ =∞; θ ← 0; θ∗ = 0 ; i ← 1
2: repeat
3: for j = 1 to dK do
4: z ∼ Bernoulli(q)
5: if z = 1 then
6: bin(θ)j ← 1− bin(θ)j
7: end if
8: end for
9: Compute rational marginals µ with µi = ai/bi ∈ Q
10: ϵ ← ∥µ− f/|D|∥∞
11: if ϵ < ϵ∗ then
12: θ∗ ← θ ; ϵ∗ ← ϵ
13: else
14: θ ← θ∗

15: end if
16: until ϵ∗ < ε or i > I

results on randomized zero-order methods for convex and non-convex problems, which
indicate that the expected number of iterations can be much lower.

4.5 Experimental Demonstration

Based on basic principles of the Bethe approximation and non-smooth non-convex opti-
mization, we derived a subclass of exponential families in which probabilistic inference
and parameter estimation does not require any floating-point arithmetic. Our results are
independent of the specific conditional independence structure and allow us to specify
an upper bound on the largest representable model parameter to control the memory
consumption per parameter. We conduct a series of experiments to demonstrate this be-
havior on synthetic and real-world data. More precisely, we are interested in answering
the following questions empirically:

Q1 Can we observe a decreased runtime?

Q2 Can we observe a decreased memory consumption?

Q3 Are marginals computed by bit-length propagation similar to those computed by
loopy belief propagation?

Q4 How does the quality of undirected integer models compare to the ordinary Markov
random field?

143

4 Arithmetic Constraints

We explained at the beginning of this chapter that integer arithmetic usually requires
less clock-cycles than the corresponding floating-point operations. Our undirected inte-
ger models should hence exhibit a decreased runtime compared to the ordinary MRF.
However, loopy belief propagation in ordinary MRFs uses message normalization. This
suppresses small changes in the messages which in turn helps to enforce convergence.
In bit-length propagation, such a normalization is not possible. Hence, the runtime per
training iteration of the integer model can exceed the runtime of the ordinary model
whenever the ordinary loopy belief propagation converges significantly faster. We quan-
tify the runtime to investigate this issue and to find an answer to Q1.

To answer the second question, we measure the memory consumption of the model by
consulting its proportion of non-zero components, a.k.a. the NNZ-Ratio. In addition, we
will discuss effects on the memory consumption which are implied by the upper bound
on the parameter values.

Question Q3 arises from Theorem 4.3. Moreover, the error of the inference procedure
is a function of the maximal degree and the longest path in the model. We should thus
expect that simpler graphical structures yield better results.

The last question is motivated by Theorem 4.2, which tells us that we should expect to
find a good integer solution whenever the true parameter is not too far from being integer.
In addition, Theorem 4.7 guarantees that our integer gradient descent finds a critical
point of the integer regularized log-likelihood. When all Theorems which are presented in
this chapter hold simultaneously, we should expect a reasonable learning results. As we
did in Chapter 3, we consider the normalized squared Euclidean distance—equivalent to
the mean squared error—between our estimated marginals µ̂ and the empirical marginals
µ̃ to investigate the quality of different models and to find an answer to question Q4.

To summarize, our evaluation incorporates

• the mean squared error between estimated and empirical marginals: MSE(θ) =
1
d

∑d
i=1(µ̂− µ̃)2 to quantify the general quality of a model,

• the relative number of non-zero components of ∥θ∥0/d, to measure the memory
consumption of a model,

• and the runtime per training iteration in milliseconds, to measure the computa-
tional complexity.

4.5.1 Setup

We know from the experimental evaluation of Chapter 3 that a regularized model is
slightly faster and uses less memory than an unregularized model. Hence, to have
a realistic comparison, we employ an l1-regularized MRF with λ = 0.01 as baseline
model. Its parameters are estimated via accelerated first-order optimization. This model
is compared to an integer undirected model whose parameters are learned via integer
gradient descent. In summary, we use the following models:

M1 Regularized discrete state Markov random field with accelerated first-order opti-
mization

144

4.5 Experimental Demonstration

M2 Integer Markov random field with Integer Gradient Descent optimization

In case of model M2, we consider various upper bounds on the maximum model pa-
rameter k ∈ {2, 4, 8, 16, 32} which restricts the estimated model parameters to the space
{0, 1, . . . , k − 1}d. Data from different sources is considered to demonstrate the robust-
ness of integer models.

Each experiment is performed on an Intel Xeon E5-2697 v2 system. We provide a
docker image with our own C++ implementation of models M1 and M2 for download
at https://sfb876.tu-dortmund.de/px.

Synthetic Data

We conduct a series of experiments on synthetic data to incorporate several degrees of
parameter magnitude and integrality. For simplicity, all synthesized models contain only
pairwise factors ψvu. The number of variables is fixed to n = 100 and the number of
states per variable is fixed to 2.

We consider the same synthetic graphs that we used in Chapter 3, namely chain, grid,
star, and full (Fig. 3.8), as conditional independence structures. Theorem 4.3 tells us
that the graphical structure has a direct impact on the integer probabilistic inference.
The graphs are hence chosen to cover different levels of complexity. In the simplest
structure (chain), each vertex has degree at most 2 and the longest path has length
n. The star structure exhibits one vertex with relatively high degree, while the longest
path has length 3. Grid structures consist of multiple loops, obey a vertex degree which
is independent of n, and also contain long paths. Finally, fully connected structures
represent the worst-case for degree, path length, and loopyness.

The model parameters are sampled independently from a Gaussian with mean 0 and
standard deviation σ ∈ {1, 2, 4, 8}, to simulate various parameter magnitudes.

Finally, we inject integrality into the random model parameters. Recall that Theo-
rem 4.2 ensures that the integer approximation error will be smaller the more integer
parameters are contained in the true model parameter. After drawing independent
Gaussian parameters as described above, we draw a Bernoulli random variable B with
parameter q ∈ [0; 1]. Whenever B = 1, the fractional part of the random parameter will
be discarded, which mimics a flooring operation. Note that the parameter q allows us to
control the integrality of the synthesized parameters in a compact manner. If q = 0, all
parameters are independent realizations of a standard normal random variable, which
has probability density zero of being an integer. By increasing q, the fraction of integer
parameter increases. When q = 1, all parameters are integers. In our experiments, we
consider q ∈ {0, 0.25, 0.5, 0.75, 1} to study the effects of different integrality levels.

Eventually, 1000 samples are generated from each model via Gibbs sampling (Al-
gorithm 2.4). During data generation, the first 100 samples are discarded. Between
consecutive samples, all variables are resampled 16 times in a round-robin fashion to
enforce independence of consecutive samples.

145

https://sfb876.tu-dortmund.de/px

4 Arithmetic Constraints

Table 4.2: Summary of real-world data sets.

Name # variables (n) # readings # data points (N)

D1 INSIGHT 2367 316632468 1608

D2 VaVeL 4988 3934145 516

D3 Intel Lab 56 2313682 432

Real-world Data

In the second set of experiments, we estimate the model parameters on the same data
that we used in the real-world experiments of Section 3.6.1, namely:

D1 INSIGHT—Dublin City SCATS Data22

D2 VaVeL—Warsaw City Mobile Network Cell Data23

D3 Intel Lab—Temperature and Humidity Data24

Even in large, wired sensor networks, integrating the machine learning model into the
sensors which actually measure the data can have benefits in terms of reliability and
privacy, since no data would leave the actual network.

In contrast to the experiments from the previous chapter, we do not use the temporal
information. Instead of combining the data from a whole day into a single training
instance, we generate twelve training instances per day which leads to a slight increase
in the data set size. Information on these data sets is summarized in Table 4.2. For each
real-world data set, we choose the optimal tree structure as conditional independence
structure, computed via the Chow-Liu algorithm (cf. Section 2.3.4).

4.5.2 Results

Results on the synthetic data sets are presented in Figures 4.5–4.8, and results on the
real-world data sets are shown in Figures 4.10–4.11. The black solid circles represent
results for model M1, while the other symbols correspond to results for model M2—
the common key of all plots is shown in Fig. 4.4. In total, the results represent 2435
learning runs. Error bars are ommited in favor of readability. Instead, we provide
the empirical worst-case variances in Table 4.3. Except for the runtime on the full
structure, all variances are rather low. The high variance runtime can be explained with
the convergence of bit-length propagation. If some of the repetitions of our experiments
converge fast while others do not, a large variances arises. Nevertheless, the variance of

22Section 4.1.1 in http://www.insight-ict.eu/sites/default/files/deliverables/D5-1.pdf
23Section 3.15 in http://www.vavel-project.eu/sites/default/files/VaVeL_D1_3.pdf
24http://db.csail.mit.edu/labdata/labdata.html

146

http://www.insight-ict.eu/sites/default/files/deliverables/D5-1.pdf
http://www.vavel-project.eu/sites/default/files/VaVeL_D1_3.pdf
http://db.csail.mit.edu/labdata/labdata.html

4.5 Experimental Demonstration

Table 4.3: Empirical upper bounds on the variances of each experiment on synthetic
data.

Name Ṽ∗[MSE] Ṽ∗[NNZ Ratio] Ṽ∗[millis/iter]

Chain 3.67366233175944e-06 0.00851341699826563 0.0197278642126124

Star 5.886993309304e-06 0.0683236404448525 0.00845444081641737

Grid 5.51239300507056e-06 0.0101987654320987 1.43933385201495

Full 1.12903489689042e-05 0.0130796720742782 67.3147063826381

-1

-0.5

 0

 0.5

 1

-10 -5 0 5 10

M1

M2, k=2

M2, k=4

M2, k=8

M2, k=16

M2, k=32

Figure 4.4: Key for Figures 4.5 to 4.7 to indicate the maximum integer parameter.

67.314 corresponds to a standard deviation of ≈ 8 milliseconds per iteration—a value
which may still be regarded as low in practice.

We explain and discuss the results w.r.t. to the questions stated at the beginning of
this Section.

Q1 Can we observe a decreased runtime?

The main motivation for integer models lies in the fact that some system architectures do
not provide hardware for floating-point arithmetic. In this case, floating-point arithmetic
has to be emulated in software, which involves large performance penalties. However,
even if a floating-point unit is available, integer arithmetic can be used to speed up
inference and learning. Here, we compare the runtime of models M1 and M2 on an
Intel Xeon E5 server CPU. Corresponding results can be found in the runtime plots of
Figures 4.7–4.11). And indeed, on all tree-structured models (chain,star,insight,intel,
and vavel), we observe speedups between 4× and 10× for the integer models compared
to M1.

On the other structures, it seems that the integer models are outperformed by the
plain MRF. However, a closer inspection of the results shows, that the reason lies in
the convergence behavior of both algorithms. The loopy belief propagation of the M1
model converges in about 10 iterations. In contrast, the bit-length propagation does
not converge in some cases on the grid structure and in all cases on the fully connected
structure—due to the missing message normalization. Since we enforce the termination
after updating all bit-length messages 100 times, BLprop computes about ten times
more messages than LBP. Having this in mind, it is clear that computation of bit-
length messages is more than twice as fast as ordinary loopy BP. The fact that BLprop
might not converge can easily avoided in practice, by reducing the maximum number of

147

4 Arithmetic Constraints

iterations—additional experiments revealed that reducing the maximum iteration count
to 25 has almost no impact on the marginal quality. Moreover, LBP might not converge
as well, but this did not happen during our experiments.

It is no surprise that the runtime is almost independent of the integrality of the ground
truth model. However, considering the runtime as a function of the standard deviation,
we can observe a speedup for both, M1 and M2 models. There is also no noteworthy
difference in the runtime of M2 models with different maximum parameter bounds.

In addition to our results on synthetic data, the speedup on real-world data is even
larger. This is also due to the fact that our real-world data sets exhibit a larger state
space than the synthetic binary data.

Altogether, integer models exhibit the expected speedup over ordinary, floating-point-
based MRFs. By transitivity, we conclude that M2 models must also outperform emu-
lated floating-point arithmetic on devices which do not provide floating-point hardware.
This conjecture will be confirmed in Chapter 6.

Q2 Can we observe a reduced memory consumption?

To investigate the memory consumption, we consult the NNZ-Ratio plots in Figures 4.5,
4.6, and 4.9–4.11. Regarding the NNZ-Ratio as a function of the parameter integrality
(Figures 4.5), we see that there is a constant gap between the NNZ-Ratio of M1 and
M2 models in favor of the latter. Indeed, increasing the regularization weight of the M1
model would result in more sparsity. However, the best regularization weight is a priori
unknown, while the integer parameter estimation algorithm is parameter free. Instead,
the degree of sparsity discovered by M2 models is due to the fact that 0 is an integer.
There is no clear order of M2 models w.r.t. the maximum parameter value k. E.g., the
NNZ-ratio plots show that models with k = 8 are most dense in case of chain graphs and
most sparse in case of grid structures. Similar effects can be observed for other values
of k as well.

Treating the sparsity as a function of the standard deviation shows a clear linear
dependence between both—the higher the standard deviation, the higher the sparsity.
In all cases, M2 models exhibit a higher sparsity than M1 models. Again, there is
no order among models with different k values on the synthetic data. However, our
experiments on real-world data show, that models with low k value tend to be more
sparse than models with a large k value.

Overall, our proposed integer models are inherently sparse without providing an ex-
plicit regularization weight, which implies a reduced memory consumption.

Q3 Are BLprop’s marginals similar to those computed by LBP?

We are now interested in the quality of our integer models. First, we investigate the
behavior of bit-length propagation. To avoid side-effects, we restrict ourselves to tree-
structured models on which LBP delivers the correct marginals. No parameters are
learned in this experiment. Instead, we take the random parameters with full integrality
(q = 1) which we used to generate the synthetic data.

148

4.5 Experimental Demonstration

On these models, we run BLprop and LBP, and store the computed marginals. The
results are shown in Fig. 4.8. Each cross indicates a pair of LBP marginal and BLprop
marginal, and the straight line indicates the region of zero-error, i.e., any cross which
lies exactly on the line represents a marginal in which LBP and BLprop agree. The
mean squared error over all marginals is reported in the title of each plot. We know
from Theorem 4.3 that the expected error between the marginal densities of both meth-
ods depends on the length of the longest path (l) and the largest vertex degree (r).
The results in Fig. 4.8 suggest, that l has a larger impact on the approximation error
than r. Moreover, the error shrinks with increasing σ, which reflects the intuition that
small differences in the marginals cannot be captured well by integer parameters. In
contrast, marginal densities which are far from the uniform distribution—and thus have
low entropy—can be represented with much smaller MSE.

An artifact of practical implementations can be seen in the plot for the star structure
with σ2 = 8. Due to high standard deviation and parameter shifting into the positive
orthant, the magnitude of the parameters becomes large—in this particular case, we have
maxdi θi = 43.Together with the high max-degree of the star graph (r = 99), this leads to
overflows in the double precision arithmetic, which forces our implementation to output
the uniform distribution, i.e., p̂(xvu) = 1/4 for our synthetic data. Since the bit-length
propagation makes use of the sparse integer data structure, arbitrary large messages can
be represented and no overflow occurs. Note that a standard multi-precision floating-
point library would avoid the overflow problem in BP but at the cost of large performance
penalties. In contrast, our sparse integer data structure does not suffer from performance
penalties since the number of non-zero bits is constant (|Xv| = 2, ∀v ∈ V).

These results show, that the BLprop marginals are quite close to the LBP results, and
that BLprop can be even more robust than LBP w.r.t. numerical issues.

Q4 How does the quality of learned integer models compare to the ordinary MRF
models?

Integer regularization prevents our learning procedure from selecting fractional solutions.
In this last experiment, we assess the quality of the overall learning result. The first
results on synthetic data are shown in Fig. 4.5. Therein, we see that the induced inte-
grality has only a minor effect on the mean squared error. M1 models yield the lowest
MSE on all synthetic structures. The star structure seems to be slightly harder for M2
models. On the other structures, the quality of integer models can be very close to that
of ordinary MRFs. While the MSE of the best M2 model is about twice as large as
the MSE of the corresponding M1 model, all models deliver a small error regarding its
absolute magnitude. As can be seen in Table 4.3, the MSE results are quite stable—the
estimated variance around each point does not exceed 1.2 × 10−5. The most restricted
M2 models (k = 2) deliver the lowest performance on average. However, recall that
k = 2 implies that the model parameters are actually binary, i.e., θ ∈ {0, 1}d. Having
this in mind, it is rather surprising that they yield the best M2 performance on the fully
connected structure. There is no clear order among the other M2 models. The optimal
k value is application specific. The MSE values of M2 models with k > 2 are close to

149

4 Arithmetic Constraints

each other.

When we plot the MSE as a function of the standard deviation (Fig. 4.6)—while
averaging over the various levels of integrality—shows, that the MSE tends to decrease
with an increasing σ. This effect is stronger on the loopy structures grid and full but
can also be observed on the chain structure. Again, difference between M2 models with
different k values are small. In all experiments on real-world data, we observe that the
MSE degrades nicely with an increasing value of k and converges at about k = 8. Recall
that this implies that only 3 bits are required for each non-zero parameter—this alone
makes a 20× reduction in memory required to store the model parameter θ, in addition
to the increased sparsity discussed above. Indeed, the ordinary MRF model exhibits a
superior small error, but when the underlying device is highly restricted, integer models
offer a reasonable way of trading quality against resource consumption.

4.6 Discussion

Resource constraint systems can have highly limited arithmetic capabilities. In this chap-
ter, we investigated the inherent arithmetic requirements of exponential family members.
More precisely, we analyzed the effects of restricting the parameter space and any compu-
tation to the natural numbers, i.e., θ ∈ Nd

0. Understanding the impact of low-precision
arithmetic is an active research area in machine learning, but most aspects have not
been studied rigorously. Many empirical results are furthermore not strict in the sense
that computations are still carried out via floating-point arithmetic. Here, we instead
assumed that the underlying hardware has no floating-point coprocessor, which implies
that software emulation of floating-point arithmetic is required whenever real-valued
arithmetic cannot be avoided.

We started by proving that the exponential family may alternatively be written w.r.t.
to any base b (instead of exp). Choosing b = 2 turned out to have various appealing
properties. To restrict the parameters to the integer space, we defined a non-universal
integer reparametrization and analyzed its reparametrization error. Intuitively, the error
depends on the size of the conditional independence structure and the involved rounding
errors. We then derived a new, message passing algorithm for probabilistic inference in
base-2 models, called bit-length propagation. In contrast to ordinary belief propagation,
only the bit-length of a message is propagated, and the corresponding computation can
be carried out fully in the integer domain. We provided an upper bound on the expected
Kullback-Leibler divergence between LBP and BLprop marginals w.r.t. the conditional
independence structure. The longest path and the largest vertex degree were identified
to have the largest impact on the approximation error. Internally, the BLprop algorithm
makes use of a sparse integer data structure to represent arbitrary large messages. In
contrast to general multi-precision libraries, the non-zero bits are stored in a sorted list
structure. Since the number of summands in each message is |Xv|, the number of non-
zero bits per message is upper bounded by |Xv|. This allows an efficient computation
of the bit-length of arbitrary large messages via our sparse integer representation. After
discussing the inference, we derived methods for the actual integer parameter estimation.

150

4.6 Discussion

The first method is based on a combination of the integer reparametrization and the
closed-form maximum likelihood estimator for tree-structured models. Secondly, we
derived a new optimization technique, called integer gradient descent. Therein, the
most important idea was to phrase the problem as ordinary parameter estimation over
Rd while employing a new, non-smooth, non-convex integer regularization which enforces
the output of each iteration to be integer. Due to non-smoothness, proximal optimization
techniques were used. We derived a closed-form of the corresponding proximal operator
for our integer regularization which is required to solve the proximal sub-problem in each
training iteration efficiently. Based on o-minimality and Kurdyka-Lojasiewicz functions,
we proved that proximal alternating linearized minimization algorithms will converge
to critical or boundary points of the learning problem. The result is a completely new
algorithm for solving optimization problems over the integers.

In addition to the theoretical derivation and analysis of our new methods, extensive
experiments on synthetic and real-world data showed their empirical effectiveness. In
terms of inference, we first assessed the quality of bit-length propagation and compared
the results to marginals computed via ordinary loopy belief propagation. It turned our
that marginal densities with low entropy are easier to infer than marginals which are
close to uniform. On several different structures BLprop succeeded to approximate the
marginals with low error. We then assessed the full learning procedure, including bit-
length propagation and integer gradient descent to estimate the parameters on several
data sets. Our results show, that small mean squared errors can be achieved, even when
we restrict the word-size of each model parameter to three bits. In terms of memory and
computation time, integer undirected models enjoy ≈ 10× speedup and ≈ 20× memory
reduction, compared to the ordinary MRF. We can conclude that integer models are
extremely well suited for small, resource-constrained devices.

Almost all theoretical and empirical contributions in this chapter are new. Our pa-
rameter estimation for tree-structured models was first published in [170], however, a
weaker inference algorithm without sparse integer data structure and without probabil-
ity shifting was used. First results for learning and inference in loopy structures were
presented in [171], but the optimization procedure employed therein was fully heuristic.
Since the focus of this work lies in the estimation of probability densities, we measured
the quality of our methods in terms of marginal densities. However, additional results
which investigate the classification accuracy of integer models can be found in [170, 171].
There, it is shown that integer model can achieve almost state-of-the-art classification
performance in named entity recognition and synthetic classification tasks. Additional
experimental results on the prediction of smartphone usage can be found in [174].

Our experiments revealed, that convergence of bit-length propagation can be an is-
sue on loopy conditional independence structures. This problem is inherent to message
passing algorithms. Moreover, quality guarantees for LBP cannot be made on most
loopy graphs. This motivates the question if we can find approximate inference pro-
cedures which do not rely on message propagation, while providing quality guarantees
on all conditional independence structures, and are in addition well-suited for resource-
constrained systems. We devote the next chapter to shed some light on this issue.

151

4 Arithmetic Constraints

M
S
E

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0 0.2 0.4 0.6 0.8 1

Integrality

chain

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0 0.2 0.4 0.6 0.8 1

Integrality

star

M
S
E

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 0.0024

 0 0.2 0.4 0.6 0.8 1

Integrality

grid

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0 0.2 0.4 0.6 0.8 1

Integrality

full

N
N
Z
-R

at
io

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 0.2 0.4 0.6 0.8 1

Integrality

chain

 0.42

 0.43

 0.44

 0 0.5 1

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 0.2 0.4 0.6 0.8 1

Integrality

star

N
N
Z
-R

at
io

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 0.2 0.4 0.6 0.8 1

Integrality

grid

 0.36

 0.37

 0.38

 0.39

 0 0.5 1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 0.2 0.4 0.6 0.8 1

Integrality

full

 0

 0.005

 0.01

 0.015

 0 0.5 1

Figure 4.5: Average MSE in estimated marginals (y-axis, first two rows), and average
number of non-zero parameters (y-axis, last two rows), as a function of the
parameter integrality (x-axis). The results are averaged over multiple runs
and different standard deviations σ ∈ {1, 2, 4, 8}. Different colors indicate
different decay types (see Fig. 4.4).

152

4.6 Discussion

M
S
E

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0.0045

 0.005

 0.0055

 0.006

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

chain

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

star

M
S
E

 0

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

grid

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

full

N
N
Z
-R

at
io

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

chain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

star

N
N
Z
-R

at
io

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

grid

 0.6

 0.62

 0.64

 0.957 0.99 1.023

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

full

 0

 0.01

 0.02

 1.5 3 4.5

Figure 4.6: Average MSE in estimated marginals (y-axis, first two rows), and average
number of non-zero parameters (y-axis, last two rows), as a function of the
standard deviation (x-axis). The results are averaged over multiple runs
and different levels of integrality {0, 1/4, 1/2, 3/4, 1}. Different colors indicate
different decay types (see Fig. 4.4).

153

4 Arithmetic Constraints

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
o
n

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

Integrality

chain

 0.2

 0.25

 0.3

 0 0.5 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.2 0.4 0.6 0.8 1

Integrality

star

 0.15

 0.16

 0.17

 0.18

 0 0.25 0.5 0.75

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 0 0.2 0.4 0.6 0.8 1

Integrality

grid

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.2 0.4 0.6 0.8 1

Integrality

full

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

chain

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

star

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

grid

 0

 2

 4

 6

 8

 10

 12

 0 1 2 3 4 5 6 7 8 9

Parameter standard deviation σ

full

Figure 4.7: Average runtime per training iteration (milliseconds, y-axis) as a function of
the parameter integrality (x-axis, first two rows), and as a function of the
standard deviation (x-axis, last two rows). The results are averaged over
multiple runs. Different colors indicate different decay types (see Fig. 4.4).

154

4.6 Discussion

B
L
p
ro
p

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LBP

chain, σ = 1, MSE = 0.00152823

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LBP

star, σ = 1, MSE = 0.00153871

B
L
p
ro
p

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LBP

chain, σ = 2, MSE = 0.000951229

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LBP

star, σ = 2, MSE = 9.57416e-11

B
L
p
ro
p

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LBP

chain, σ = 4, MSE = 0.000688051

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LBP

star, σ = 4, MSE = 3.98019e-31

B
L
p
ro
p

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LBP

chain, σ = 8, MSE = 0.000189713

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

LBP

star, σ = 8, MSE = 0.165046

Figure 4.8: Marginals computed on the synthetic chain and star structures with integer
parameters (q = 1) by bit-length propagation and loopy belief propagation.
Each plot shows the marginals computed from a single run of LBP and
BLprop for the same random parameters with σ ∈ {1, 2, 4, 8} (from top to
bottom).

155

4 Arithmetic Constraints

M
S
E

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

insight.A

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

insight.B

N
N
Z
-R

at
io

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

insight.A

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

insight.B

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 2

 4

 6

 8

 10

 12

 14

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

insight.A

 0

 5

 10

 15

 20

 25

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

insight.B

Figure 4.9: Experimental results on the INSIGHT data. Average MSE between esti-
mated and empirical marginals (first row), average number of non-zero pa-
rameters (second row), and average runtime per training iteration (last row),
as a function of the parameter upper bound k (x-axis).

156

4.6 Discussion

M
S
E

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

intel.A

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0.01

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

intel.B

N
N
Z
-R

at
io

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

intel.A

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

intel.B

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

intel.A

 0

 0.5

 1

 1.5

 2

 2.5

 3

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

intel.B

Figure 4.10: Experimental results on the Intel Lab data. Average MSE between es-
timated and empirical marginals (first row), average number of non-zero
parameters (second row), and average runtime per training iteration (last
row), as a function of the parameter upper bound k (x-axis).

157

4 Arithmetic Constraints

M
S
E

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

vavel

N
N
Z
-R

at
io

 0.26

 0.28

 0.3

 0.32

 0.34

 0.36

 0.38

 0.4

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

vavel

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 5

 10

 15

 20

 25

Float

k=2
k=4

k=8
k=16

k=32

Parameter upper bound k

vavel

Figure 4.11: Experimental results on the VaVeL data. Average MSE between estimated
and empirical marginals (first row), average number of non-zero parameters
(second row), and average runtime per training iteration (last row), as a
function of the parameter upper bound k (x-axis).

158

5 Computation and Quality
Constraints

Beside memory and arithmetic requirements of exponential family models, demanding
computational challenges arise through the #P-hardness of probabilistic inference. This
problem arises especially in exponential family densities of discrete random variables,
since many relevant real-valued exponential family members are easy to normalize via
closed-form integrals (cf. Section 2.2.2). Up to now, we leveraged this issue by as-
suming that either the tree-width is small enough to run probabilistic inference on the
junction tree, or that an approximation via loopy belief propagation suffices. It is, how-
ever, not unlikely that resource-constrained systems have to comply with certain quality
constraints, especially when they are autonomous. When we encounter situations that
require tight bounds on the approximation error of probabilistic inference, we cannot
rely on variational techniques [227] like TRW-BP, mean field or the Bethe approxima-
tion. Some of these technique indeed deliver bounds, but the error cannot be quantified
without making assumptions that go beyond the ordinary variational principle. An
overview is provided in Table 5.1. MCMC sampling techniques may be conducted, but
the number of samples we have to sacrifice in order to generate a set of independent
data points might be either unknown, or too large to be applicable in the context of
resource constraints. Assuming that the clock speed of the underlying system is low,
say, 16 MHz, methods that throw the results of intermediate steps away might not be
the best choice.

Approximate and exact inference methods that are specialized for certain model types
arose in the last decades. While quite promising results have been achieved for (sim-
plified) Ising models (with reparametrization (3.2), right), even these simple models are
hard to approximate whenever the inverse temperature β is strictly positive [107]. As
described in Section 2.2.2, exact inference can be done in polynomial time on tree struc-
tures. In addition also some planar models [191], and so-called matroid Ising models
[78], allow for exact inference in polynomial time.

Nevertheless, efficient exact methods which work for any structure do not exist. Ap-
proximate techniques that do not sacrifice parts of the conditional independence struc-
ture are rare. There is a class of sampling-based methods which provide error bounds on
their estimate, and they further do not have the uneconomic property that intermediate
samples have to be thrown away. For these methods, the underlying sampling proce-
dures differ from the techniques that we know from Section 2.2.2. Samples from the
target measure P are not generated directly. Instead, MAP states of altered densities
are computed, which can in turn be used to approximate statistics (like marginals, or the
partition function) of the underlying random variable. There are two well established

159

5 Computation and Quality Constraints

Table 5.1: State-of-the-art methods to exactly or approximately compute the partition
function of an undirected model with graph G = (V,E), n = |V |, m =
|E|. MCMC-based methods are omitted. Here, I is the number of iterations
until convergence. L = maxv∈V |Xv| and r = maxv∈V |Nv| are the largest
vertex domain and vertex degree, respectively. w is the tree-width of G and
d is the dimension of the parameter space. k is the degree of a polynomial
approximation to the potential function. N is the number of samples for the
stochastic quadrature.

Algorithm Time Complexity Quality

JT [134] O(Lw) Exact

MF [230] O(InLr) Lower bound

LBP [245, 92] O(ImL2r) Local minimum of
Bethe free energy

Log-supermodular
LBP [183, 184]

O(ImL2r) Lower bound

TRW [226] O(ImL2r +m log n) Upper bound

WISH [63] O(n log(n/ζ))× TIME(MAP) (16, ζ)-approx

SQM [172] NO
(
k4 + (k + 1)n+ |C(G)|

)
with precomputed permutations
and partitions, cf. Theorem 5.6

(1 ± ϵ, 1 − δ)-approx
when k and N satisfy
Theorem 5.3

ways how the density is modified.
First, one may alter the density by randomly perturbing the parameter vector [163,

89, 90, 161, 119]. In short, one draws a per-instance noise ϵ(x) from an extreme-value
distribution Q and computes the perturbed MAP state

x∗
PAM = arg max

x∈X
ψ(x) + ϵ(x) .

It can be shown that for appropriate choices of Q, x∗
PAM is a sample from Pθ. This

technique is also called perturb-and-MAP (PAM).
Second, the density can be modified by imposing hashing-based random constraints

on the state space X [63, 64, 98]. Computing the MAP values of multiple randomly
constrained state spaces, allows one to model the energy landscape (the possible values
of the potential function ψ(x)) which can in turn serve to estimate tight bounds on
the partition function. The algorithm that builds the foundation of these techniques is
called weighted integrals and sums by hashing (WISH).

Due to the evaluation of MAP queries, the above methods perform a series of calls
to an NP-oracle, and are hence not suitable for constrained systems with low clock
speed. We will nonetheless have a closer look at these kind of methods, since it turns

160

5.1 Integration, Hashing and Optimization

Algorithm 5.1: Weighted Integrals and Sums by Hashing

input Parameter θ ∈ Rd, failure probability δ ∈ (0; 1), constant α ∈ R
output Approximate partition function ẐWISH(θ)
1: T ← ⌈ln(n)ln(1/δ)/α⌉
2: for i = 0 to n do
3: for t = 1 to T do
4: Sample uniform A ∈ {0, 1}m×n and b ∈ {0, 1}m
5: wt

i ← arg maxx∈{y∈X :Ay=b mod 2} ψ(x)
6: end for
7: M i ← Median(w)
8: end for
9: ẐWISH(θ) ←M 0 +

∑n
i=1 2i−1M i

out that their underlying concept can be interpreted as a particular type of numeric
integration, namely a left Riemann sum. This fact is of exceptional importance, since it
shows us a way to approximate the partition function without touching the conditional
independence structure; as opposed to the first type of MAP-based methods in which
the complexity of the correct noise distribution depends on the conditional independence
structure. Hence, approximating the noise distribution to ease the computation alters
the structure in an implicit manner.

We will review the WISH approach and explain the corresponding error bound. Af-
terwards, we will present our own technique, the stochastic quadrature method (SQM),
which is also based on numerical integration and randomization [172]. But in contrast
to the above method, we employ a polynomial approximation [185] of the potential func-
tion. Rather than relying on NP-hard MAP queries, the proposed methods relies on
sampling from a low-dimensional space. The stochastic quadrature method allows us,
to devise error bounds while maintaining a low resource consumption, by partitioning
the problem into a two-step procedure. Assuming that the conditional independence
structure is known, we can precompute the first step, which depends on the parameter
vector only through an upper bound on ∥θ∥q (q ∈ {1, 2}). The result can then be used
to perform the second step in the context of parameter estimation, approximation of the
partition function, or approximation of marginal probabilities.

5.1 Integration, Hashing and Optimization

Only a few approximate inference techniques allow us to quantify the approximation er-
ror via non-trivial bounds. Weighted integrals and sums by hashing, is a technique that
relies on randomized hashing to compute a stochastic partitioning of the high dimen-
sional state space X [63]. The hashing method was developed to study the dependence
between the number of solutions of a problem and the hardness of a combinatorial
search [213]. In what follows, we assume for ease of exposition that X = {0, 1}n. Con-
sider the partition function Z(θ) =

∫
X ψ d ν. Instead of integrating ψ over X , one may

161

5 Computation and Quality Constraints

integrate G(z) = |{x ∈ X : ψ(x) ≥ z}| over R+, where G(z) is the number of in-
stances whose potential is at least z. The partition function may then be rewritten as
Z(θ) =

∫ +∞
0

G(z) d z. Let the instances x ∈ X be sorted in ascending order w.r.t. to
their potential-function value, i.e., ψ(x1) ≤ ψ(x2) ≤ · · · ≤ ψ(x2n) where x2n = x∗ is
the MAP state. Hence, integrating G over the interval I = [0, ψ(x2n)] yields Z. We will
now approximate this integral by a Riemann sum. To this end, we partition I into n+ 1
subintervals,

{[0, ψ(x1)], [ψ(x1), ψ(x2)], . . . , [ψ(x2n−1

), ψ(x2n)]} = {[bn+1, bn], [bn, bn−1], . . . , [b1, b0]},

and construct the corresponding left Riemann sum

Zleft(θ) =
n∑
i=0

G(bi+1)(bi − bi+1) =
n∑
i=0

2i(bi − bi+1) = b0 +
n∑
i=1

2i−1bi .

Note how the partition is constructed such that the values of G at the subinterval end-
points are powers of 2. Moreover, the area under the curve of G for the i-th subinterval
lies within 2i(bi−bi+1) and 2i+1(bi−bi+1). Hence, Zleft(θ) is a 2-approximation to Z(θ).
The values bi are indeed unknown (except for bn+1 = 0). However, any q-approximation
to the bi values would yield a 2q-approximation to Z(θ). Luckily, it turns out that a
random hashing of instances into buckets of appropriate size allows us to estimate the
bi values. Let us declare some fundamental terms.

Definition 5.1 (Pairwise Independence) Let F = {f : {0, 1}n → {0, 1}m} be a
family of Boolean functions, and let F be a discrete random variable with state space F
and p(F = f) = 1/|F|. F is called pairwise independent, if

• ∀x ∈ {0, 1}n, p(F (x) = y) = 2−m,

• ∀x,y ∈ {0, 1}n : x ̸= y ⇒ F (x) ⊥⊥ F (y).

Pairwise independent hash functions can be implemented efficiently via affine maps in
F(2) (arithmetic mod-2).

Lemma 5.1 (Pairwise Independent Hash Functions [63]) Suppose A ∈ {0, 1}m×n

and b ∈ {0, 1}m. The family A = {fA,b : {0, 1}n → {0, 1}m} with f : x ↦→ Ax + b
mod 2 is a family of pairwise independent hash functions.

Now, the algorithm consists in repeatedly hashing instances into buckets of size 2i, and
computing the MAP value restricted to this bucket. bi may then be estimated by the
median MAP value of the corresponding bucket. We provide the pseudocode of this
procedure in Algorithm 5.1. Its output is a constant factor approximation to Z(θ).

Theorem 5.1 (WISH Error Bound [63]) For any δ > 0 and positive constant α ≤
0.0042, Algorithm 5.1 makes Θ(n log n

δ
) MAP queries. The output ẐWISH(θ) is a 16-

approximation to Z(θ) with probability at least (1− δ).

162

5.2 Quadrature

To prove the above theorem, one has to apply the Chebyshev and Chernoff inequal-
ities, to show that the M i, computed by Algorithm 5.1, are within [bi−c, bi+c] with
high probability—this part of the proof uses the pairwise independence of the employed
hash functions (Lemma 5.1). The success probability for the M i lying in the correct
interval increases exponentially as a function of αT . The proof is completed by finding
appropriate values for c, α, T , combined with the observation that knowing the true bi
values would result in a 2-approximation. A detailed derivation can be found in [63]. An
extension, called SPARSE-WISH, achieves the same approximation guarantee while em-
ploying much shorter constraints [64]. In practice, the corresponding constrained MAP
problems are easier to solve, but are indeed still NP-hard.

In contrast to LBP, JT or even Gibbs sampling, WISH is oblivious w.r.t. the condi-
tional independence structure. It does neither make assumptions or restrictions on G,
nor does it harm the structure in any way. In fact, the structure does not appear explic-
itly in any WISH-related computation. However, access to an NP-oracle is required. In
the rest of this chapter, we devise a method which makes also no changes, assumptions,
or restrictions on G. Instead of putting random constraints on X , we approximate ψ by
a polynomial, to find an inference algorithm with error bounds—the raw computational
complexity being still exponential though.

5.2 Quadrature

Whenever integrating a function f is not tractable, one may resort to numerical meth-
ods in order to approximate the definite integral I[f] =

∫ u
l
f(z) d z. For instance, the

Riemann sum, known from the previous Section, may be used to produce different ap-
proximations, based on the points where the integrand is evaluated. In the derivation of
WISH, the integrand was evaluated at the left endpoint of the interval, which leads to the
left Riemann sum. Other common approaches include the right Riemann sum, the mid-
dle sum or the trapezoidal rule. However, any of these choices requires the determination
of the interval end points, and hence, would lead to a WISH-like algorithm—including
the need to perform MAP inference on a resource-constrained system.

A different way of performing numeric integration are general quadrature rules. There,
the basic idea is to replace the integrand f by an approximation h ≈ f , that admits
tractable integration. It turns out, that choosing h = hk to be a degree-k Chebyshev
polynomial approximation of f , delivers highly accurate results, due to the equioscilla-
tion property implied by near-minimax optimality. The general quadrature procedure
can be summarized as

I[f] =

∫ u

l

f(x)dx ≈
∫ u

l

hk(x)dx =
k∑
i=0

wif(xi) = Ik[f] (5.1)

where wi are certain coefficients and xi are certain abscissae in [l, u] (all to be de-
termined) [142]. Depending on the choice of interpolation points and different kinds
of orthogonality properties, Chebyshev polynomial based quadrature rules are termed
Gauss-Chebyshev quadrature, Fejér quadrature or Clenshaw-Curtis quadrature [42].

163

5 Computation and Quality Constraints

An upper bound on the approximation error of the quadrature rule can be derived
from the upper bound on the polynomial approximation error (2.8). Assuming the
terminology and conditions of Theorem 2.8, the error of (5.1) is bounded by

|I[f]− Iζ[f]| ≤ 32Vk
15kπ2K(2K − 1) . . . (2K + 1− k)

. (5.2)

Derivation and bounds for various special cases can be found in [142, 237] and references
therein.

This bound holds if we integrate over a closed interval [l, u]. When we transfer the
general quadrature to the partition function of a discrete exponential family member,
the analogue to (5.1) is

Z(θ) =

∫
X
ψ(x) d ν(x) =

∑
x∈X

exp(⟨θ, ϕ(x)⟩) ≈
∑
x∈X

ˆexpkζ(⟨θ, ϕ(x)⟩) = Ẑk
ζ (θ) . (5.3)

Here, ˆexpkζ is a degree-k polynomial approximation with coefficients ζ ∈ Rk+1, to
the exponential function over the interval [l;u] with l = minx∈X ⟨θ, ϕ(x)⟩ and u =
maxx∈X ⟨θ, ϕ(x)⟩. Note that the (discrete) integration is not carried out over [l;u]—
only a finite set of values from [l;u] will appear as an argument of exp and the error
bound of the general quadrature (5.2) does not apply, because in the worst-case, the
quantity ⟨θ, ϕ(x)⟩ could hit a maximum of the error function of the underlying polyno-
mial approximation for each x. Hence, when ε is the worst-case error of the polynomial
approximation, then

|Z(θ)− Ẑk
ζ (θ)| =

⏐⏐⏐⏐⏐∑
x∈X

exp(⟨θ, ϕ(x)⟩)− ˆexpkζ(⟨θ, ϕ(x)⟩)

⏐⏐⏐⏐⏐ ≤ ε|X | . (5.4)

Note that the range [l;u] on which we approximate exp has to be known. Computing
the exact interval [l∗;u∗] = [⟨θ, ϕ(xmin)⟩; ⟨θ, ϕ(xmax)⟩] is NP-hard, since xmax = x∗

is the MAP state of the model, and xmin is the MAP state of the same model with
negated parameters, i.e., xmin = arg minx∈X p−θ(x). The interval [l∗;u∗] can indeed
be approximated without solving the exact MAP. For Chebyshev polynomials, we know
from (2.8) that the approximation error is related to the norm of the k-th derivative of the
function we are trying to approximate. Due to ∂exp(z)/∂z = exp(z) and monotonicity of
exp, we shall not overestimate the upper limit u too much. This would harm the tightness
of the polynomial error bound. In case of a given θ, techniques for the approximation of
maximum a posteriori states (e.g., LP-relaxations; cf. Section 2.2.2) deliver bounds on
the MAP value, which can in turn be used to approximate the interval [l∗;u∗]. When the
parameters are to be estimated, in case of binary sufficient statistics, ⟨θ, ϕ(x)⟩ ≤ ∥θ∥1
follows from Hölder’s inequality. We may thus apply regularization based techniques
(e.g., [240]) for parameter estimation, to guarantee that ∥θ∥1 and thus ⟨θ, ϕ(x)⟩ will not
exceed any predefined upper bound B.

Considering (5.3) again, we see that Ẑk
ζ (θ) involves a summation over X , i.e., over

exponentially many objects. It is still unclear, how this approach could facilitate infer-
ence on a resource-constrained system. To shed some light on this issue, we discover a

164

5.3 Integrable Sufficient Statistics

new property of sufficient statistics, before we devise the actual algorithm and its error
bound.

5.3 Integrable Sufficient Statistics

Data enters an exponential family model only through the sufficient statistic ϕ. The
actual functional form of ϕ determines how density is assigned to the various possible
realizations of a random variable. Moreover, we know that it encodes the conditional
independence structure, and hence which joint realizations of variables have an indivis-
ible impact on the density. Also, other important properties of sufficient statistics, like
overcompleteness or minimality, have shown to directly influence the type of convex-
ity (strict vs. non-strict) of the objective function, and hence the identifiability of the
estimation problem. Overcompleteness allows us in addition, to derive properties like
shift-invariance, and a straightforward derivation of the Lipschitz constant—due to the
fact that for all x ∈ X :

∥ϕ(x)∥1 = |C(G)|, ∥ϕ(x)∥2 =

√
|C(G)|, and ∥ϕ(x)∥∞ = 1,

whenever X is discrete and ϕ is overcomplete. We will now investigate a new property,
which will become important when we derive the stochastic quadrature method.

Definition 5.2 (k-integrable Sufficient Statistics [172]) The sufficient statistic ϕ :
X → Rd is called k-integrable, if the function χkϕ : [d]k → R, with

χkϕ(j) =

∫
X

k∏
i=1

ϕ(x)ji d ν(x)

admits a polynomial time computable closed-form expression for all j ∈ [d]k.

At a first glace, k-integrability seems to be a rather theoretical feature. Moreover, it
is unclear which, or if any, reasonable sufficient statistic has this property. We will now
see that both points depend crucially on the type of random variable.

5.3.1 Discrete Random Variables

Suppose that θ is a discrete random variable with state space X , and binary, over-
complete ϕ. Let us interpret the values of χkϕ. First, recall that there is a one-to-one
correspondence between each index j ∈ [d] of the sufficient statistic ϕ(x) and a specific
joint state y ∈ XC of a particular clique C ∈ C(G). Consequently, any vector j ∈ [d]k

corresponds to an index tuple j = (j1, j2, . . . , jk) that can be interpreted as a tuple of
clauses:

j = (j1, j2, . . . , jk) ≡ (XC1 = yC1
,XC2 = yC2

, . . . ,XCk
= yCk

) . (5.5)

165

5 Computation and Quality Constraints

Here, Ci ∈ C(G), yCi
∈ XCi

, and XCi
= yi is the clause that corresponds to the i-th

index in the index tuple j. Since ϕ is binary, the product
∏k

i=1 ϕ(x)ji will evaluate to 0,
whenever at least one of the ϕ(x)ji is 0, and 1 otherwise. We may hence interpret the
product over components of ϕ(x) as the conjunction of the corresponding clauses25, i.e.,

k∏
i=1

ϕ(x)ji ≡ (xC1 = yC1
∧ xC2 = yC2

∧ · · · ∧ xCk
= yCk

) = φj(x) . (5.6)

The discrete version of the function χkϕ(j) from Definition 5.2 is the summation of the

above expression over all x ∈ X . Hence, χkϕ(j) counts the number of configurations
x ∈ X which satisfy the formula φj . Based on this interpretation of index tuple, we
devise the following result.

Lemma 5.2 (k-integrability of Discrete MRF Models [172]) The binary, over-
complete sufficient statistic (Definition 2.6) of an n-dimensional discrete random vari-
able, is k-integrable for all k ∈ N.

Proof. Let us fix an arbitrary j ∈ [d]k and consider the corresponding logical expression
(5.6). Obviously, φj is not satisfiable, whenever it contains contradicting clauses, e.g.,
XCi

= yCi
∧XCj

= yCj
where Ci = Cj are the same clique, but yCi

̸= yCj
are two

different states. In this case, no x ∈ X can satisfy φj and hence χkϕ(j) = 0. We will call
such index tuples non-realizable, otherwise realizable. Checking if a tuple is realizable
requires k|Cmax| steps—for each of the k indices in the tuple, we write the, at most
|Cmax| = maxC∈C(G) |C|, states into an array of length n, and check, if they contradict
with the state we have seen so far, if any.

Now, recall that |X | =
∏

v∈V |Xv|. Obviously,
∑

x∈X 1 = |X |. When we fix the
state x ∈ Xu of an arbitrary variable u ∈ V , then

∑
x∈X 1{xu=x} = |X |/|Xu|. To see

this, observe that the full joint state space size is no longer
∏

v∈V |Xv|, but instead∏
v∈V \{u} |Xv| = |X |/|Xu|—the value of u is fixed. When we fix not only the state of a

single vertex u, but of a vertex subset U ⊆ V , then
∑

x∈X 1{xU=y} = |X |/|XU |.
Suppose that j is realizable. Then j ∈ [d]k fixes the states of the vertices in W =⋃k
i=1Ci to some value yW . Hence, 1{xW=yW } ≡ φj(x), and thus

χkϕ(j) =
∑
x∈X

k∏
i=1

ϕ(x)ji =
∑
x∈X

1{xW=yW } =
|X |
|XW |

,

for any realizable index tuple j. So finally,

χkϕ(j) =

⎧⎨⎩
|X |

|X⋃k
i=1

Cji
| , j is realizable

0 , otherwise .

25We use the symbol ≡ to indicate the equivalence between arithmetic expressions and expressions in
propositional logic.

166

5.3 Integrable Sufficient Statistics

We did not make any assumptions on j and k, which implies that the binary, overcom-
plete ϕ is k-integrable. ■

Note, that this result is quite general. It covers all exponential family members for
discrete random variable—for those, an overcomplete, binary sufficient statistic always
exists.

5.3.2 Continuous Random Variables

One could apply the k-integrability result for discrete random variables directly to con-
tinuous state spaces via discretization. E.g., by using indicator functions that tell us
if a continuous realization lies within a specific interval. Moreover, it turns out that
the sufficient statistic of common exponential family densities can be denoted in terms
of elementary functions which have elementary antiderivatives. In fact, the sufficient
statistics of the Gaussian, Bernoulli, Poisson, exponential, Pareto, Weibull, chi-squared,
log-normal, beta, gamma, inverse gamma, and Dirichlet densities, consist only of terms
of the form 1/xc, xc, and log(x)c with c ∈ N, x ∈ R. For each of them being integrable to
a closed-form function, and any finite product of them being integrable to a closed-form,
too.

Lemma 5.3 (Continuous k-integrability) Let X be an n-dimensional continuous
random vector whose dimensions have support on (0;ui] for 1 ≤ i ≤ n and ui ∈ R+.
Any real-valued sufficient statistic ϕ(x) : Rn → Rd, whose coordinate-wise statistics
ϕ(x)i are of the form

ϕ(x)i = xcj, or ϕ(x)i = 1
xc
j
, or ϕ(x)i = log(xj)

c,

for some c ∈ N, j ∈ [n], is k-integrable for all k ∈ N. The log may be taken w.r.t. any
base.

Proof. Each of the coordinate-wise statistics which are mentioned in the lemma, have
closed-form integrals for any c ∈ N. Now, in the course of integrating the product∫
X
∏k

i=1 ϕ(x)ji d ν(x) for some fixed j ∈ [d]k, we can encounter the following situations.
First, products of the same coordinate-wise statistics, say ϕ(x)jl , yield a statistic of
the same functional form, but with a power of 2c instead of c. Hence, those prod-
ucts have a closed-form integral. The integral of the product of different coordinate-
wise statistics ϕ(x)jl and ϕ(x)jh (l, h ∈ [k], l ̸= k), which access different compo-
nents of x, say xa and xb, is simply the product of the corresponding integrals, i.e.,∫ ∫

ϕ(x)jlϕ(x)jh dxa dxb =
(∫

ϕ(x)jl dxa
) (∫

ϕ(x)jh dxb
)
. The last case is the inte-

gration of the product of statistics ϕ(x)jl and ϕ(x)jh (with l ̸= h) which involve the
same variable xa. Any such integral can be written in the form∫

xc1 log(x)c2 dx ,

where c1 ∈ Z and c2 ∈ N. Then, for c1 ̸= −1,∫
xc1 log(x)c2 dx =

xc1+1 log(x)c2

c1 + 1
− n

m+ 1

∫
xc1 log(x)c2−1 dx .

167

5 Computation and Quality Constraints

For any fixed sufficient statistic as defined in the lemma, c2 is a known integer constant,
and we may repeat the unrolling of the integral until we arrive at a summation over a
constant number (c2) of term. ■

Details on the integration of elementary functions can be found in [29]. One may
extend the above lemma to include sufficient statistics of the type |x−m|c, which appears
in the density of the Laplace distribution. Closed-form expressions for integrals of such
functions exist. However, we excluded them here due to the cumbersome notation which
arises when products of such functions are integrated.

Based on the fact that all discrete and various continuous exponential family den-
sities have k-integrable statistics, we derive a new inference method that exploits k-
integrability.

5.4 Stochastic Quadrature Method

The term stochastic quadrature is slightly ambiguous, since a former body of work
[81, 82, 83, 159] refers to stochastic quadrature as a specific form of Monte Carlo inte-
gration. Therein, N points from an n-dimensional space X are sampled, and the integral
Z(θ) =

∫
X ψ d ν is then approximated by summing and reweighting the samples. The

term stochastic refers to the way how we approximate the integral. In contrast, the
stochastic quadrature method that we present in the sequel approximates the integral
via a general quadrature rule (5.1), e.g., by approximating the integrand by a polyno-
mial. Due to nice algebraic properties of polynomials and k-integrability, the expression
for the partition function can be simplified. This part is deterministic. In a second step,
the simplified expression is approximated via sampling, which gives rise to the term
stochastic. Therefore, we refer to our approach as stochastic quadrature method, while
the former is called Monte Carlo integration. Our technique is conceptually related to
WISH, in that WISH employs a deterministic approximation of the integral in terms
of a Riemann sum, while the boundaries of the intervals are subject to a stochastic
approximation through random constraints.

To actually derive the SQM, let us define a specific probability density function over
index tuples j ∈ [d]i of length 0 ≤ i ≤ k. For ease of notation, we assume that indices
of (k + 1)-dimensional objects start at 0.

Definition 5.3 (Index Tuple Density) Suppose ϕ : X → Rd
+ is a non-negative, k-

integrable, sufficient statistic. Let c, q ∈ Rk+1 with qi = ∥χiϕ∥1 and τ = ⟨|c|, q⟩, where
∥χiϕ∥1 denotes the 1-norm of the function χiϕ, and |c| denotes the element-wise absolute
value of c, i.e.,

∥χiϕ∥1 =
∑
j∈[d]i

|χiϕ(j)| and |c| =

⎛⎜⎝|c1|...
|ck|

⎞⎟⎠ .

Let further (J , I) be the discrete random variable with state space [d]k × ([k] ∪ {0}) and

168

5.4 Stochastic Quadrature Method

joint density pc,ϕ(J = j, I = i) = pϕ(J = j | I = i)pc,ϕ(I = i) with

pc,ϕ(I = i) =
|ci|qi
τ

and pϕ(J = j | I = i) =
χiϕ(j)

qi
.

We call pc,ϕ the tuple density of (J , I) with parameter (c, ϕ).

Now, based on the tuple density, we define the random variable which is the core of
SQM.

Definition 5.4 (1-Stochastic Quadrature) Let J be a random index tuple of ran-
dom length I, having joint tuple density pc,ϕ. The random variable

Ẑk
J ,I(θ) = τ sgn(cI)

I∏
r=0

θJr

with τ as defined in Definition 5.3, is called 1-SQM.

We will now see that the above random variable is closely related to the quadrature
approximation to Z(θ) (5.3).

Theorem 5.2 (Unbiasedness of SQM) Let the parameter c of the tuple density, be
equal to the coefficient vector ζ of a degree-k approximation to exp over some interval.
Then, Ẑk

J ,I(θ) is an unbiased estimator for Ẑk
ζ (θ) =

∑
x∈X ˆexpkζ(⟨θ, ϕ(x)⟩).

Proof. It follows from Definitions 7.3, 5.3, and 5.4, that

E
[
Ẑk

J ,I(θ)
]

=
k∑
i=0

∑
j∈[d]k

Pζ,ϕ(J = j, I = i)τ sgn(ζi)
i∏

r=0

θjr

=
k∑
i=0

ζi
∑
j∈[d]i

(
i∏

r=0

θjr

)∑
x∈X

(
i∏

r=0

ϕ(x)jr

)

=
∑
x∈X

k∑
i=0

ζi⟨θ, ϕ(x)⟩i = Ẑk
ζ (θ) ,

where the last equality stems from the fact that

⟨θ, ϕ(x)⟩i =
d∑

j1=1

d∑
j2=1

· · ·
d∑

ji=1

i∏
l=0

θjl

i∏
r=0

ϕ(x)jr .

■
The theorem implies a simple Monte Carlo procedure, called N -SQM or simply SQM,

shown in Algorithm 5.2. The output is unbiased and we will see in Section 5.4.1, that
the probability of large deviations from Ẑk

ζ (θ) decreases exponentially with an increasing
number of samples N . However, the algorithm expects pζ,ϕ and τ as an input. While
the computation of ζ is rather efficient—O(k log k) via DCT or O(k2) via (2.44)—the
complexity of computing ∥χiϕ∥1 (and thus τ) is unclear and we will study this topic in
Section 5.4.2.

169

5 Computation and Quality Constraints

Algorithm 5.2: Stochastic Quadrature Method (N -SQM)

input θ, k, ζ, N
output Approximate partition function ẐN,k

ζ (θ)
1: S ← 0
2: for l = 1 to N do
3: (j, i) ∼ Pζ,ϕ

4: S ← S + Ẑk
j,i(θ)

5: end for
6: ẐN,k

ζ (θ) ← 1
N
S

5.4.1 Approximation Error and Sample Complexity

We will now analyze the error of Algorithm 5.2. When a random variable is bounded in
[l;u], so is its variance bounded by 1/4(l−u)2. Any Monte Carlo estimate of the partition
function via independent uniform sampling over X , has a variance in O(|X |2(ψ(xmax)−
ψ(xmin))2) (recall that the underlying random variable is |X |ψ(X)). On the other hand,
the random variable Ẑk

J ,I(θ)—the core of SQM—has its variance in O(τ 2∥θ∥2k′∞), where
k′ is 1 when ∥θ∥∞ < 1 and k′ = k, otherwise. While it’s not obvious which of the two
estimators has the lower variance, the term (ψ(xmax) − ψ(xmin))2 is hard to control,
while ∥θ∥∞ may be controlled directly via regularization.

Having this in mind, we derive a probabilistic bound on the relative error of SQM,
and show how it is related to the number of samples N and the polynomial degree k. A
major difference between plain Monte Carlo estimation and SQM is, that the former is a
randomized procedure for the estimation of Z(θ), whereas SQM is a randomized proce-
dure for the estimation of Ẑk

ζ (θ). The error bounds of Ẑk
ζ (θ) and the sampling procedure

have to be chained to get a bound on the overall error. Since Chebyshev approximations
are near-minimax optimal, and tight error bounds of such approximations are known, we
restrict ourselves to those when we derive the error bound of SQM. However, different
choices of polynomial approximations will lead to different error bounds.

Theorem 5.3 (SQM Error Bound [172]) Let ζ be the coefficient vector of a degree-
k Chebyshev approximation to exp on [l;u] = [−∥θ∥1; +∥θ∥1] with worst-case error
ε. Let ẐN,k

ζ (θ) be the output of Algorithm 5.2. Furthermore, let δ ∈ (0, 1], ϵ > 0,

N = (log 2/δ)τ 22∥θ∥2k′∞ ε−2|X |−2, with (k − 1) k! ≥ 8 exp(2∥θ∥1)/(πϵ), and k′ = 1 if
∥θ∥∞ < 1 or otherwise k′ = k. Then,

P[|ẐN,k
ζ (θ)− Z(θ)| < ϵZ(θ)] ≥ 1− δ . (5.7)

Proof. By Hoeffding’s inequality [94], for N independent samples from a random vari-
able Y , bounded in [a; b], we have

P

[⏐⏐⏐⏐⏐ 1

N

N∑
i=1

yi − E[Y]

⏐⏐⏐⏐⏐ ≥ t

]
≤ 2 exp

(
− 2Nt2

(b− a)2

)
.

170

5.4 Stochastic Quadrature Method

Setting t = ε|X | in combination with (5.4), Theorem 5.2 and the triangle inequality, we
get

P[|ẐN,k
ζ (θ)− Ẑk

ζ (θ)| ≥ ε|X |] ≤ 2 exp

(
−N ε2|X |2

τ 22∥θ∥2k′∞

)
= δ

⇒ P[|ẐN,k
ζ (θ)− Ẑk

ζ (θ)|+ |Ẑk
ζ (θ)− Z(θ)| ≥ 2ε|X |] ≤ δ

⇒ P[|ẐN,k
ζ (θ)− Z(θ)| ≥ 2ε|X |] ≤ δ . (5.8)

Now, we apply the error bound for Chebyshev approximations (Theorem 2.8) and
Hölder’s inequality [95].

ε2|X | ≤ 4 exp ∥θ∥1
π (k − 1) k!

2|X | ≤ ϵ
|X |

exp ∥θ∥1
< ϵZ(θ) (5.9)

The rightmost inequality, known as naive mean field lower bound [227], follows from
(2.13). More precisely,

logZ(θ) = sup
µ∈M
⟨θ,µ⟩+H(µ) ≥ ⟨θ,µ⟩+H(µ) ∀µ ∈M(G) ,

where M(G) is the marginal polytope (2.12) and H(µ) is the entropy of the density
implied by µ. Since the inequality is valid for all µ ∈ M(G), we may choose the fully
factorized density with uniform marginals. Hence,

H(µ) = −
∑
x∈X

p(x) log p(x) =
∑
x∈X

1∏
v∈V |Xv|

log
∏
v∈V

|Xv| = log |X | .

Combining this with ⟨θ,µ⟩ > −∥θ∥1 implies logZ(θ) > −∥θ∥1 + log |X | and thus
Z(θ) > |X |/ exp ∥θ∥1, which explains the last inequality in (5.9). The statement of the
theorem is then derived by plugging (5.9) into the probability that is complementary to
(5.8). ■

So if ∥θ∥∞ < 1, a small number of samples will suffice to achieve low error with
high probability. Moreover, any choice of N and k implies a particular (ε, ϵ, δ)-triple,
where ε is the worst-case error of the polynomial approximation, ϵ is the relative error of
SQM and 1− δ is the probability that this error is not exceeded. We may thus tailor the
choice of N and k to the underlying resource-constrained system, and get an appropriate
error bound. In addition, when computational resources are allocated dynamically, we
may stop the algorithm after any number of samples N ′—the procedure may hence be
interpreted as anytime algorithm.

Considering the total complexity of different randomized methods, one can see that
in plain Monte Carlo integration, all the complexity goes into the generation of samples.
In WISH, the randomization is realized via Bernoulli random variables, where the i-th
variable represents the event that the instance with 2i-th strongest potential survives
the random constraints. Due to low variance in each Bernoulli variable, the number of
samples required for WISH is moderate compared to vanilla Monte Carlo integration or

171

5 Computation and Quality Constraints

SQM. On the other hand, significant computational effort goes into the computation of
constrained MAP states. The method presented here, SQM, requires the computation
of a polynomial approximation and the normalization of the tuple density, which we
discussed in the previous Section. The number of samples required to achieve a specific
relative error can be controlled via ∥θ∥∞. When we investigate the SQM sampling itself,
it turns out that structural properties of pζ,ϕ lead to efficient sampling schemes.

5.4.2 Normalizing the Tuple Density

Recall that the index tuple density (Definition 5.3) is normalized via qi = ∥χiϕ∥1 and
τ = ⟨|c|, q⟩ (Definition 5.3). Reviewing the definition of ∥χiϕ∥1,

∥χiϕ∥1 =
∑
j∈[d]i

|χiϕ(j)| , (5.10)

we see that a naive computation of τ requires O(dk) steps where k is the degree of
our polynomial approximation. The first thing to note is that if ∥θ∥1 is assumed to be
upper bounded by a constant B (which can be guaranteed via regularized parameter
estimation), then, the upper bound on ⟨θ, ϕ(x)⟩ is constant, which implies that the
approximation interval [l;u] is constant, and thus k is constant. Following this reasoning,
O(dk) would be a polynomial expression. But if the norm of θ is not assumed to be
constant, then O(dk) is indeed exponential. However, we can remove the dependence on
d when we restrict ourselves to discrete models, by relying on the invariance of χiϕ against
permutation of j, and the independence between χiϕ and the actual state assignment of
realizable index tuples.

In what follows, we explain how these properties can lead to an improved procedure
for normalizing the tuple density. We will group the elements of [d]i into equivalence
classes and use them to rewrite and simplify the summation in (5.10). In this context,
it is important to recall the semantic of index tuples j from (5.5). In addition to
index tuples, we will also work with clique tuples. We say that a clique tuple C =
(C1,C2, . . . ,Ck) corresponds to the index tuple j = (j1, j2, . . . , jk), if j ≡ (XC1 =
yC1

,XC2 = yC2
, . . . ,XCk

= yCk
). We then write C = C(j). To support the upcoming

derivations, we first define the equivalence classes of index tuples and clique tuples.

Definition 5.5 (Sub-Alphabets) Let A be some set of objects or symbols—A is an
alphabet—and let P(A) be its power set. The set P(A, n) ⊆ P(A) contains all subsets
of A with at most n elements, i.e.,

P(A, n) = {S ∈ P(A) | |S| ≤ n} .

The size of P(A, n) is thus

|P(A, n)| =
n∑
i=1

(
|A|
i

)
.

172

5.4 Stochastic Quadrature Method

Definition 5.6 (Tuple Classes) Let i ∈ N, and denote the clique tuple that corre-
sponds to an index tuple j ∈ [d]i by C(j) ∈ C(G)i. Two or more index tuples j, j ′ may
correspond to the same clique tuple, i.e., C(j) = C(j ′). The equivalence class of all
index tuples that correspond to the same clique tuple is denoted by

[[j]] = {j ′ ∈ [d]i | C(j) = C(j ′)} .

Similarly, two or more clique tuples C,C ′ may correspond to the same set of cliques.
The equivalence class of clique tuples that correspond to the same set of cliques is denoted
by

[[C]] =

{
C ′ ∈ C(G)i

⏐⏐⏐⏐⏐⋃
c∈C

{c} =
⋃
c′∈C

{c′}

}
.

Combining both, the equivalence class of all index tuples, whose corresponding clique
tuples are in the same equivalence class, is denoted by

[[j]]∗ = {j ′ ∈ [d]i | C(j ′) ∈ [[C(j)]]} .

Note that all members of a specific clique tuple equivalence class [[C]] are determined by
a unique set of cliques which is used to construct the tuples. Hence, we identify each
class [[C]] with this unique set of cliques and treat each [[C]] as a member P(C(G), i).
Moreover, there are |P(C(G), i)| distinct clique tuple equivalence classes.

In the remainder, it will be important to know how large these equivalence classes are.

Lemma 5.4 (Counting Tuples) Let i, j ∈ N, j ∈ [d]j, C ∈ C(G)i, and consider the
equivalence classes defined above. Then,

|[[j]]| =
i∏
l=1

|XC(j)l |, |[[C]]| = h(C)!

{
i

h(C)

}
, and |[[j]]∗| = |[[C(j)]]||[[j]]|

where h(C) is the number of distinct cliques which appear in the tuple C, n! is the
factorial, and {n k}⊤ is the Stirling number of second kind.

Proof. Considering the semantic of index tuples (5.5), the number of index tuples that
correspond to the same clique tuple is equal to the number of joint state assignments
to all cliques in the tuple. The number of such assignments is the product of the state
spaces

∏i
l=1 |XC(j)l |, which establishes the statement for |[[j]]|. Second, the number of

permutations of l objects is l! = l(l − 1)(l − 2) . . . 2. Here, we are interested in the
number of ways how h(C) ≤ i objects—h(C) distinct cliques—can be distributed to i
different places. For example, when we consider the cliques A and B and the clique tu-
ple (A,A,B), its equivalence class [[(A,A,B)]] contains the tuples (A,A,B), (A,B,A),
(A,B,B), (B,B,A), (B,A,B), and (B,A,A). Counting such multicombinations is a
well known combinatorial enumeration problem, equivalent to the total number of sur-
jective functions from [i] to [h(C)]. The resulting number is h(C)!{i h(C)}⊤, where
the factorial accounts for the number of permutations of distinct cliques. The second

173

5 Computation and Quality Constraints

factor is the Stirling number of second kind {n k}⊤, which counts the number of ways
to partition a set of n elements into k subsets. This establishes the second equality.
Lastly, each clique tuple in the equivalence class [[C]] corresponds to the same number
of indices, namely |[[j]]|. Hence, the total number of indices covered by the equivalence
class |[[j]]∗| is the product of the sizes |[[C]]| and |[[j]]|, which completes the proof. ■

It will also be helpful to define equivalence classes of index tuples w.r.t. some k-
integrable sufficient statistics.

Definition 5.7 (Tuple Classes and k-integrability) Let ϕ be a k-integrable suffi-
cient statistic, i ∈ N, and j ∈ [d]i. The equivalence class of all index tuples which
correspond to the same clique tuple and have non-zero χiϕ-value is denoted by

[[j]]ϕ = {j ′ ∈ [d]i | j ′ ∈ [[j]] ∧ χiϕ(j ′) ̸= 0} .

The corresponding extension to equivalence classes of clique tuples, is denoted by

[[j]]∗ϕ = {j ′ ∈ [d]i | j ′ ∈ [[j]]∗ ∧ χiϕ(j ′) ̸= 0} .

Lemma 5.5 (Counting Realizable Tuples) Suppose ϕ is the binary, overcomplete
sufficient statistic. Then,

|[[j]]ϕ| = |XC(j)|, and |[[j]]∗ϕ| = |[[C(j)]]||[[j]]ϕ| ,

with XC(j) = X∪i
l=1C(j)l

and C(j) ∈ C(G)i.

Proof. According to Lemma 5.2, we have χiϕ(j) = 0 whenever an index tuple is not
realizable. I.e., at least two indices in the tuple imply different assignments to the same
variable (cf. proof of Lemma 5.2). For the clique tuple C(j), observe that XC(j) is the
full joint state space of all unique variables in C. If C contains cliques that share some
vertices, those vertices must have the same state if and only if j is realizable. Thus,
there cannot be more than |XC(j)| distinct realizable index tuples. The second equality
is then a direct consequence of Lemma 5.4. ■

Now, we have gathered all terms and definitions to devise an improved procedure for
the normalization of the index tuple density.

Theorem 5.4 (Tuple Density Normalization) Suppose ϕ is the binary, overcom-
plete sufficient statistic. The conditional index tuple density pζ,ϕ(J = j | I = i) (Defi-
nition 5.3) can be normalized in O(k3) steps. More precisely,

∥χiϕ∥1 = |X |
i∑
l=0

{
i
l

}(
|C(G)|
l

)
l! . (5.11)

174

5.4 Stochastic Quadrature Method

Proof. The χiϕ value of non-realizable index tuples is 0, hence, it suffices to do the
summation only over realizable tuples. Reviewing Lemma 5.2, we see that the value
χiϕ(j) of any realizable index tuple depends only on the associated clique tuple C(j).
This implies that all tuples from the same equivalence class [[j]]ϕ will contribute equally
to the sum. We can thus rewrite the summation over all index tuples [d]i in terms of a
summation over all index tuples C(G)i and multiply each summand by the size of the
corresponding equivalence class:

∥χiϕ∥1 =
∑
j∈[d]i

|χiϕ(j)| =
∑

C∈C(G)i

|[[j(C)]]ϕ|χiϕ(j(C)) ,

where j(C) is an arbitrary index tuple associated with clique tuple C.
Furthermore, note that χiϕ is permutation invariant, e.g., for any fixed indices a, b, c, . . .

and any permutation σ, we have χiϕ(a, b, c, . . .) = χiϕ(σ(a, b, c, . . .)). In other words, χi

will yield the same function value for all j which correspond to clique tuples C that are
in the same equivalence class [[C]]. We hence sum only over the elements of P(C(G), i)
and multiply each term in the sum by the size of the corresponding equivalence class:

∥χiϕ∥1 =
∑

C∈C(G)i

|[[j(C)]]ϕ|χiϕ(j(C)) =
∑

[[C]]∈P(C(G),i)

|[[C]]||[[j(C)]]ϕ|χiϕ([[j(C)]]ϕ) .

By Lemma 5.2, χiϕ([[j(C)]]ϕ) = |X |/|X[[C]]| = |X |/|[[j(C)]]ϕ|. Plugging this into the
equation above and invoking Lemmas 5.4 and 5.5 to compute the sizes of equivalence
classes, yields

∥χiϕ∥1 = |X |
∑

[[C]]∈P(C(G),i)

h(C)!

{
i

h(C)

}
.

Here, C is an arbitrary member of the equivalence class [[C]], and h(C) is the number of
distinct cliques which appear in the tuple C. We finally partition the summation over
P(C(G), i), into i separate summations, each over those members of P(C(G), i) which
have size 1 ≤ l ≤ i. Hence, h(C) = l in each of these separate summations:

∥χiϕ∥1 = |X |
i∑
l=0

∑
[[C]]∈P(C(G),i):h(C)=l

{
i
l

}
l! .

(5.11) follows from the fact that number of terms in each inner sum can be computed via
binomial coefficients. Note that {0 0}⊤ = 1, 0! = 1, and that the empty set is contained
in P(C(G), 0). The runtime reported in the theorem follows from the fact that each of
the Stirling numbers that appear in the formula can be computed in O(i2) steps, and
indeed i ≤ k. ■

The complexity O(k3) provided in the theorem is several orders of magnitude lower
than that of the naive summation, i.e., O(dk). Since we need the normalization for all
k tuple lengths, τ can be computed in O(k4) steps.

175

5 Computation and Quality Constraints

Figure 5.1: Ordering of classes and tuples. Cr denotes the r-th clique tuple, [[C]]l denotes
the l-th equivalence class of clique tuples, and [[j]]∗l denotes the equivalence
class of index tuples which is induced by the l-th equivalence class of clique
tuples. First row: Equivalence classes of clique tuples. Second row: Clique
tuples. Third row: Index tuples.

[[C]]1 [[C]]2 . . .

C1 . . . C |[[C]]1| C |[[C]]1|+1 . . . C |[[C]]1|+|[[C]]2| . . .

j1 j2 . . . j |[[j]]
∗1|−1 j |[[j]]

∗1| j |[[j]]
∗1|+1 j |[[j]]

∗1|+2 . . . j |[[j]]
∗1|+|[[j]]∗2| . . .

Even more important, τ (and each ∥χiϕ∥1) does not (explicitly) depend on θ. There is
indeed an implicit dependence, since ∥θ∥1 influences the polynomial coefficients which
appear in the computation of τ . However, if we compute the polynomial approximation
for some parameter with norm B = ∥θ∥1, the same coefficients are valid for any param-
eter in the ball {θ ∈ Rd | ∥θ∥1 ≤ B}. In the context of resource-constrained systems,
it is reasonable to assume that we precompute τ and the ∥χiϕ∥1 on an unconstrained
system, and deploy the values on a resource-constrained device. The weak system may
in turn use these values to run Algorithm 5.2 for any θ in {θ ∈ Rd | ∥θ∥1 ≤ B}.

5.4.3 Index Tuple Sampling

Finally, we shall discuss the complexity of the SQM sampling step. Drawing a random
tuple length according to pζ(I = i) is easy, since the state space of I is small, e.g.,
0 ≤ I ≤ k, but sampling from the tuple density pζ,ϕ(J = j | I = i) can be more involved
(cf. Definition 5.3). We may indeed employ rejection sampling (Algorithm 2.3), since
the dimensionality of the tuple space is rather low. However, rejection sampling has
the unwanted side effect that several samples will be rejected and hence, resources will
be wasted. We will now show how rejections can be avoided by introducing a specific
ordering of index tuples j1, j2, . . . , jd

i

.
To this end, let ≺ be an any arbitrary but fixed strict total ordering on the equivalence

classes of clique tuples. I.e., ∀A,B ∈ P(C(G), i) with A ̸= B, either [[A]] ≺ [[B]] or
[[A]] ≺ [[B]]—by definition, each element of P(C(G), i) corresponds to a unique equiva-
lence class. This order induces an order on clique tuples and index tuples, i.e., j, j ′ ∈ [d]i,
j ≤ j ′ ⇔ [[C(j)]] ⪯ [[C(j ′)]]. The situation is depicted in Fig. 5.1. Within each equiva-
lence class, we assume that tuples are ordered lexicographically.

For any fixed i, inversion sampling of j then consists of drawing a uniform random
number u in (0; 1), and finding the smallest L ∈ N, such that

L∑
l=1

pζ,ϕ(J = jl | I = i) =
∑

j∈[d]i:j⪯jL

pζ,ϕ(J = j | I = i) > u .

The worst-case complexity of the above summation is O(dk), which can be prohibitively

176

5.4 Stochastic Quadrature Method

I L [[C]]

Y C

Figure 5.2: Directed graphical model for the factorization of the tuple density pζ,ϕ(J =
j, I = i). Any index tuple j can be identified with some pair (C,y) of clique
tuple and state tuple.

expensive whenever the dimension d of the model is large. Based on the equivalence
classes that we exploited already for the normalization of the tuple density, we derive a
factorization of pζ,ϕ(J = j | I = i) which in turn implies an efficient stagewise sampling
procedure.

Theorem 5.5 (Tuple Density Factorization) Suppose ϕ is the binary, overcomplete
sufficient statistic. Suppose that j denotes the joint assignment (Cj1 = yj1

,Cj2 =
yj2

, . . . ,Cji = yji
). The tuple density factorizes:

pζ,ϕ(J = j | I = i) = p(C | [[C]], l, i)p(y | [[C]], i)p([[C]] | l)p(l | i)

with

p(l | i) =

{
i
l

}(
|C(G)|
l

)
l!

∑i
h=0

{
i
h

}(
|C(G)|
h

)
h!

p([[C]] | l) =
1(

|C(G)|
l

)

p(C | [[C]], l, i) =
1{
i
l

}
l!

p(y | [[C]], i) =

{
1

|X[[C]]|
,y ∈ X[[C]]

0 , otherwise ,

where l denotes the number of distinct cliques in the clique tuple C, [[C]] denotes the
equivalence class that contains C, and y is the joint state of all cliques in the tuple C.

Proof. If j is not realizable, then y ̸∈ X[[C]] and both pζ,ϕ(J = j | I = i) = 0 and the
proposed factorization will assign mass 0. Now, assume that j is realizable and hence
y ∈ X[[C]]. By definition of the above quantities:

p(C | [[C]], l, i)p(y | [[C]], i)p([[C]] | l)p(l | i) =
1

|X[[C]]|
∑i

h=0

{
i
h

}(
|C(G)|
h

)
h!

. (5.12)

177

5 Computation and Quality Constraints

Algorithm 5.3: Fast Index Tuple Sampler for Discrete State Models

input Tuple length i
output Sample j | I = i from Pζ,ϕ

1: l ∼ p(l | i) // See Theorem 5.5
2: a ∼ U(1; binom(|C(G)|, l))
3: b ∼ U(1; Stirling2(i, l)× factorial(l))
4: [[C]] ← compute a-th l-combination of {1, 2, . . . , |C(G)|} // e.g., via [32]
5: C ← compute b-th composition of {1, 2, . . . , i} with l subsets // e.g., via [60]
6: S ←

⋃i
h=1Ch

7: c ∼ U(1;
∏

v∈S |Xv|)
8: y ← compute c-th joint state of all vertices in S
9: return j that corresponds to the joint assignment C = y

According to Lemmma 5.2, we have χiϕ(j) = |X |/|X⋃k
i=1 Cji

| for any realizable j. The

denominator will be the same for all clique tuples C from the same equivalence class
[[C]], since those share the same variables. Hence, χiϕ(j) = |X |/|X[[C]]|. Multiplication of
(5.12) by 1 = |X |/|X | hence yields

p(C | [[C]], l, i)p(y | [[C]], i)p([[C]] | l)p(l | i) =
χiϕ(j)

|X |
∑i

h=0

{
i
h

}(
|C(G)|
h

)
h!

. (5.13)

According to Definition 5.3, pζ,ϕ(J = j | I = i) = χiϕ(j)/∥χiϕ∥1 for any realizable j.
Thus, the theorem follows by plugging the result of Theorem 5.4 into (5.13). ■

While the proof is rather simple, it is not obvious how to come up with this fac-
torization. The key lies in the strict ordering, shown in Fig. 5.1. The idea is to first
draw the equivalence class [[C]], then a uniform member C of this class, then a uniform
(realizable) joint state y of all cliques in C. Notice that the sampling steps for [[C]], C
and y are uniform, while the probability mass of the number l of distinct cliques that
will appear in the tuple is a function of l. In any case, the normalization is computed
by the number of corresponding combinatorial objects.

The resulting factorization is shown in Fig. 5.2, and the implied sampling algorithm
is shown in Algorithm 5.3. We will now investigate its complexity.

Theorem 5.6 (Complexity of Tuple Sampling) Algorithm 5.3 samples an index tu-
ple j of given length l from Pζ,ϕ in

O(k4 + (k + 1)n+ {k l}⊤ + l! + |C(G)|)

steps. When permutations and partitions are precomputed, the runtime reduces to

O(k4 + (k + 1)n+ |C(G)|)

per sample. Here, k is the polynomial degree, l is the number of distinct cliques in the
generated tuple, and n = |V |.

178

5.4 Stochastic Quadrature Method

Proof. We analyze the complexity of each step separately and assume that uniform
random numbers can be drawn in O(1). To draw a sample according to p(l | i), we em-
ploy inversion sampling. Computing each probability requires to evaluate the Stirling
number of second kind (complexity O(l2)), the binomial coefficient (complexity O(l)),
and the factorial (also O(l)). These probabilities have to be computed for each 1 ≤ l ≤ i.
Since i is at most k, the total runtime for the probability computation is O(k3). Draw-
ing an actual inversion sample from {1, 2, . . . , i} hence requires O(k4) steps. Whenever
multiple samples must be drawn, we can reuse the probabilities. Thus, any subsequent
sample requires only O(k) steps. Moreover, the terms that appear in the uniform sam-
pling steps in lines 2 and 3 have already be computed for the first step. Consequently,
their complexity is O(1).

We explained earlier that each clique equivalence class corresponds to a subset of l
cliques. The algorithm presented in [32] is used to directly generate the a-th clique
combination (in lexicographic order). The runtime of this algorithm is equal to the
largest element in the combination, and the complexity of line 4 is hence O(|C(G)|).

In contrast, we are not aware of an algorithm to generate the b-th composition of
{1, 2, . . . , i} with l subsets directly. Instead, we generate such compositions by first
computing an unordered partition of i elements into exactly l blocks, followed by a
particular l-permutation.

As an example, let [[C]] = {A,B,C} and i = 5 (the tuple length). Hence, l = 3
cliques must be assigned to i = 5 places. After determining the tuple, say (1, 2, 2, 3, 1), a
permutation of (A,B,C) must be determined to find the actual clique tuple. in case of
the identity permutation, the resulting tuple would be (A,B,B,C,A). However, another
permutation would lead to (C,A,A,B,C)—there are 3! = 6 of such permutation in total.

We employ the algorithm from [60] (Section 5.2.2) to generate all unordered partitions
of i elements into exactly l blocks. There are {i l}⊤ such partitions and the algorithm
from [60] requires O(1) steps to generate the successor of any partition. Another algo-
rithm from [60] can be used to generate all l-permutations in O(l!) steps. However, there
are algorithms which do not require to store all permutations but generate the q-th per-
mutation (for any q) directly—such procedures require O(l2) steps. In total, it requires
O({i l}⊤ + l!) steps (and memory) to precompute all partitions and permutations—any
subsequent execution of line 5 (for the same combination of i and l) will take O(1) steps.
Since clique tuples C may involve all |V | = n vertices, the complexity of lines 6 and 7 are
O(kn) and O(n), respectively. The joint state y, computed in line 8, is the c-th element
of the product space

⨂
v∈S Xv. Converting c into the particular state y is done by a

series of |S| subtractions and divisions. As explained above, S may contain all vertices,
and line 8 can thus be computed in O(n) steps. By employing an array of offsets to
access the first parameter index of any clique, the conversion of the pair (C,y) to the
index tuple j is done in O(k) steps. Combining these insights yields the statement of
the theorem. ■

Thus, we found a Monte Carlo algorithm to sample from Pζ,ϕ without any rejection
step. Since the algorithm does not use any Markov chain, the generated samples are truly
independent. Any number of samples can thus be generated in parallel. Because no data
has to be exchanged, the overall runtime scales linearly with the number of processors.

179

5 Computation and Quality Constraints

This is a superior property compared to MCMC methods, in which sampling cannot be
parallelized and consecutive samples are not independent.

Moreover, the theorem tells us how the complexity of stochastic quadrature is related
to the graphical structure and the polynomial degree. The runtime is independent of
the parameter dimension d and the state space sizes. In contrast, the runtime of loopy
belief propagation and similar variational techniques is at least quadratic in the vertex
state space sizes (cf. Table 5.1), which renders models with large vertex state spaces
intractable. SQM can thus be a valuable alternative to those inference methods, even
on not strongly constrained systems.

5.5 Parameter Learning and SQM

Now, after the fundamental theoretical properties and algorithmic concepts of SQM have
been clarified, we discuss its application to actual probabilistic models. This includes
the estimation of marginal densities and the log-likelihood function of exponential family
members.

5.5.1 Marginal Inference

To facilitate SQM-based parameter estimation via numerical first-order methods, we
have to compute the gradient of the log-partition function, which corresponds to the
expected sufficient statistic ∇ logZ(θ) = Eθ[ϕ(X)]. For discrete X, Eθ[ϕ(X)i] =
Eθ[ϕ(X)C=x] = pθ(XC = x), for some C ∈ C(G) and some x ∈ XC . Recall that
for any subset U ⊆ V of variables, and any joint state xU , the marginal density is

pθ(XU = xU) =
∑

xV \U∈XV \U

pθ(xU ,xV \U) =
1

Z(θ)

∑
xV \U∈XV \U

ψ(xU ,xV \U) .

Especially the sum on the right hand side of the equation is reminiscent of the partition
function. In fact, it can be interpreted as the partition function of another model with
state space XV \U . It is this sum that will be approximated via SQM to estimate the
marginal. To formalize this idea, we provide adjusted definitions of the SQM core
concepts. First, we adapt the notion of k-integrability to marginal densities.

Definition 5.8 (Marginal k-integrability) Let G = (V,E) be the conditional inde-
pendence structure of a random variable X. The sufficient statistic ϕ : X → Rd is called
marginally k-integrable, if the function χkϕ : [d]k → R, with

χkϕ,U(j,xU) =

∫
XV \U

k∏
i=1

ϕ(xU ,xV \U)ji d ν(xV \U)

admits a polynomial time computable closed-form expression for all j ∈ [d]k, for all
U ⊆ V , and for all xU ∈ XV \U .

180

5.5 Parameter Learning and SQM

I L [[C]]

Y XU C

Figure 5.3: Directed graphical model for the factorization of the marginal tuple density
pζ,ϕ(J = j,XU = xU , I = i). Any index tuple j can be identified with some
pair (C,y) of clique tuple and state tuple.

The general result on k-integrability for discrete models carries indeed over to the
marginal case.

Corollary 5.1 (Marginal k-integrability of Overcomplete Statistics) The bin-
ary, overcomplete sufficient statistic is marginally k-integrable for all k ∈ N.

Proof. There are two noteworthy deviations from the proof of Lemma 5.2. First, in
addition to the states of the variables in ∪il=1C l, the states of the variables in U are
fixed. This reduces the total number of summands from |X | to |XV \U |. To simplify
notation, we define |X∅| = 1. Moreover, in this reduced state space, the formula

φj(xU ,xV \U) = (xC1 = yC1
∧ xC2 = yC2

∧ · · · ∧ xCk
= yCk

) ≡
k∏
i=1

ϕ(x)ji (5.14)

might not be specifiable, even when j itself is realizable. Keeping this in mind, the same
reasoning that we used to prove Lemma 5.2 leads to the closed form

χkϕ,U(j,xU) =

⎧⎨⎩
|X |

|X
(
⋃k
i=1

Cji
)\U ||XU | , j is realizable ∧ ̸ ∃v ∈ U : xv ̸= yv

0 , otherwise ,

where, y is the state implied by j (5.14), and we applied
⏐⏐XV \U

⏐⏐ =
∏

v∈V \U |Xv| =

|X |/
∏

v∈U |Xv| = |X |/|XU |. ■
Based on marginal k-integrability, and Theorem 5.5, we present the factorization of

the corresponding marginal tuple density as shown in Fig. 5.3.

Corollary 5.2 (Marginal Tuple Density Factorization) Suppose ϕ is the binary,
overcomplete sufficient statistic (Definition 2.6). Suppose that j denotes the joint as-
signment (Cj1 = yj1

,Cj2 = yj2
, . . . ,Cji = yji

). The marginal tuple density factorizes:

pζ,ϕ(J = j, I = i,XU = xU) = p(C | [[C]], l, i)p(y,xU | [[C]], i)p([[C]] | l)p(l | i)p(i)

181

5 Computation and Quality Constraints

where p(l | i), p([[C]] | l), and p(C | [[C]], l, i) are given by Theorem 5.5, and

p(y,xU | [[C]], i) =

{
1

|X[[C]]∪U | ,y ∈ X[[C]] ∧ ̸ ∃v ∈ U : xv ̸= yv

0 , otherwise .

The ordinary tuple density pζ,ϕ(J = j, I = i) and the marginal tuple density pζ,ϕ(J =
j,XU = xU , I = i) differ only in the factor p(y,xU | [[C]], i). We may hence use their
quotient as importance weight to convert SQM samples for the partition function into
SQM samples for marginal probabilities. We have

EJ ,I

[
p(y(J),xU | [[C(J)]], I)

p(y(J) | [[C(J)]], I)
Ẑk

J ,I(θ)

]
=

k∑
i=0

∑
j∈[d]i

pζ,ϕ(J = j, I = i)
p(y(j),xU | [[C(j)]], i)

p(y(j) | [[C(j)]], i)  
wj,i,U

Ẑk
j,i(θ)

=
k∑
i=0

∑
j∈[d]i

pζ,ϕ(J = j, I = i,XU = xU)Ẑk
j,i(θ) = EJ ,I,XU=xU

[
Ẑk

J ,I(θ)
]
,

with importance weight wj,i,U .
Now, we gathered all parts which are required for marginal inference. The correspond-

ing inference procedure is provided in Algorithm 5.4. While the main idea is to perform
d separate runs of Algorithm 5.2, such a naive approach would result in an unnecessary
high runtime. Instead, we make use of Corollary 5.2 to propose an importance sampling
approach, in which each SQM sample is shared among all marginals. For each marginal
p(XC = xC), we validate if the pair (j, i) that is sampled in line 3 agrees with the
assignment xC (line 6)—otherwise, its marginal tuple density is zero. If they agree, we
reweigh the sample, perform the summation and count the number of successes in lines
7 and 8. In lines 13–17, the estimated sums are normalized and written to µ̂.

5.5.2 Parameter Estimation

Based on Algorithm 5.4, we can readily compute the likelihood’s gradient ∇ℓ(θ;D),
and employ any first-order method to estimate the parameters. The most essential
component is hence available and we may proceed to conduct some experiments. To
investigate the progress of learning, we can look at the gradient norm or the objective
function. Due to its functional form, the negative log-likelihood,

ℓ(θ;D) = −⟨θ, µ̃⟩+ logZ(θ) ,

inherits its complexity from the computation of the log-partition function logZ(θ). We
will hence close the theoretical part of this chapter, by translating the SQM error bound
from Theorem 5.3 to an error bound on the negative log-likelihood.

182

5.6 Experimental Demonstration

Algorithm 5.4: SQM Marginal Inference with Shared Sampling

input θ, k, ζ, N
output Approximate marginals µ̂
1: S ← 0, m ← 0, done ← false
2: while ∃i : mi < N do
3: (j, i) ∼ Pζ,ϕ,C(·,xC)
4: for C ∈ C(G) do
5: for xC ∈ XC do
6: if agree(j, i, C,x) ∧mi < N then

7: Sl ← Sl + Ẑk
j,i(θ)p(y(j),xC |[[C(j)]],i)

p(y(j)|[[C(j)]],i)

8: mi ←mi + 1
9: end if
10: end for
11: end for
12: end while
13: for C ∈ C(G) do
14: for xC ∈ XC do
15: µ̂C=xC

← SC=xC∑
xC∈XC

SC=xC

16: end for
17: end for

Theorem 5.7 (SQM Error for logZ(θ)) Assume that the preconditions of Theorem
5.3 hold. Whenever the outcome ẐN,k

ζ (θ) of Algorithm 5.2 is positive, then

P[| log ẐN,k
ζ (θ)− logZ(θ)| < ϵZ(θ)/min{ẐN,k

ζ (θ), Z(θ)}] ≥ 1− δ .

Proof. Let l = min{ẐN,k
ζ (θ), Z(θ)} and u = max{ẐN,k

ζ (θ), Z(θ)}. Applying the mean
value theorem to the logarithm, there is ξ ∈ [l, u] such that ξ| log l− log u| = |l − u|. By
(5.7),

P[|ẐN,k
ζ (θ)− Z(θ)| < ϵZ(θ)] ≥ 1− δ ,

and hence
P[ξ| log ẐN,k

ζ (θ)− logZ(θ)| < ϵZ(θ)] ≥ 1− δ .

Dividing by ξ and using ξ ≥ l implies the desired result. ■
We will now conduct a series of experiments to demonstrate the various theoretical

properties of SQM that have been discussed so far.

5.6 Experimental Demonstration

Fundamental principles of approximation theory allow us to construct a stochastic
quadrature-based approximation to the partition function. Moreover, we apply the
same technique to approximate the marginal densities of exponential family members.

183

5 Computation and Quality Constraints

In contrast to variational inference techniques, the quality of our proposed method is
independent of the graphical structure—even in the presence of circular conditional inde-
pendences. Theorem 5.3 shows that the error is influenced by three factors: the degree
of the underlying polynomial approximation, the norm of the parameter vector, and
the number of Monte Carlo samples. We will now conduct a series of experiments to
demonstrate this behavior. More precisely, we are interested in answering the following
questions empirically:

Q1 How does SQM respond to different parameter norms?

Q2 How does SQM respond to different polynomial degrees?

Q3 How does SQM respond to different sample sizes?

Q4 What are the resource requirements of SQM?

We know from Theorems 5.3 and 5.7 under which circumstances the error of SQM is
bounded. However, the theorem provides no intuition about the specific growth behavior.
We will hence evaluate the absolute approximation error of the log-partition function,
e.g., | log(Ẑ) − log(Z)| where Z is the value of the exact partition function at θ and Ẑ
is an approximation to Z. In addition, we investigate SQM-based parameter learning.
In accordance with our experiments in the previous chapters, we evaluate the mean
squared error of estimated marginals, i.e., ∥µ̂ − µ̃∥22/d, to measure the quality of the
learned model. Both quantities are investigated in the course of answering Q1–Q3.
For Q4, we consider a theoretical review of the memory requirement as well as various
runtime measurements (in milliseconds).

5.6.1 Setup

Our baseline in this set of experiments is an ordinary Markov random field in which
probabilistic inference is carried out by loopy belief propagation—corresponding to the
Bethe approximation of the partition function. LBP has unbounded error on general
loopy graphs, but is known to perform extra ordinary well in practice. This baseline is
compared to our proposed Monte Carlo method N-SQM as provided in Algorithm 5.2.
The error of N-SQM comprises the error of the underlying polynomial approximation
as well as the sampling error. To understand their interplay, we consider an exact
quadrature method in which the expectation E[Ẑk

J ,I(θ)] is evaluated exactly. Due to
high complexity, this method is not reasonable in general, but it helps us to reveal the
error introduced by the sampling step. In summary, we use the following models:

M1 Discrete state Markov random field with loopy belief propagation

M2 Discrete state Markov random field with exact quadrature

M3 Discrete state Markov random field with stochastic quadrature

184

5.6 Experimental Demonstration

Table 5.2: Parameter dimensions for models on synthetic data sets.

Dimension Chain Star Grid Full

n = 16 60 60 96 480

n = 100 396 396 720 19800

For M2 and M3 models, we consider various polynomial degrees in {2, 3, . . . , 9}. The
polynomial coefficients of SQM are estimated via the Remez exchange algorithm (Al-
gorithm 2.5). Each experiment is performed on an Intel Xeon E5-2697 v2 system. We
provide a docker image with our own C++ implementation of models M1–M3 for down-
load at https://sfb876.tu-dortmund.de/px.

Synthetic Data

Experiments on synthetic data help us to study the effects of the parameter norm on
the approximation error. For simplicity, all synthesized models contain only pairwise
factors ψvu. The number of variables is fixed to n = 16 when we estimate the partition
function, and fixed to n = 100 when we estimate the marginal densities. In any case,
the number of states per variable is 2.

Chain, star, grid, and fully connected graphs, shown in Fig. 3.8, serve as synthetic
conditional independence structures. The theoretical insights that we gained in this
chapter suggest, that the conditional independence structure has no direct impact on
the approximation error of SQM. However, models with different graphs can have dif-
ferent dimensions, and the model dimension has an indirect impact on the parameter
norm. For our data generating process, each parameter is drawn independently from
a Gaussian distribution with mean 0 and variance σ2 ∈ {10−6, 10−5, . . . , 100, 101}, to
simulate various parameter norms. The relation between parameter variance σ2, model
dimension d, and norm ∥θ∥2 is established via the following equation.

E
[
∥θ∥22

]
= E

[
d∑
i=1

θ2
i

]
= dσ2

It hence suffices to investigate how the parameter variance affects the approximation
quality. Moreover, we provide the dimensions of our synthetic models in Table 5.2.

Eventually, 1000 samples are generated from each model via Gibbs sampling (Al-
gorithm 2.4). During data generation, the first 100 samples are discarded. Between
consecutive samples, all variables are resampled 16 times in a round-robin fashion to
enforce independence of consecutive samples.

185

https://sfb876.tu-dortmund.de/px

5 Computation and Quality Constraints

Table 5.3: Empirical upper bounds on the variances of each experiment on synthetic
data.

Name Ṽ∗[MSE] Ṽ∗[seconds/iter]

Chain 0.000565661040653599 3281.22

Star 0.0005950736234665 1607.77

Grid 0.0006882348319504 23.86

Full 0.0011911645839424 13721.40

Real-world Data

In the second set of experiments, we estimate the model parameters on the intel data
set that we already know from the previous chapters. Experiments on the other two
real-world data sets were omitted, in favor of more synthetic experiments.

D1 Intel Lab—Temperature and Humidity Data26

As in Chapter 4, we do not use the temporal information and generate twelve training
instances per day. Information on the data set can be found in Table 4.2. We choose the
optimal tree structure as conditional independence structure, computed via the Chow-
Liu algorithm (cf. Section 2.3.4).

5.6.2 Results

Results on the synthetic data sets are presented in Figures 5.5–5.8, and results on the
real-world data sets are shown in Figures 5.9 and 5.10. The black solid circles represent
results for model M1, while the other symbols and colors correspond to results for mod-
els M2 and M3—the common key of all plots is shown in Fig. 5.4. In total, the results
represent 9140 experiments. The error bars of the learning results (Figures 5.7–5.10)
are ommited to enhance the readability. Instead, we provide the empirical worst-case
variances in Table 5.3. While the MSE variances are reasonably low, the runtime vari-
ances are quite high, whereby the highest variance corresponds to a standard deviation
of 117 seconds per training iteration. Due to the Monte Carlo nature of SQM, its run-
time is deterministic. But recall that Algorithm 5.4 uses shared samples to estimate
all marginals simultaneously. Since not every sample is valid for every marginal, the
algorithm has to wait until N valid samples have been observed for each marginal. The
runtime of SQM marginal inference is hence a random variable which depends on the
number of marginals, i.e., the model dimension.

We now explain and discuss the results w.r.t. to the questions stated at the beginning
of this Section.

26http://db.csail.mit.edu/labdata/labdata.html

186

http://db.csail.mit.edu/labdata/labdata.html

5.6 Experimental Demonstration

-1

-0.5

 0

 0.5

 1

-10 -5 0 5 10

M1

M2, N=10
3

M2, N=10
4

M2, N=10
5

M2, N=10
6

M3

Figure 5.4: Key for Figures 5.5–5.10 to indicate the inference algorithm and the number
of SQM samples.

Q1 How does SQM respond to different parameter norms?

It is well known that the conditional independence structure has a strong impact on the
complexity of exact inference, and on the quality of approximate inference techniques like
belief propagation or naive mean field. It is thus an important insight from Theorem 5.3
that the approximation error of SQM does not depend on the specific structure. Instead,
the error depends on the norm of the parameter vector.

The first set of results can be found in Figures 5.5 and 5.6. On all four synthetic
structures, the average error increases with increasing standard deviation. Up to σ = 1,
different choices of N and k result in different approximation errors. However, for σ = 10,
the error is almost constant w.r.t. degree and sample number. Interestingly, Figures 5.5
and 5.6 reveal that the error introduced by the our sampling procedure is relatively
larger when the parameter norm is small. Quadrature-based inference in which the
expectation is computed exactly (rightmost/green bar in each group) achieves zero error
when σ is small. In case of larger standard deviations, the approximation error is mostly
determined by the polynomial approximation and not by the sampling procedure. In all
cases, the error of loopy belief propagation was below 10−2 so that the corresponding
bars cannot be seen in the figures.

Similar observations can be made when we measure the error in terms of the mean
squared error of estimated marginal probabilities (Fig. 5.7). For σ < 10−2, the error
is small and exhibits super-linear growth, starting from σ = 10−2. With σ = 100, the
growth rate decreases. The results of the corresponding experiment with real-world data
are shown in Fig. 5.9. Therein, we cannot control the parameter variance and instead
employ l1-regularization to control the parameter norm. For small λ values, some SQM
instances can achieve a small error. Stronger regularization implies smaller parame-
ter norms, which eases the SQM inference. On the other hand, strong regularization
downweights the likelihood. The MSE hence increases, which overrules the effect of the
reduced SQM error.

To sum up, the error increases sublinearly whenever we increase the parameter norm,
e.g., a ten times higher σ results in an additive error.

Q2 How does SQM respond to different polynomial degrees?

The error of uniform polynomial approximations depends on the width of the approxi-
mated domain. In our case, this width is determined by the parameter norm. For any
fixed width, Theorem 2.8 tells us that increasing the polynomial degree should reduce
the approximation error.

187

5 Computation and Quality Constraints

First, we consider the approximation of the log-partition function (Figures 5.5 and
5.6). Results for the deterministic quadrature27 (rightmost/green bar in each grouped
bar plot) show, that in case of small standard deviations (σ ≤ 0.1), the error is almost
zero for all polynomial degrees larger than 1. For σ = 1, the error decreases whenever
the polynomial degree is increased. If the parameter norm is large (σ = 10), increasing
the degree has almost no effect on the error. The picture is similar when we consider the
stochastic quadrature. However, increasing the degree can lead to a strongly increased
error whenever the number of samples is too small. This behavior can be observed
across all graphical structures. Results for σ = 0.1 on the fully connected structure
show, that the error can shrink to nearly zero when we increase the degree sufficiently.
The sampling procedure itself approximates the exact quadrature very well. Especially
for larger norms, the additional error that is introduced by the sampling procedure is
negligible, compared to the error of the polynomial approximation.

When we consider the MSE instead (last two rows of Fig. 5.7), the error strictly
increases when we increase the polynomial degree while keeping all other quantities
fixed. This behavior is predicted by Theorem 5.3, which tells us that the number of
samples has to be chosen w.r.t. to the degree. Looking at the results for the 10 × 10
grid structure in the bottom left plot of Fig. 5.7, we see that for N = 1000 samples,
a polynomial of degree k = 4 has a larger error than a polynomial of degree k = 2.
However, increasing the sample size to N ≥ 10000, the degree 4 polynomial achieves a
lower error than the degree two polynomial with 1000 samples. In this particular set of
experiments, degree k = 2 with N = 100000 samples always achieved the lowest MSE.
The same observations can me made in the corresponding experiment on real-world
(Fig. 5.10).

In summary, our results suggest that small polynomial degrees suffice for a practical
approximation, as long as the sample size is large enough. A linearly decreased error
can be observed when we increase the polynomial degree and the number of samples
accordingly.

Q3 How does SQM respond to different sample sizes?

We conducted experiments with four sample sizes. With the exception of a few outliers,
increasing the sample size leads to a smaller approximation error. In Figures 5.5 and
5.6, we see that N = 1000 samples are not enough when the polynomial approximation
is cubic or higher and the parameter norm is rather small (≤ 0.1). Even in the quadratic
case, the approximation error of SQM with N = 1000 samples stands out. When the
parameter norm is large (σ ≥ 1), the error of the polynomial approximation dominates
and the impact of the number of samples is negligible. This observation is independent
of the underlying conditional independence structure.

The parameter learning experiments on synthetic data (Fig. 5.7) show, that increasing
the number of samples leads to better marginal estimates. But increasing the samples
beyond a certain point does not incur much gain. Marginal approximations withN = 105

27Only available for chain, star and grid structures.

188

5.7 Discussion

and N = 106 samples are often close to each other, while smaller sample sizes result
in substantially higher mean squared errors. This relation is confirmed by results on
real-world data (Figures 5.9 and 5.10).

All experiments show, that the improvement from taking more samples is sublinear.
That is, taking ten times more samples improves the quality by a small additive constant.

Q4 What are the resource requirements of SQM?

It can be seen from Algorithms 5.2 and 5.4, that the memory requirement is linear in the
number of approximated quantities. E.g., if only the partition function is approximated,
we need memory space for the estimated partition function and temporary storage for
the SQM samples. When the sampling is performed sequentially, only one sample needs
to be stored at a time. The memory requirement is hence lower than that of loopy belief
propagation, which requires to store 2|E||Xv| messages (where Xv is the vertex state
space).

The runtime of SQM is indeed higher than that of belief propagation. This can
be considered as the price for the theoretical error guarantees of SQM. Corresponding
results can be found in Figures 5.8, 5.9, and 5.10. Clearly, the SQM runtime scales
almost perfectly linear with the number of samples—taking ten times more samples
increases the runtime by a factor of 10. On the other hand, the SQM algorithm can
be trivially parallelized due to the independence of Monte Carlo samples—taking ten
times more CPUs reduces the runtime by a factor of 10. The parameter norm has only
an indirect impact on the runtime, in that larger norms require a larger polynomial
degrees, which in turn increase the time to generate random index tuples. Keeping all
other quantities constant, increasing the parameter norm has no effect on the runtime.
Moreover, the computational complexity of many subroutines, like the estimation of
polynomial coefficients, sampling a single index tuple, and checking the realizability of
an index tuple, depend on the polynomial degree. Figure 5.8 shows, that the runtime of
SQM is a linear function of the degree—doubling the degree almost doubles the runtime.

Especially the results on real-world data show, that in case of relatively small poly-
nomial degrees and sample sizes, the runtime of SQM is reasonably low. However,
guaranteeing a small error by using large polynomial degrees and large sample sizes
indeed implies a large runtime.

5.7 Discussion

Resource constraint systems can have highly limited computational capabilities, like low
clock rates, and no hardware accelerators of any kind. But state-of-the-art machine
learning relies on the availability of high clock rates, high parallelism, and vector arith-
metic accelerators. To overcome this discrepancy, we need approximation techniques
that (1) exhibit moderate hardware demands while (2) guaranteeing a reasonable qual-
ity. While the first point can be satisfied be various techniques, the second point is often
neglected due to the heuristic nature of many existing methods. Even if a method is de-

189

5 Computation and Quality Constraints

rived from theoretically sound principles, the approximation error is often unbounded.
In case of undirected models, the most demanding step of parameter learning is the
probabilistic inference—the central research object of this chapter.

We started by reviewing existing inference techniques and their complexity. Most
approximate inference techniques work by approximating the conditional independence
structure. As a result, the approximation error is hard to control if at all possible.
Consequently, it is advantageous to keep the structure intact and find other avenues to
approximate inference. Due to the specific form of the partition function, it is amenable
to numerical integration. We reviewed the WISH algorithm as approximate inference
technique with error guarantees. In fact, WISH delivers an (ϵ, δ)-approximation, based
on left Riemann sums and pairwise independent hash functions. The method keeps
the conditional independence structure intact and provides error bounds, but requires
multiple queries to an NP-oracle, and is hence not suitable for highly restricted systems.
However, the technique motivated the investigation of other approximate integration
methods.

We hence investigated the class of quadrature techniques. The underlying idea is to
approximate an intractable integral by replacing the integrand by an appropriate poly-
nomial approximation. Based on known error bounds for polynomial approximations,
we showed that the quadrature technique could in principle be applied to estimate the
partition function of exponential families. Nevertheless, it was not clear that this pro-
cedure would yield any computational benefit. To this end, we introduced the notion
of integrable sufficient statistics. It was shown that the statistics of discrete and con-
tinuous state space models satisfy this property. Based on these insights, we introduced
the stochastic quadrature method which is a stochastic reinterpretation of a quadrature
approximation to the partition function. We proved that the corresponding random
quantity is an unbiased estimator to the deterministic quadrature. Moreover, we pro-
vided a probabilistic upper bound on the approximation error w.r.t. the true partition
function value. We identified the norm of the parameter vector, the degree of the under-
lying polynomial approximation, and the number of samples as crucial factors for the
approximation error. The upper bound was later extended into an upper bound on the
approximation error of the log-partition function.

After establishing these intriguing theoretical properties, we derived a Monte Carlo
algorithm that actually outputs the SQM approximation. In the corresponding deriva-
tion, we made heavy use of equivalence classes of state spaces, and counted their total
number via combinatorial enumerative problems. Based on these insights, we discovered
a factorization of the density of the underlying random variable as well as a fast sampling
algorithm. Finally, we extended our SQM approximation to the partition function into
an algorithm for the approximation of marginal probabilities to facilitate SQM based
parameter learning. The marginal approximation is based on random variables whose
density differs from the ordinary SQM tuple density. We therefore calculated the optimal
importance weights in order to devise a shared sampling procedure for approximating
all marginal probabilities of a discrete state space model simultaneously.

To round our theoretical insights and gain some practical intuition about how our
new methods perform, we conducted extensive experiments on synthetic and real-world

190

5.7 Discussion

data. Among various graphical structures, the error increases sublinearly whenever the
parameter norm increases. Surprisingly, it turned out that rather small polynomial de-
grees suffice for a good approximation, as long as the sample size is large enough. A
linearly decreased error can be observed whenever the polynomial degree and the number
of samples increases. The improvement from taking more samples is in general sublin-
ear. The memory requirements are linear in the number of computed marginals and the
runtime of SQM is a linear function of the polynomial degree and number of samples.
In almost all experiments, loopy belief propagation was faster than SQM and delivered
a lower error. Nevertheless, this behavior cannot be guaranteed for all conditional inde-
pendence structures, while the behavior of SQM is guaranteed. It depends on the actual
application if the slightly worse but trustworthy SQM results are to be preferred over
LBP.

The basic idea of SQM, the tuple density, the error bound (Theorem 5.3), and the
k-integrability of discrete MRFs (Lemma 5.2) have been published before in [172]. All
results related to marginal inference, fast normalization of the tuple density, and fast
sampling from the tuple density are new. Moreover, compared to [172], new experiments
have been conducted which led to new insights on the error and the runtime behavior.

191

5 Computation and Quality Constraints

|l
o
g
(Ẑ
)
−
lo
g
(Z
)|

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5

Polynomial degree k

chain, σ = 0.01

 0

 0.5

 1

 1.5

 2

 2.5

1 2 3 4 5

Polynomial degree k

star, σ = 0.01

|l
og

(Ẑ
)
−

lo
g
(Z
)|

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 3 4 5

Polynomial degree k

chain, σ = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

1 2 3 4 5

Polynomial degree k

star, σ = 0.1

|l
og

(Ẑ
)
−

lo
g
(Z
)|

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5

Polynomial degree k

chain, σ = 1

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5

Polynomial degree k

star, σ = 1

|l
og

(Ẑ
)
−
lo
g
(Z
)|

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5

Polynomial degree k

chain, σ = 10

 0

 5

 10

 15

 20

 25

 30

 35

 40

1 2 3 4 5

Polynomial degree k

star, σ = 10

Figure 5.5: Average approximation error for the log-partition function on chain and
star structures. Results for five SQM variants and five polynomial degrees.
From left to right: 103-SQM, 104-SQM, 105-SQM, 106-SQM, exact SQM (see
Fig. 5.4). Results are averaged over 10 repetitions.

192

5.7 Discussion

|l
og

(Ẑ
)
−

lo
g
(Z
)|

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 3 4 5

Polynomial degree k

grid, σ = 0.01

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

1 2 3 4 5

Polynomial degree k

full, σ = 0.01

|l
o
g
(Ẑ
)
−

lo
g
(Z
)|

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5

Polynomial degree k

grid, σ = 0.1

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 2 3 4 5

Polynomial degree k

full, σ = 0.1

|l
o
g
(Ẑ
)
−
lo
g
(Z
)|

 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5

Polynomial degree k

grid, σ = 1

 0

 5

 10

 15

 20

 25

1 2 3 4 5

Polynomial degree k

full, σ = 1

|l
og

(Ẑ
)
−
lo
g
(Z
)|

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

1 2 3 4 5

Polynomial degree k

grid, σ = 10

 0

 20

 40

 60

 80

 100

 120

 140

1 2 3 4 5

Polynomial degree k

full, σ = 10

Figure 5.6: Average approximation error for the log-partition function on grid and fully
connected structures. Results for five SQM variants and five polynomial
degrees. From left to right: 103-SQM, 104-SQM, 105-SQM, 106-SQM, exact
SQM (see Fig. 5.4). Results are averaged over 10 repetitions.

193

5 Computation and Quality Constraints

M
S
E

 0.0001

 0.001

 0.01

 0.1

0.0000010 0.0001000 0.0100000 1.0000000

Parameter standard deviation σ

chain

 0.0001

 0.001

 0.01

 0.1

0.0000010 0.0001000 0.0100000 1.0000000

Parameter standard deviation σ

star

M
S
E

 0.0001

 0.001

 0.01

 0.1

0.0000010 0.0001000 0.0100000 1.0000000

Parameter standard deviation σ

grid

 0.0001

 0.001

 0.01

 0.1

0.0000010 0.0001000 0.0100000 1.0000000

Parameter standard deviation σ

full

M
S
E

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 1 2 3 4 5 6 7 8 9

Polynomial degree k

chain

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 1 2 3 4 5 6 7 8 9

Polynomial degree k

star

M
S
E

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 1 2 3 4 5 6 7 8 9

Polynomial degree k

grid

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 1 2 3 4 5 6 7 8 9

Polynomial degree k

full

Figure 5.7: Average MSE in estimated marginals (y-axis), as a function of the standard
deviation (x-axis, first two rows), and as a function of the polynomial degree
(x-axis, last two rows). The results are averaged over multiple runs and
various degrees. Different colors indicate different decay types (see Fig. 5.4).
Straight lines indicate constant M1 results.

194

5.7 Discussion

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
o
n

 0.1

 1

 10

 100

 1000

 10000

 100000

0.0000010 0.0001000 0.0100000 1.0000000

Parameter standard deviation σ

chain

 0.1

 1

 10

 100

 1000

 10000

 100000

0.0000010 0.0001000 0.0100000 1.0000000

Parameter standard deviation σ

star

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0.1

 1

 10

 100

 1000

 10000

 100000

0.0000010 0.0001000 0.0100000 1.0000000

Parameter standard deviation σ

grid

 1

 10

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

0.0000010 0.0001000 0.0100000 1.0000000

Parameter standard deviation σ

full

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5 6 7 8 9

Polynomial degree k

chain

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 1 2 3 4 5 6 7 8 9

Polynomial degree k

star

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 1 2 3 4 5 6 7 8 9

Polynomial degree k

grid

 0

 200000

 400000

 600000

 800000

 1x10
6

 1.2x10
6

 1.4x10
6

 1 2 3 4 5 6 7 8 9

Polynomial degree k

full

Figure 5.8: Average runtime per iteration in milliseconds (y-axis), as a function of the
standard deviation (x-axis, first two rows), and as a function of the polyno-
mial degree (x-axis, last two rows). The results are averaged over multiple
runs and various standard deviations. Different colors indicate different de-
cay types (see Fig. 5.4).

195

5 Computation and Quality Constraints

M
S
E

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Regularization parameter λ

intel.A

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Regularization parameter λ

intel.B

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Regularization parameter λ

intel.A

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Regularization parameter λ

intel.B

Figure 5.9: Experimental results on the Intel Lab data. Average MSE between esti-
mated and empirical marginals (first row), and average runtime per training
iteration (last row), as a function of the regularization parameter λ (x-axis),
averaged over various polynomial degrees.

196

5.7 Discussion

M
S
E

 0.0085

 0.009

 0.0095

 0.01

 0.0105

 0.011

 0.0115

 0.012

 0.0125

 0.013

 0.0135

 1 2 3 4 5 6 7 8 9

Polynomial degree k

intel.A

 0.007

 0.0075

 0.008

 0.0085

 0.009

 0.0095

 0.01

 0.0105

 0.011

 0.0115

 0.012

 1 2 3 4 5 6 7 8 9

Polynomial degree k

intel.B

R
u
n
ti
m
e-
p
er
-I
te
ra
ti
on

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7 8 9

Polynomial degree k

intel.A

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 3 4 5 6 7 8 9

Polynomial degree k

intel.B

Figure 5.10: Experimental results on the Intel Lab data. Average MSE between esti-
mated and empirical marginals (first row), and average runtime per training
iteration (last row), as a function of the polynomial degree (x-axis), aver-
aged over various regularization weights. Straight lines indicate constant
M1 results.

197

6 Conclusion

Theoretical and empirical results from Chapters 3–5 showed, that our techniques can
reduce the memory consumption, arithmetic requirements, and computational complex-
ity of ordinary exponential family models. The conditional independence structure is
kept intact, no new assumptions are introduced, and our proposed methods arise from
the very definition of the exponential family. Reparametrization, integer models, and
the stochastic quadrature are inherently connected via regularization, which allows us
to transfer resource constraints to constraints or costs on the model’s parameter space.
More detailed discussions of related work can be found at the beginning of each chapter,
while a discussion of our results can be found at the end of each Chapter.

Here, we conclude this work by discussing our findings in the context of the Texas In-
struments MSP430-FR5x microcontroller unit. The system is representative for state-of-
the-art ultra-low-power architectures. It contains a 16 bit CPU with reduced instruction
set at 16 MHz clock rate. At runtime, it consumes 118 µA/MHz (with 500 nA standby).
It provides 256 kB of non-volatile ferroelectric random-access memory and 8 kB static
random-access memory. Common applications of such systems are metering, wearable
electronics, sensor management, logging, home automation, watches, fitness accessories
and other mobile consumer electronics. The utility of machine learning and probabilis-
tic models on such systems depends on the number of variables that can be processed,
and the runtime of learning and inference algorithms. Specifically, we investigate if our
proposed methods increase the size of models that can be learned on the MSP430-FR5x
MCU.

Our sparse reparametrization is designed to allow more spatio-temporal models to fit
into the main memory of a resource-constrained system. Let us review the experimental
results from Chapter 3 (shown in Fig. 3.10–3.17) in the context of the MSP430-FR5x.
Regularized models enjoy a superior sparsity, compared to ordinary maximum likeli-
hood estimates. If the regularization is too strong, the model quality begins to decrease.
Our proposed reparametrization approach damps this effect by transferring information
from non-zero parameters to parameters which are 0. Thus, parameters may be zero
without sacrificing the model’s quality. Exemplary results are summarized in Table 6.1.
The table contains the average sizes in kilobyte of estimated parameter vectors, sup-
posing a 32 bit floating-point representation, for models without regularization, with
l1-regularization, and with l1-regularized reparametrization. Models on synthetic data
use the inverse exponential decay and models on real-world data the rational decay. Bold
entries indicate that the parameter vector would fit into the main memory of our ultra-
low-power architecture, where we assume that the inference algorithm, the optimization
algorithm and additional variables consume ≈ 50 kB. First of all, we see that our reg-
ularization approach doubles the number of models which fit onto the MCU. Secondly,

199

6 Conclusion

Table 6.1: Memory consumption (in kilobyte) of θ (32 bit floating-point) without reg-
ularization, with l1-regularization, and with l1-regularized reparametrization
(inverse exponential decay for synthetic data and rational decay for real-
world data). Results shown are for λ = 0.64 and T = 32, averaged over
all redundancy levels. Bold models would fit into the main memory of the
MSP430-FR5x MCU, assuming 50 kB program code.

Data d None l1-Reg. Reparam.

Chain 1066.68 4266.72 247.52 202.08

Star 1084.0 4336.0 201.6 197.44

Grid 1037.8 4151.2 277.92 199.04

Full 843.8 3375.2 257.92 181.6

Insight 2662025.0 10648100.0 5940.0 7130.0

Intel 62150.0 248600.0 142.0 430.0

Vavel 5610650.0 22442600.0 90196.0 30508.0

we know from the results in Chapter 3 that the plain l1-regularized models sacrifice
the conditional independence structure and hence exhibit a substantially higher mean
squared error than the reparametrized models. Thus, although two l1-models would in
principle fit into the systems memory, they are unusable in practice due to their low
quality.

The second major obstacle when we try to learn undirected models on the MSP430-
FR5x is the missing floating-point hardware. It is indeed possible to emulate 32 bit
and 64 bit floating-point arithmetic in software, but this is accompanied by a very high
computational overhead. Our integer undirected model which we presented in Chapter 4
solves this issue. We provide inference and optimization algorithms which work only on
the integer domain—they do not require any floating-point arithmetic. Moreover, our
theoretical derivations are valid for any subset {1, 2, . . . , k− 1} of the non-negative inte-
gers, which implies that the results are also valid for small word-sizes. The experimental
results in Figures 4.5–4.11 show, that small values of k suffice to provide a practical
model quality. Hence, we may choose the native 16 bit integers as underlying data type
for our integer undirected model. Corresponding runtime results are summarized in Ta-
bles 6.2 and 6.3. The values in columns three and four represent the average runtime in
milliseconds of one iteration of loopy belief propagation and one iteration of bit-length
propagation executed on the MSP430-FR5x MCU. Table 6.2 contains LBP results for
emulated 64 bit floating-point arithmetic, and Table 6.3 contains the corresponding re-
sults for emulated 32 bit arithmetic28. BLprop was executed with the MCU’s native
word-size of 16 bit. Both sets of results are unambiguous: compared to 64 bit emula-

2816 bit floating-point emulation is not supported by the MCU.

200

Table 6.2: Runtime in milliseconds of one iteration of message passing for LBP (64 bit
floating-point), generation of one SQM sample (polynomial degree 2, 64 bit
floating-point), and one iteration of BLprop (16 bit integer), on an MSP430-
FR5x microcontroller unit.

Data |E| LBP (1 iter) BLprop (1 iter) SQM (1 sample)

Chain 15 4843.4 19.0 773.8

Star 15 4744.3 19.0 774.0

Grid 24 7713.9 29.5 1081.3

Full 120 40422.6 141.2 4704.2

Table 6.3: Runtime in milliseconds of one iteration of message passing for LBP (32 bit
floating-point), generation of one SQM sample (polynomial degree 2, 32 bit
floating-point), and one iteration of BLprop (16 bit integer), on an MSP430-
FR5x microcontroller unit.

Data |E| LBP (1 iter) BLprop (1 iter) SQM (1 sample)

Chain 15 1156.2 19.0 350.3

Star 15 1140.4 19.0 393.1

Grid 24 1838.1 29.5 445.3

Full 120 9642.1 141.2 1549.7

tion, our integer models are at least 250 times faster. In case of 32 bit emulation, the
speedup is still 60. Having the results from Section 4.5.2 in mind, we see that the benefit
of our integer models is higher the weaker the underlying computational architecture is.
Moreover, we know from Section 4.5.2 that good integer parameters can be found, even
when the parameters of the data generating process are far from integrality. Thus, one
may indeed expect to observe the same behavior in practice. As explained in Chapter 4,
the speedup goes hand in hand with a reduced energy consumption. When we assume
that our microcontroller is battery powered, using integer models can hence significantly
extend the uptime of our system.

Reparametrization and integer models may be combined, e.g., by choosing binary de-
cay matrices. However, both rely on approximate message passing algorithms to perform
probabilistic inference. Such algorithms have several limitations like unknown conver-
gence behavior on general cyclic graphs, and an unbounded approximation error. In
certain settings, these properties may be undesirable and one has to resort to exact
algorithms or approximation algorithms with error bounds. Those algorithms, like the
junction tree algorithm or WISH, have an exponential complexity and are hence not well-

201

6 Conclusion

suited for small systems. Our stochastic quadrature method, presented in Chapter 5,
combines polynomial approximation with Monte Carlo sampling for fast approximate
inference. Moreover, the approximation error is bounded and depends on the norm of
the parameter vector θ. Our results from Section 5.6 show, that small polynomial de-
grees and moderate sample numbers are often enough to achieve practical error rates.
Exemplary results on the MSP430-FR5x can be found in the fifth column of Tables 6.2
and 6.3. We measured the average runtime to generate a single SQM sample for a poly-
nomial degree of 2. The runtime is in between LBP and BLprop, which, in contrast to
SQM, do not provide any guarantees on general loopy graphs. In practical applications,
several samples have to be drawn. When we assume a sample size of 100, the accumu-
lated runtime would be within 1/2 and 8 minutes. This could indeed be prohibitive for
some applications. Nevertheless, Theorem 5.3 allows us to find an upper bound on the
error that depends on the number of samples. For any fixed model, we may thus adjust
the sample size to find a reasonable tradeoff between resource consumption and quality.
In contrast, the error of message passing on loopy graphs may oscillate, and a functional
relation between the LBP error and the number of iterations is unknown. Moreover,
SQM admits that several computational steps may be precomputed on a strong system.
In the above example, θ was known and we precomputed τ , the ∥χiϕ∥1 values, and the
polynomial coefficients ζ. These values are valid for all parameters whose norm does
not exceed B = ∥θ∥. It is thus possible to reuse the same precomputed values during
training, if the optimization procedure guarantees that the parameter norm does not
exceed B, e.g., via regularization.

To sum up, our techniques reduced the memory consumption, accelerated inference
and learning, and offer several ways to trade quality against resource consumption.
Hence, a wider range of probabilistic models can be learned and applied on resource-
constrained systems. This was the first investigation of undirected exponential family
models on ULP devices. We hope that our results can guide the future development
of ubiquitous machine learning systems and provide inspiration for future research. We
close this work by pointing out some possible future directions.

6.1 Future Directions

One new direction for reparametrized models is the derivation of specialized inference
algorithms like those known for dynamic Bayesian networks [22]. Since the message
computation schedule of loopy belief propagation is almost arbitrary, one could perform
a layer-wise forward-backward scheme which only stores the message of a single layer at a
time. The simple piecewise linear form of our reparametrization may also be exploited to
propose new kinds of messages in which the parameter decoding is performed implicitly.
Another direction treats the reparametrization itself. For now, we used predefined decay
types. However, decay matrices could be learned during parameter estimation, like
filter kernels in convolutional neural networks [79]. Such an approach would render the
optimization problem non-convex, but theoretically well-defined optimization procedures
may still be found [10, 25]. Moreover, we predefined the particular functional form of

202

6.1 Future Directions

our reparametrization, but an automated derivation of functional dependencies between
parameters is also conceivable. First approaches include automatic parameter tying,
based on k-means clustering [40], as well as automatic parameter tying via random hash
functions.

In the field of mixed-integer programming (MIP), most algorithms rely on relaxations
and do not consider any form of integer regularization to find critical integer solutions.
It is hence interesting to understand the benefits and limitations of our integer gradi-
ent descent method in the general MIP setting. In machine learning, several heuristic
approaches for learning quantized parameters of neural networks are known. However,
most of them have no theoretical justification [116]. It will therefore improve the field
when such techniques would be reviewed in the light of our integer gradient descent
and BLprop algorithms. Other directions include integer approximations to distribu-
tions with infinite support, like the Poisson distribution, rational random variables, and
integer tree-reweighted belief propagation with rational edge appearance probabilities.
Also the combination of spatio-temporal and integer models is interesting, and first
experiments have already been conducted on smartphone usage data [174].

Our SQM runtime results on the microcontroller unit revealed that the method still
suffers from a high runtime. Due to the complexity of the inference problem, it should
be clear that we cannot find arbitrary good solutions in arbitrary short time. However,
we expect that a substantial proportion of this runtime is due to the emulation of
floating-point arithmetic. Assuming that the true model parameters are integer, an
integer SQM is conceivable. In fact, the values of |χiϕ| (∀i) are integer by definition,
and any polynomial can be approximated well by another polynomial with rational
coefficients. Based on these observations, integer SQM could reduce the runtime issues
of ordinary SQM on resource-constrained systems. Moreover, we showed which types
of continuous sufficient statistics are k-integrable, but our results have not yet been
connected to known continuous distributions. Discrete and continuous statistics could be
combined to yield an SQM-based inference procedure for random variables with discrete
and continuous components. In Section 5.2 we explained that existing error bounds for
the general quadrature do not apply to our method, due to the non-uniform sampling
of the approximation interval [l;u] during discrete integration. Including knowledge
about the energy landscape can lead to non-uniform polynomial approximations, in
which highly dense regions exhibit a lower error than regions that contain only a few
instances. Finally, we used the norm of the parameter vector as an upper bound to
the inner product via Hölder’s inequality. By using additional knowledge about the
parameter’s prior distribution, the norm could be removed from the bound, which would
be interesting especially in a Bayesian setting.

203

7 Appendix

7.1 Basic Probability and Information Theory

For reasons of clarity and completeness, we give short rigorous definitions of random
variables and expected values. An extensive introduction to probability theory can be
found in [41].

Definition 7.1 (Probability Measure) Let Q be some ground set and Σ ⊆ P(Q) a
subset of its power set. The pair (Q,Σ) is a measurable space if Q ∈ Σ, Q = ∅, and Σ
is closed under complementation and countable union—Σ is then a σ-algebra relative to
Q. A function ν : Σ→ R∪{+∞} is a measure, if it is non-negative, with ν(∅) = 0, and
for any sequence of disjoint sets S1, S2, · · · ∈ Σ, it holds that ν(∪∞i=1Si) =

∑∞
i=1 ν(Si).

If further ν : Σ → [0; 1] and ν(Q) = 1, then ν is a probability measure. A function
f : A → B is measurable, if (A,Γ) and (B,Λ) are measurable spaces and the preimage
of any S ∈ Λ is contained in Γ, i.e., f−1(S) = {a ∈ A | f(a) ∈ S} ∈ Γ.

Measures allow us to assign non-negative numbers to sets, in a well-defined way.
Intuitively, Σ is the space of all measurable combinations of atoms from Q. If one
thinks of real-world events as sets of atomic situations in which the event occurs, its
(probability) measure may loosely be interpreted as a fraction of possible situations in
which an event may occur. Based on these very basic concepts, we define a special type
of measurable transformation which is known as random variable.

Definition 7.2 (Random Variable) Let (Q,Σ) and (X ,Λ) be two measurable spaces
with probability measure P on (Q,Σ). A random variable X is a measurable function
from Q to X . Q is called reference space and X is called state space of X. If the state
space is finite or countable infinite, X is a discrete random variable. Whenever X is
uncountable, X is a continuous random variable. Moreover, we declare the existence of
a base measure ν on (X ,Λ), such that the pushforward measure P ◦X−1 is absolutely
continuous w.r.t. ν. This means that for any S ∈ Λ : ν(S) = 0 ⇒ (P ◦X−1)(S) = 0,
i.e., P ◦X−1 is dominated by ν.

For any random variable X, the notation P(X ∈ S) for some S ⊆ X is an abbreviation
for P(X−1(S)) = P({a ∈ Q | X(a) ∈ S}), i.e., the “size” (measure) of the set that
contains all atoms a whose image is in S. Whenever S = {x} is a singleton set, we
write P(X = x) instead of P(X ∈ S). The intuition is, that a random variable X can
take different values x, also called realizations, from the state space X . The number of
times a particular x will be seen whenever we look at X is controlled by the probability

205

7 Appendix

measure P. We write x ∼ P to indicate that the chances to observe a fixed x are
controlled by P—we also say that x was sampled from P.

Various types of measures and σ-algebras are studied in measure theory. Here, we
restrict ourselves to the cases which are relevant for inference in exponential families.
We set the Lebesgue measure as the base measure of continuous random variables, i.e.,
the measure of any S ∈ Λ is

ν(S) = inf

{
∞∑
i=1

length(Ii) | I1, I2, . . . open intervals in R ∧ S ⊆
∞⋃
i=1

Ii

}
and Λ is a Lebesgue σ-algebra. That is, Λ contains all subsets of R such that ν(R) =
ν(R ∩ S) + ν(R ∩ S), ∀R ∈ R. It follows that the probability of a continuous X
taking any particular value x is zero; any x is contained in all open ϵ-intervals around
it—x ∈ (x − ϵ;x + ϵ) for all ϵ > 0—and the length of any of these intervals is 2ϵ.
The infimum over all these interval lengths must be zero. Thus ν({x}) = 0 and hence
P(X = x) = P(X−1({x})) = 0 by absolute continuity.

Given Definition 7.2, the Radon-Nikodym theorem [41] guarantees the existence of
a measurable function p : X → [0;∞) with P(X ∈ S) =

∫
S
p d ν almost everywhere.

In the context of continuous random variables, p is called probability density function
(p.d.f.) of X.

When a random variable is discrete, we set the counting measure as its base measure,
i.e., ∀S ∈ Λ : ν(S) = |S| whenever S is finite and ν(S) = +∞ otherwise. Plugging the
counting measure into the Radon-Nikodym theorem shows that the probability measure
P and the probability density function p are equal: P(X = x) = P(X−1({x})) =∫
{x} p d ν = p(x), because ν({x}) = 1. In the context of discrete random variables, p

and P are called probability mass function (p.m.f.) of X. Whenever it’s clear from the
context that X is a discrete random variable, we will use P instead of p.

Expressions involving random variables cannot be evaluated directly due to their ran-
dom nature. Functions ϕ whose domain is the state space of a random variable X
implicitly define a new random variable ϕ(X) whose state space is the image of ϕ and
its reference space is inherited from X. Instead of evaluating ϕ directly, it is possible
to evaluate its expected value—an integration29 over all possible states of a random
variable.

Definition 7.3 (Expectation) Let X be a random variable and ϕ any function on its
state space. The expected value of ϕ(X), denoted by E[ϕ(X)] is

E[ϕ(X)] =

∫
Q

(ϕ ◦X) dP =

∫
X
ϕ dP ◦X−1 =

∫
X
ϕ

dP ◦X−1

d ν
d ν =

∫
X
ϕp d ν ,

and if X is discrete, the statement reduces to

E[ϕ(X)] =
∑
x∈X

ϕ(x)P(X = x) .

29Whenever an integration is carried out over all variables, we suppress the arguments of the involved
functions and use the fully functional notation (cf. [41]).

206

7.1 Basic Probability and Information Theory

The raw expectation of X is achieved by setting ϕ to the identity function.

Note that different probability densities can lead to the same expectation, i.e., p ̸= q
but Ep[ϕ(X)] = Eq[ϕ(X)].

When we observe processes from nature and interpret them as random variables, we
do most often encounter situations in which not one but multiple random variables are
of interest. In particular, we want to understand how multiple variables interact and
influence each other.

Definition 7.4 (Marginalization) Let X,Y ,W be random variables with joint mea-
sure P, and joint density p—their σ-algebras are sub-σ-algebras of ΣX,Y ,W and the
underlying product reference measure30 is ν. The specific marginal densities pX , pY ,
and pW are discovered by integrating the remaining variables out, i.e.,

pX(x) =

∫
Y

∫
W
p(x,y,w) d νY (y)νW (w) .

Again, we get a plain summation in case of discrete random variables:

P(X = x) =
∑
y∈Y

∑
w∈W

P(x,y,w) .

Any subset of variables may be integrated out to get the marginal probability of the
remaining variables.

Based on marginalization, we may “extract” the isolated behavior of any random
variable from the joint density of the system in which it exists. It is often not desired
to remove the dependence via full marginalization, because the behavior of a random
variable X might change if some related event Y ∈ S has occurred.

Definition 7.5 (Conditional Probability) The conditional density of X = x given
Y = y is defined as the joint density of x and y relative to the marginal density of y:

pX(x | Y = y) =
p(x,y)

pY (y)
.

In this case, we say that the density of X is conditioned on Y = y. Note that X cannot
be conditioned on Y = y whenever pY (y) = 0. Finally, X and Y are independent if
and only if ∀x ∈ X : ∀y ∈ Y : p(x,y) = pX(x)pY (y), denoted by X ⊥⊥ Y . Equivalently,
X and Y are independent when their sub-σ algebras are independent.

Similarly, X and Y are independent given W = w if and only if ∀x ∈ X : ∀y ∈ Y :
pX,Y (x,y |W = w) = pX(x |W = w)pY (y |W = w), denoted by X ⊥⊥ Y |W = w.

30Both, the counting measure on σ-algebras with countable reference sets, and the Lebesgue measure
on Lebesgue σ-algebras are σ-finite. Hence, product measures are uniquely determined by Fubini’s
theorem.

207

7 Appendix

For ease of exposition, multiple random variables are often collected together to form
a random variable, also called random field, whose components are indexed by a set
V = [n]. Here, [n] denotes the set of the first n positive integers [n] = {1, 2, . . . , n}.

Having all that said, we drop the notion of a reference space. Within this thesis a
(multivariate) random variable X is fully specified by its (joint) density and its state
space X . Moreover, unless otherwise explicitly stated, X is a discrete random variable
and its p.m.f. P(X = x) is abbreviated by P(x) or simply p(x) whenever the random
variable is known from the context.

7.2 Information Entropy and Related Functionals

Randomness is closely related to the concept of uncertainty. If all outcomes of a ran-
dom variable are almost equally likely, we are rather uncertain about which particular
realization we will see. On the other hand, if a random variable takes only a few values
with high probability while other are unlikely, we can be rather certain that one of these
values will appear. This intuition is captured by the concept of entropy.

Definition 7.6 (Entropy) Let X be a random variable with probability measure P and
strictly positive31 density p. The functional Hb, defined by

Hb[P] = −
∫
X
p logb p d ν = E [− logb p(X)]

is the base-b entropy of P. Whenever the base of the logarithm is not explicitly mentioned,
we set b = e, i.e., H = He.

Varying the base of the logarithm in the above definition, changes the unit of entropy.
In this thesis, we will focus on He and H2, which yield the units nat and bit, respectively.
Choosing a specific base seems neglectable, but we will see in Chapter 4 under which
circumstances the base has major implications for resource-constrained systems.

Based on the entropy, we derive a measure that tells us how much certainty we loose,
when we try to measure the probability of X with a “wrong” measure F in place of the
correct measure P.

Definition 7.7 (Kullback-Leibler Divergence) Let X be a random variable with
probability measure P, and some alternative probability measure F on the same σ-algebra
with densities p and q, respectively. The functional KL, with

KL[P ∥ F] =

∫
X
p log

p

q
d ν

is the Kullback-Leibler divergence between P and F.

31In this definition, we require that p is strictly positive. Some authors allow p : X → [0; +∞] and set
0 log 0 = 0 to define the entropy. However, probability densities considered in this thesis, namely
exponential families of densities, cannot map any state to 0 and the convention 0 log 0 = 0 is hence
not required in the context of this thesis.

208

7.2 Information Entropy and Related Functionals

Note that KL is not symmetric, i.e., KL[P ∥ F] ̸= KL[F ∥ P] unless P = F. Ex-
tendingH and KL to the multivariate case is straightforward—summation or integration
must be carried out over the full joint state space of all random variables. If F is chosen
appropriately, KL implies a natural measure for independence between random variables.

Definition 7.8 (Mutual Information) Let X and Y be two random variables with
joint probability measure P and joint density p. Let further F be the probability measure
in which X and Y are independent but have the same marginals as in P, i.e., q(x,y) =
pX(x)pY (y). The mutual information between X and Y is

I[X,Y] = KL[P ∥ F] =

∫
X

∫
Y
p(x,y) log

p(x,y)

pX(x)pY (y)
d νX(x)νY (y) .

Moreover, I[X,Y] = 0⇔X ⊥⊥ Y .

209

Bibliography

[1] Pooyan Abouzar, David G. Michelson, and Maziyar Hamdi. Rssi-based distributed
self-localization for wireless sensor networks used in precision agriculture. IEEE
Transactions on Wireless Communications, 15(10):6638–6650, 2016.

[2] Alekh Agarwal, Sahand Negahban, and Martin J. Wainwright. Fast global conver-
gence of gradient methods for high-dimensional statistical recovery. The Annals
of Statistics, 40(5):2452–2482, 10 2012.

[3] Babak Ahmadi, Kristian Kersting, Martin Mladenov, and Sriraam Natarajan. Ex-
ploiting symmetries for scaling loopy belief propagation and relational training.
Machine Learning, 92(1):91–132, 2013.

[4] Srinivas M. Aji and Robert J. McEliece. The generalized distributive law. IEEE
Transactions on Information Theory, 46(2):325–343, 2000.

[5] Isaac Amundson, Manish Kushwaha, and Xenofon D. Koutsoukos. A method
for estimating angular separation in mobile wireless sensor networks. Journal of
Intelligent and Robotic Systems, 71(3-4):273–286, 2013.

[6] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan.
An introduction to MCMC for machine learning. Machine Learning, 50(1-2):5–43,
2003.

[7] Alexander Artikis, Matthias Weidlich, Francois Schnitzler, Ioannis Boutsis,
Thomas Liebig, Nico Piatkowski, Christian Bockermann, Katharina Morik, Vana
Kalogeraki, Jakub Marecek, Avigdor Gal, Shie Mannor, Dimitrios Gunopulos, and
Dermot Kinane. Heterogeneous stream processing and crowdsourcing for urban
traffic management. In Sihem Amer-Yahia, Vassilis Christophides, Anastasios Ke-
mentsietsidis, Minos N. Garofalakis, Stratos Idreos, and Vincent Leroy, editors,
Proceedings of the 17th International Conference on Extending Database Technol-
ogy (EDBT), pages 712–723. OpenProceedings.org, 2014.

[8] Kendall Atkinson and Weimin Han. Theoretical Numerical Analysis. Springer-
Verlag New York, 3rd edition, 2009.

[9] Hedy Attouch and Jérôme Bolte. On the convergence of the proximal algorithm
for nonsmooth functions involving analytic features. Mathematical Programming,
116(1):5–16, 2009.

211

Bibliography

[10] Hédy Attouch, Jérôme Bolte, Patrick Redont, and Antoine Soubeyran. Proximal
alternating minimization and projection methods for nonconvex problems: An
approach based on the kurdyka-lojasiewicz inequality. Mathematics of Operations
Research, 35(2):438–457, 2010.

[11] Hédy Attouch, Jérôme Bolte, and Benar Fux Svaiter. Convergence of descent
methods for semi-algebraic and tame problems: proximal algorithms, forward-
backward splitting, and regularized Gauss-Seidel methods. Math. Program., 137(1-
2):91–129, 2013.

[12] Hedy Attouch and Juan Peypouquet. The rate of convergence of nesterov’s accel-
erated forward-backward method is actually faster than 1/k2. SIAM Journal on
Optimization, 26(3):1824–1834, 2016.

[13] Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obo zinski. Op-
timization with sparsity-inducing penalties. Foundations and Trends in Machine
Learning, 4(1):1–106, 2012.

[14] Jiatong Bao, Yunyi Jia, Yu Cheng, Hongru Tang, and Ning Xi. Detecting tar-
get objects by natural language instructions using an RGB-D camera. Sensors,
16(12):2117, 2016.

[15] Jiatong Bao, Yunyi Jia, Yu Cheng, and Ning Xi. Saliency-guided detection of
unknown objects in RGB-D indoor scenes. Sensors, 15(9):21054–21074, 2015.

[16] Dhruv Batra, Payman Yadollahpour, Abner Guzmán-Rivera, and Gregory
Shakhnarovich. Diverse m-best solutions in Markov random fields. In Computer
Vision - ECCV 2012 - 12th European Conference on Computer Vision, Florence,
Italy, October 7-13, 2012, Proceedings, Part V, pages 1–16, 2012.

[17] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202,
2009.

[18] Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent
type methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013.

[19] Anne Berry, S. Jean R. Blair, Pinar Heggernes, and W. Barry Peyton. Maximum
cardinality search for computing minimal triangulations of graphs. Algorithmica,
39(4):287–298, 2004.

[20] Julian Besag. Statistical analysis of non-lattice data. Journal of the Royal Statis-
tical Society. Series D (The Statistician), 24(3):179–195, 1975.

[21] Hans-Georg Beyer, Hans-Paul Schwefel, and Ingo Wegener. How to analyse evo-
lutionary algorithms. Theoretical Computer Science, 287(1):101–130, 2002.

212

Bibliography

[22] John Binder, Kevin P. Murphy, and Stuart J. Russell. Space-efficient inference
in dynamic probabilistic networks. In Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence, IJCAI 97, Nagoya, Japan, August 23-
29, 1997, 2 Volumes, pages 1292–1296, 1997.

[23] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[24] Jérôme Bolte, Aris Daniilidis, Adrian S. Lewis, and Masahiro Shiota. Clarke
subgradients of stratifiable functions. SIAM Journal on Optimization, 18(2):556–
572, 2007.

[25] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Mathematical Program-
ming, 146(1-2):459–494, 2014.

[26] Pierre Bonami, Mustafa Kilinç, and Jeff Linderoth. Algorithms and Software for
Convex Mixed Integer Nonlinear Programs, pages 1–39. Springer New York, New
York, NY, 2012.

[27] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In
Yves Lechevallier and Gilbert Saporta, editors, Proceedings of the 19th Interna-
tional Conference on Computational Statistics (COMPSTAT’2010), pages 177–
187, Paris, France, August 2010. Springer.

[28] Patrick Briest, Dimo Brockhoff, Bastian Degener, Matthias Englert, Christian
Gunia, Oliver Heering, Thomas Jansen, Michael Leifhelm, Kai Plociennik, Heiko
Röglin, Andrea Schweer, Dirk Sudholt, Stefan Tannenbaum, and Ingo Wegener.
The Ising model: Simple evolutionary algorithms as adaptation schemes. In Par-
allel Problem Solving from Nature - PPSN VIII, 8th International Conference,
Birmingham, UK, September 18-22, 2004, Proceedings, pages 31–40, 2004.

[29] Manuel Bronstein. Integration of elementary functions. Journal of Symbolic Com-
putation, 9(2):177–173, 1990.

[30] Luigi Bruno and Patrick Robertson. Observability of path loss parameters in
wlan-based simultaneous localization and mapping. In International Conference
on Indoor Positioning and Indoor Navigation, IPIN 2013, Montbeliard, France,
October 28-31, 2013, pages 1–10, 2013.

[31] Cristian Bucila, Rich Caruana, and Alexandru Niculescu-Mizil. Model compres-
sion. In Proceedings of the Twelfth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20-23,
2006, pages 535–541, 2006.

[32] B. P. Buckles and M. Lybanon. Algorithm 515: Generation of a vector from the
lexicographical index [g6]. ACM Transactions on Mathematical Software, 3(2):180–
182, June 1977.

213

Bibliography

[33] Andrei Bulatov and Martin Grohe. The complexity of partition functions. In Josep
Dı́az, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, Automata,
Languages and Programming, volume 3142 of Lecture Notes in Computer Science,
pages 294–306. Springer, Heidelberg, Germany, 2004.

[34] Tony Cai, Weidong Liu, and Xi Luo. A constrained ℓ1 minimization approach to
sparse precision matrix estimation. Journal of the American Statistical Associa-
tion, 106(494):594–607, 2011.

[35] David Campbell. Is it still big data if it fits in my pocket? In Proceedings of the
VLDB Endowment, volume 4, page 694, 2011.

[36] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin
Chen. Compressing neural networks with the hashing trick. In Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, pages 2285–2294, 2015.

[37] Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin
Chen. Compressing convolutional neural networks in the frequency domain. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
1475–1484, 2016.

[38] Xianda Chen, Kyung Tae Kim, and Hee Yong Youn. Integration of Markov random
field with Markov chain for efficient event detection using wireless sensor network.
Computer Networks, 108:108–119, 2016.

[39] Jungwook Choi and Rob A. Rutenbar. Video-rate stereo matching using Markov
random field TRW-S inference on a hybrid CPU+FPGA computing platform.
IEEE Transactions on Circuits and Systems for Video Technology, 26(2):385–398,
2016.

[40] Li Chou, Somdeb Sarkhel, Nicholas Ruozzi, and Vibhav Gogate. On parameter
tying by quantization. In Proceedings of the Thirtieth AAAI Conference on Artifi-
cial Intelligence, February 12-17, 2016, Phoenix, Arizona, USA., pages 3241–3247,
2016.

[41] Yuan Shih Chow and Henry Teicher. Probability Theory. Springer, New York,
USA, 1997.

[42] C. W. Clenshaw and A. R. Curtis. A method for numerical integration on an
automatic computer. Numerische Mathematik, 2(1):197–205, 1960.

[43] Adam Coates, Brody Huval, Tao Wang, David J. Wu, Bryan Catanzaro, and
Andrew Y. Ng. Deep learning with COTS HPC systems. In Proceedings of the
30th International Conference on Machine Learning, ICML 2013, Atlanta, GA,
USA, 16-21 June 2013, pages 1337–1345, 2013.

214

Bibliography

[44] David Cohn, Les Atlas, and Richard Ladner. Improving generalization with active
learning. Machine Learning, 15(2):201–221, 1994.

[45] Intel Corporation. Intel 64 and ia-32 architectures optimization reference manual.
In Order Number: 248966-033, 2016.

[46] Intel Corporation. Intel Xeon Phi processor: Your path to deeper insight. In Intel
Xeon Phi Product Brief, 2016.

[47] NVIDIA Corporation. NVIDIA DGX-1 deep learning system. In Nvidia DGX-1
Data Sheet Apr16, June 2017.

[48] Andrew Cotter, Nathan Srebro, and Joseph Keshet. A GPU-tailored approach
for training kernelized SVMs. In Proceedings of the 17th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, San Diego, CA,
USA, August 21-24, 2011, pages 805–813, 2011.

[49] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect:
Training deep neural networks with binary weights during propagations. In
C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, editors,
Advances in Neural Information Processing Systems 28, pages 3123–3131. Curran
Associates, Inc., 2015.

[50] Rina Dechter. Constraint processing. Elsevier Morgan Kaufmann, 2003.

[51] James Demma and Peter Athanas. A hardware generator for factor graph ap-
plications. In 2014 International Conference on ReConFigurable Computing and
FPGAs, ReConFig14, Cancun, Mexico, December 8-10, 2014, pages 1–8, 2014.

[52] Guanzhong Ding, Chung-Ta King, and Yi-Fan Chung. Consumsense: A framework
for physical consuming behavior prediction on smartphones. In 19th IEEE Inter-
national Conference on Parallel and Distributed Systems, ICPADS 2013, Seoul,
Korea, December 15-18, 2013, pages 182–189, 2013.

[53] Trinh Minh Tri Do, Olivier Dousse, Markus Miettinen, and Daniel Gatica-Perez.
A probabilistic kernel method for human mobility prediction with smartphones.
Pervasive and Mobile Computing, 20:13–28, 2015.

[54] Trinh Minh Tri Do and Daniel Gatica-Perez. Human interaction discovery in
smartphone proximity networks. Personal and Ubiquitous Computing, 17(3):413–
431, 2013.

[55] Trinh Minh Tri Do and Daniel Gatica-Perez. Where and what: Using smartphones
to predict next locations and applications in daily life. Pervasive and Mobile
Computing, 12:79–91, 2014.

215

Bibliography

[56] Bertrand Douillard, Dieter Fox, and Fabio T. Ramos. A spatio-temporal prob-
abilistic model for multi-sensor object recognition. In IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 2402–2408, 2007.

[57] Stefan Droste, Thomas Jansen, and Ingo Wegener. On the analysis of the (1+1)
evolutionary algorithm. Theoretical Computer Science, 276(1-2):51–81, 2002.

[58] Christophe Dumontier, Franck Luthon, and Jean-Pierre Charras. Real-time DSP
implementation for MRF-based video motion detection. IEEE Transactions on
Image Processing, 8(10):1341–1347, 1999.

[59] Mario J. Edmundo. An introduction to o-minimal structures. ArXiv Mathematics
e-prints, 2000.

[60] Gideon Ehrlich. Loopless algorithms for generating permutations, combinations,
and other combinatorial configurations. Journal of the ACM, 20(3):500–513, 1973.

[61] Alberto Elfes. Robot navigation: Integrating perception, environmental con-
straints and task execution within a probabilistic framework. In Reasoning with
Uncertainty in Robotics, International Workshop, RUR ’95, Amsterdam, The
Netherlands, December 4-6, 1995, Proceedings, pages 93–130, 1995.

[62] Alberto Elfes, Samuel Siqueira Bueno, Marcel Bergerman, Ely Carneiro de Paiva,
Josué Jr. Guimarães Ramos, and José R. Azinheira. Robotic airships for explo-
ration of planetary bodies with an atmosphere: Autonomy challenges. Auton.
Robots, 14(2-3):147–164, 2003.

[63] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Taming
the curse of dimensionality: Discrete integration by hashing and optimization.
In Proceedings of the 30th International Conference on Machine Learning, pages
334–342, 2013.

[64] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Low-density
parity constraints for hashing-based discrete integration. In Proceedings of the 31th
International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26
June 2014, pages 271–279, 2014.

[65] Sukru Burc Eryilmaz, Emre Neftci, Siddharth Joshi, SangBum Kim, Matthew
BrightSky, Hsiang-Lan Lung, Chung Lam, Gert Cauwenberghs, and H.-S. Philip
Wong. Training a probabilistic graphical model with resistive switching electronic
synapses. CoRR, abs/1609.08686, 2016.

[66] Paul Fearnhead. Exact Bayesian curve fitting and signal segmentation. IEEE
Transactions on Signal Processing, 53(6):2160–2166, 2005.

[67] Thomas S. Ferguson. A Course in Large Sample Theory. Chapman and Hall/CRC,
1st edition, 1996.

216

Bibliography

[68] Natalia Flerova, Emma Rollon, and Rina Dechter. Bucket and mini-bucket schemes
for M best solutions over graphical models. In Graph Structures for Knowl-
edge Representation and Reasoning - Second International Workshop, GKR 2011,
Barcelona, Spain, July 16, 2011. Revised Selected Papers, pages 91–118, 2011.

[69] W. Fraser. A survey of methods of computing minimax and near-minimax poly-
nomial approximations for functions of a single independent variable. Journal of
the ACM, 12(3):295–314, July 1965.

[70] Jerome Friedman, Trevor. Hastie, and Robert Tibshirani. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

[71] Menachem Fromer and Amir Globerson. An LP view of the m-best MAP problem.
In Advances in Neural Information Processing Systems 22: 23rd Annual Confer-
ence on Neural Information Processing Systems 2009. Proceedings of a meeting
held 7-10 December 2009, Vancouver, British Columbia, Canada., pages 567–575,
2009.

[72] Enrique Garcia-Ceja, Ramón F. Brena, José C. Carrasco-Jiménez, and Leonardo
Garrido. Long-term activity recognition from wristwatch accelerometer data. Sen-
sors, 14(12):22500–22524, 2014.

[73] W. Gautschi. Questions of numerical condition related to polynomials. Studies in
Numerical Analysis, (24):140–177, 1985.

[74] Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6(6):721–741, 1984.

[75] Fosca Giannotti, Mirco Nanni, Fabio Pinelli, and Dino Pedreschi. Trajectory
pattern mining. In Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 330–339, 2007.

[76] Fabian Gieseke, Justin Heinermann, Cosmin E. Oancea, and Christian Igel. Buffer
k-d trees: Processing massive nearest neighbor queries on GPUs. In Proceedings
of the 31th International Conference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, pages 172–180, 2014.

[77] Amir Globerson and Tommi S. Jaakkola. Fixing max-product: Convergent mes-
sage passing algorithms for MAP LP-relaxations. In Advances in Neural Informa-
tion Processing Systems 20, Proceedings of the Twenty-First Annual Conference
on Neural Information Processing Systems, Vancouver, British Columbia, Canada,
December 3-6, 2007, pages 553–560, 2007.

[78] Leslie Ann Goldberg and Mark Jerrum. A polynomial-time algorithm for estimat-
ing the partition function of the ferromagnetic Ising model on a regular matroid.
SIAM Journal on Computing, 42(3):1132–1157, 2013.

217

Bibliography

[79] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. Deep Learning. Adap-
tive computation and machine learning. MIT Press, 2016.

[80] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan.
Deep learning with limited numerical precision. In Proceedings of the 32nd Inter-
national Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, pages 1737–1746, 2015.

[81] Seymour Haber. A modified Monte-Carlo quadrature. Mathematics of Computa-
tion, 20(95):361–368, 1966.

[82] Seymour Haber. A modified Monte-Carlo Quadrature. ii. Mathematics of Com-
putation, 21(99):388–397, 1967.

[83] Seymour Haber. Numerical evaluation of multiple integrals. SIAM Review,
12(4):481–526, 1970.

[84] John Michael Hammersley and Peter Clifford. Markov fields on finite graphs and
lattices. Unpublished manuscript, 1971.

[85] Fang Han and Han Liu. Transition matrix estimation in high dimensional time
series. In Proceedings of the 30th International Conference on Machine Learning,
pages 172–180, 2013.

[86] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements of
Statistical Learning: Data Mining, Inference and Prediction. Springer, second
edition, 2009.

[87] Wilfred Keith Hastings. Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1):97–109, 1970.

[88] Sebastian Haug, Andreas Michaels, Peter Biber, and Jörn Ostermann. Plant clas-
sification system for crop /weed discrimination without segmentation. In IEEE
Winter Conference on Applications of Computer Vision, Steamboat Springs, CO,
USA, March 24-26, 2014, pages 1142–1149, 2014.

[89] Tamir Hazan and Tommi S. Jaakkola. On the partition function and random
maximum a-posteriori perturbations. In Proceedings of the 29th International
Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June
26 - July 1, 2012, 2012.

[90] Tamir Hazan, Subhransu Maji, and Tommi S. Jaakkola. On sampling from the
Gibbs distribution with random maximum a-posteriori perturbations. In Advances
in Neural Information Processing Systems 26: 27th Annual Conference on Neural
Information Processing Systems 2013. Proceedings of a meeting held December 5-8,
2013, Lake Tahoe, Nevada, United States., pages 1268–1276, 2013.

218

Bibliography

[91] Pinar Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathe-
matics, 306(3):297–317, 2006.

[92] Tom Heskes. Stable fixed points of loopy belief propagation are local minima of the
Bethe free energy. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances
in Neural Information Processing Systems, volume 15, pages 343–350, 2002.

[93] Sibylle Hess, Katharina Morik, and Nico Piatkowski. The PRIMPING routine
- tiling through proximal alternating linearized minimization. Data Mining and
Knowledge Discovery, 31(4):1090–1131, 2017.

[94] Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

[95] Otto Ludwig Hölder. Ueber einen Mittelwerthssatz. Nachrichten von der
Königlichen Gesellschaft der Wissenschaften und der Georg-August-Universität
Göttingen, 2:38–47, 1889.

[96] Jean Honorio. Lipschitz parametrization of probabilistic graphical models. In UAI
2011, Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial
Intelligence, Barcelona, Spain, July 14-17, 2011, pages 347–354, 2011.

[97] Mark Horowitz. 1.1 computing’s energy problem (and what we can do about it).
In 2014 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 10–14, Feb 2014.

[98] Lun-Kai Hsu, Tudor Achim, and Stefano Ermon. Tight variational bounds via
random projections and i-projections. In Proceedings of the 19th International
Conference on Artificial Intelligence and Statistics, AISTATS 2016, Cadiz, Spain,
May 9-11, 2016, pages 1087–1095, 2016.

[99] Rui Huang, Vladimir Pavlovic, and Dimitris Metaxas. A new spatio-temporal
MRF framework for video-based object segmentation. In The 1st International
Workshop on Machine Learning for Vision-based Motion Analysis, 2008.

[100] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 2016,
December 5-10, 2016, Barcelona, Spain, pages 4107–4115, 2016.

[101] Timothy Hunter, Pieter Abbeel, and Alexandre M. Bayen. The path inference
filter: Model-based low-latency map matching of probe vehicle data. IEEE Trans-
actions on Intelligent Transportation Systems, 15(2):507–529, 2014.

[102] Alexander T. Ihler, John W. Fischer III, and Alan S. Willsky. Loopy belief prop-
agation: Convergence and effects of message errors. Journal of Machine Learning
Research, 6:905–936, 2005.

219

Bibliography

[103] Ernst Ising. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik,
31:253–258, 1925.

[104] Tommi S. Jaakkola and Michael I. Jordan. Computing upper and lower bounds on
likelihoods in intractable networks. In Proceedings of the 12th Annual Conference
on Uncertainty in Artificial Intelligence, pages 340–348, 1996.

[105] Ferris Jabr. Does thinking really hard burn more calories? Scientific Ameri-
can Mind, July 2012. https://www.scientificamerican.com/article/thinking-hard-
calories, accessed at July 10 2017.

[106] Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités
entre les valeurs moyennes. Acta Mathematica, 30(1):175–193, 1906.

[107] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for
the Ising model. SIAM Journal on Computing, 22(5):1087–1116, 1993.

[108] Mark Jerrum and Alistair Sinclair. Approximation algorithms for NP-hard prob-
lems. chapter The Markov Chain Monte Carlo Method: An Approach to Approxi-
mate Counting and Integration, pages 482–520. PWS Publishing Co., Boston, MA,
USA, 1997.

[109] Aleksandar Jovicic, Ivan Klimek, Cyril Measson, Tom Richardson, and Lei Zhang.
Mobile device positioning using learning and cooperation. In 46th Annual Con-
ference on Information Sciences and Systems, CISS 2012, Princeton, NJ, USA,
March 21-23, 2012, pages 1–6, 2012.

[110] Elliott Ward Cheney Jr. Introduction to Approximation Theory. Amer Mathemat-
ical Society, 2nd edition, 1966.

[111] Michael Jünger, Thomas M. Liebling, Denis Naddef, George L. Nemhauser,
William R. Pulleyblank, Gerhard Reinelt, Giovanni Rinaldi, and Laurence A.
Wolsey. 50 Years of Integer Programming 1958-2008: From the Early Years to
the State-of-the-Art. Springer-Verlag Berlin Heidelberg, 1st edition, 2010.

[112] Vikash K. Mansinghka, Eric M. Jonas, and Joshua B. Tenenbaum. Stochastic
digital circuits for probabilistic inference. Technical report, MIT Computer Science
and Artificial Intelligence Laboratory, November 2008.

[113] Leslie Pack Kaelbling. Learning in Embedded Systems. MIT Press, 1993.

[114] Tomohiro Kawakami. G-Manifolds and G-Vector Bundles in the Definable Cate-
gory, pages –51. Springer Netherlands, New York, NY, 2002.

[115] Brent Keeth, R. Jacob Baker, Brian Johnson, and Feng Lin. DRAM Circuit
Design: Fundamental and High-Speed Topics. Wiley-IEEE Press, 2nd edition,
2007.

220

Bibliography

[116] A. H. Khan and E. L. Hines. Integer-weight neural nets. Electronics Letters,
30(15):1237–1238, Jul 1994.

[117] Osama Ullah Khan and David D. Wentzloff. Hardware accelerator for probabilistic
inference in 65-nm CMOS. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 24(3):837–845, 2016.

[118] Byoungjip Kim, Seungwoo Kang, Jin-Young Ha, and Junehwa Song. Visitsense:
Sensing place visit patterns from ambient radio on smartphones for targeted mobile
ads in shopping malls. Sensors, 15(7):17274–17299, 2015.

[119] Carolyn Kim, Ashish Sabharwal, and Stefano Ermon. Exact sampling with integer
linear programs and random perturbations. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA., pages 3248–3254, 2016.

[120] Eric P. Kim, Jungwook Choi, Naresh R. Shanbhag, and Rob A. Rutenbar. Er-
ror resilient and energy efficient MRF message-passing-based stereo matching.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(3):897–
908, 2016.

[121] Mladen Kolar, Le Song, Amr Ahmed, and Eric P Xing. Estimating time-varying
networks. Annals of Applied Statistics, 4(1):94–123, 2010.

[122] Daphne Koller and Nir Friedman. Probabilistic Graphical Models - Principles and
Techniques. MIT Press, 2009.

[123] Vladimir Kolmogorov. Convergent tree-reweighted message passing for energy
minimization. IEEE Transactions on Pattern Analysis and Machine Intelligence,
28(10):1568–1583, 2006.

[124] Vladimir Kolmogorov. A new look at reweighted message passing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 37(5):919–930, 2015.

[125] Vladimir Kolmogorov. A faster approximation algorithm for the Gibbs partition
function. CoRR, abs/1608.04223, 2016.

[126] Vladimir Kolmogorov and Martin J. Wainwright. On the optimality of tree-
reweighted max-product message-passing. In UAI ’05, Proceedings of the 21st
Conference in Uncertainty in Artificial Intelligence, Edinburgh, Scotland, July 26-
29, 2005, pages 316–323, 2005.

[127] Hikosaburo Komatsu. A characterization of real analytic functions. Proceedings
of the Japan Academy, Ser. A, Mathematical Sciences, 36(3):90–93, 1960.

[128] Nikos Komodakis and Nikos Paragios. Beyond loose LP-relaxations: Optimizing
MRFs by repairing cycles. In Computer Vision - ECCV 2008, 10th European Con-
ference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings,
Part III, pages 806–820, 2008.

221

Bibliography

[129] Bernard Osgood Koopman. On distributions admitting a sufficient statistic. Trans-
actions of the American Mathematical Society, 39(3):399–409, 1936.

[130] Frank R. Kschischang, Brendan J. Frey, and Hans-Andrea Loeliger. Factor graphs
and the sum-product algorithm. IEEE Transactions on Information Theory,
47(2):498–519, 2001.

[131] Krzysztof Kurdyka. On gradients of functions definable in o-minimal structures.
Annales de l’institut Fourier, 48(3):769–783, 1998.

[132] John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. Proceedings
of the 18th International Conference on Machine Learning, pages 282–289, 2001.

[133] Steffen L. Lauritzen. Graphical Models. Oxford University Press, Oxford, UK,
1996.

[134] Steffen L. Lauritzen and David J. Spiegelhalter. Local computations with prob-
abilities on graphical structures and their application to expert systems. Journal
of the Royal Statistical Society. Series B (Methodological), 50(2):157–224, 1988.

[135] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436–444, 2015.

[136] Youngseol Lee and Sung-Bae Cho. Mobile context inference using two-layered
Bayesian networks for smartphones. Expert Syst. Appl., 40(11):4333–4345, 2013.

[137] Thomas Liebig, Nico Piatkowski, Christian Bockermann, and Katharina Morik.
Dynamic route planning with real-time traffic predictions. Information Systems,
64:258–265, 2017.

[138] Darryl Dexu Lin, Sachin S. Talathi, and V. Sreekanth Annapureddy. Fixed point
quantization of deep convolutional networks. In Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML 2016, New York City, NY, USA,
June 19-24, 2016, pages 2849–2858, 2016.

[139] Qiang Liu, Jian Peng, Alexander Ihler, and John Fisher III. Estimating the par-
tition function by discriminance sampling. In 31st Annual Conference on Uncer-
tainty in Artificial Intelligence, pages 514–522. AUAI Press, 2015.

[140] David Luckham. The Power of Events - An Introduction to Complex Event Pro-
cessing in Distributed Enterprise Systems. Addison Wesley, 2002.

[141] Jan R. Magnus and Heinz Neudecker. Matrix Differential Calculus with Appli-
cations in Statistics and Econometrics. John Wiley & Sons, 2nd edition,
1999.

222

Bibliography

[142] J.C. Mason and David C. Handscomb. Chebyshev polynomials. Chapman and
Hall/CRC, 1st edition, 2002.

[143] Michael May and Lorenza Saitta, editors. Ubiquitous Knowledge Discovery, volume
6202 of Lecture Notes in Artificial Intelligence. Springer, 2010.

[144] Nicolai Meinshausen and Peter Bühlmann. High-dimensional graphs and variable
selection with the lasso. The Annals of Statistics, 34(3):1436–1462, 2006.

[145] Talya Meltzer, Chen Yanover, and Yair Weiss. Globally optimal solutions for
energy minimization in stereo vision using reweighted belief propagation. In 10th
IEEE International Conference on Computer Vision (ICCV 2005), 17-20 October
2005, Beijing, China, pages 428–435, 2005.

[146] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H.
Teller, and Edward Teller. Equation of state calculations by fast computing ma-
chines. The Journal of Chemical Physics, 21:1087–1092, 1953.

[147] Stefan Michaelis, Nico Piatkowski, and Katharina Morik. Predicting next network
cell ids for moving users with discriminative and generative models. In Mobile
Data Challenge by Nokia Workshop in conjunction with Int. Conf. on Pervasive
Computing, Newcastle, UK, 2012.

[148] Nikita Mishra, Huazhe Zhang, John D. Lafferty, and Henry Hoffmann. A proba-
bilistic graphical model-based approach for minimizing energy under performance
constraints. In Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating Systems, ASPLOS ’15,
pages 267–281, New York, NY, USA, 2015. ACM.

[149] Boris S. Mordukhovich. Variational Analysis and Generalized Differentiation I.
Springer-Verlag Berlin Heidelberg, 1st edition, 2006.

[150] Kevin Patrick Murphy. Dynamic Bayesian Networks: Representation, Inference
and Learning. PhD thesis, University of California, Berkeley, Fall 2002.

[151] Radford M. Neal. Annealed importance sampling. Statistics and Computing,
11(2):125–139, 2001.

[152] Sahand Negahban, Pradeep Ravikumar, Martin J. Wainwright, and Bin Yu. A
unified framework for high-dimensional analysis of m-estimators with decompos-
able regularizers. In Advances in Neural Information Processing Systems 22: 23rd
Annual Conference on Neural Information Processing Systems 2009. Proceedings
of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada.,
pages 1348–1356, 2009.

[153] Yurii Nesterov. A method of solving a convex programming problem with conver-
gence rate O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

223

Bibliography

[154] Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming, 103(1):127–152, 2005.

[155] Yurii Nesterov. Efficiency of coordinate descent methods on huge-scale optimiza-
tion problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[156] Yurii Nesterov. Introductory lectures on convex optimization: A basic course.
Springer US, 2013.

[157] Andrew Y. Ng. Feature selection, l1 vs. l2 regularization, and rotational invariance.
In Carla E. Brodley, editor, Proceedings of the 21st International Conference on
Machine Learning, ICML 2004, pages 78–86. ACM, 2004.

[158] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New
York, NY, USA, 2nd edition, 2006.

[159] E. Novak and K. Petras. Optimal stochastic quadrature formulas for convex func-
tions. BIT Numerical Mathematics, 34(2):288–294, 1994.

[160] Yosihiko Ogata and Masaharu Tanemura. Estimation of interaction potentials of
spatial point patterns through the maximum likelihood procedure. Annals of the
Institute of Statistical Mathematics, 33(1):315–338, 1981.

[161] Francesco Orabona, Tamir Hazan, Anand D. Sarwate, and Tommi S. Jaakkola.
On measure concentration of random maximum a-posteriori perturbations. In
Proceedings of the 31th International Conference on Machine Learning, ICML
2014, Beijing, China, 21-26 June 2014, pages 432–440, 2014.

[162] Margarita Otero. A survey on groups definable in o-minimal structures, volume 2
of London Mathematical Society Lecture Note Series, pages 177–206. Cambridge
University Press, 2008.

[163] George Papandreou and Alan L. Yuille. Perturb-and-MAP random fields: Using
discrete optimization to learn and sample from energy models. In IEEE Interna-
tional Conference on Computer Vision, ICCV 2011, Barcelona, Spain, November
6-13, 2011, pages 193–200, 2011.

[164] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in
Optimization, 1(3):127–239, 2014.

[165] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Burlington, MA, USA, 1988.

[166] François Petitjean and Geoffrey I. Webb. Scaling log-linear analysis to datasets
with thousands of variables. In Proceedings of the 2015 SIAM International Con-
ference on Data Mining, Vancouver, BC, Canada, April 30 - May 2, 2015, pages
469–477, 2015.

224

Bibliography

[167] François Petitjean and Geoffrey I. Webb. Scalable learning of graphical models. In
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, San Francisco, CA, USA, August 13-17, 2016, pages
2131–2132, 2016.

[168] Nico Piatkowski, Sangkyun Lee, and Katharina Morik. Spatio-temporal models for
sustainability. In Manish Marwah, Naren Ramakrishnan, Mario Berges, and Zico
Kolter, editors, Proceedings of the SustKDD Workshop, Conference on Knowledge
Discovery and Data Mining (SIGKDD). ACM, 2012.

[169] Nico Piatkowski, Sangkyun Lee, and Katharina Morik. Spatio-temporal random
fields: Compressible representation and distributed estimation. Machine Learning,
93(1):115–139, 2013.

[170] Nico Piatkowski, Sangkyun Lee, and Katharina Morik. The integer approximation
of undirected graphical models. In Proceedings of the 3rd International Confer-
ence on Pattern Recognition Applications and Methods (ICPRAM), pages 296–304.
SciTePress, 2014.

[171] Nico Piatkowski, Sangkyun Lee, and Katharina Morik. Integer undirected graph-
ical models for resource-constrained systems. Neurocomputing, 173, Part 1:9–23,
2016.

[172] Nico Piatkowski and Katharina Morik. Stochastic discrete clenshaw-curtis quadra-
ture. In Maria-Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of
the 33rd International Conference on Machine Learning (ICML), volume 48 of
JMLR Workshop and Conference Proceedings, pages 3000–3009. JMLR.org, 2016.

[173] Nico Piatkowski and François Schnitzler. Compressible reparametrization of time-
variant linear dynamical systems. In Solving Large Scale Learning Tasks. Chal-
lenges and Algorithms - Essays Dedicated to Katharina Morik on the Occasion
of Her 60th Birthday, volume 9580 of Lecture Notes in Computer Science, pages
234–250. Springer, 2016.

[174] Nico Piatkowski, Jochen Streicher, Spinczyk Olaf, and Katharina Morik. Open
smartphone data for structured mobility and utilization analysis in ubiquitous
systems. In Martin Atzmueller, Alvin Chin, Christoph Scholz, and Christoph
Trattner, editors, Mining, Modeling, and Recommending ’Things’ in Social Media,
volume 8940 of Lecture Notes in Computer Science, pages 116–130. Springer, 2015.

[175] Edwin James George Pitman. Sufficient statistics and intrinsic accuracy. Mathe-
matical Proceedings of the Cambridge Philosophical Society, 32:567–579, 1936.

[176] David Pollard. Convergence of Stochastic Processes. Springer-Verlag New York,
1984.

225

Bibliography

[177] G. Potamianos and J. Goutsias. Stochastic approximation algorithms for partition
function estimation of Gibbs random fields. IEEE Transactions on Information
Theory, 43(6):1948–1965, 1997.

[178] M. J. D. Powell. On the maximum errors of polynomial approximations defined
by interpolation and by least squares criteria. The Computer Journal, 9(4):404,
1967.

[179] L. Qian, J. Fuller, and C. Simpson. A community sensing framework for threat
detection in metropolitan area. In 2013 IEEE International Conference on Tech-
nologies for Homeland Security (HST), pages 259–264, Nov 2013.

[180] Pradeep Ravikumar, Martin J. Wainwright, and John D. Lafferty. High-
dimensional Ising model selection using ℓ1-regularized logistic regression. Annals
of Applied Statistics, 38(3):1287–1319, 2010.

[181] Ralph Tyrrell Rockafellar. Convex Analysis. Convex Analysis. Princeton Univer-
sity Press, 1997.

[182] Sergio Rodrigues de Morais and Alex Aussem. A novel scalable and data effi-
cient feature subset selection algorithm. In Walter Daelemans, Bart Goethals,
and Katharina Morik, editors, Machine Learning and Knowledge Discovery in
Databases, volume 5212 of Lecture Notes in Computer Science, pages 298–312.
Springer Berlin Heidelberg, 2008.

[183] Nicholas Ruozzi. The Bethe partition function of log-supermodular graphical mod-
els. In F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems 25, pages 117–125. Curran As-
sociates, Inc., 2012.

[184] Nicholas Ruozzi. Beyond log-supermodularity: Lower bounds and the Bethe parti-
tion function. In 29th Conference Annual Conference on Uncertainty in Artificial
Intelligence, pages 546–555, Corvallis, OR, USA, 2013. AUAI Press.

[185] Sushant Sachdeva and Nisheeth K. Vishnoi. Faster algorithms via approximation
theory. Foundations and Trends in Theoretical Computer Science, 9(2):125–210,
2014.

[186] Guy Sagy, Daniel Keren, Izchak Sharfman, and Assaf Schuster. Distributed thresh-
old querying of general functions by a difference of monotonic representation. In
Proceedings of the VLDB Endowment, volume 4, 2011.

[187] Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Analytical guarantees on nu-
merical precision of deep neural networks. In Proceedings of the 34th International
Conference on Machine Learning, pages 3007–3016, 2017.

226

Bibliography

[188] Lauren Samy, Paul M. Macey, and Majid Sarrafzadeh. A gender-aware framework
for the daytime detection of obstructive sleep apnea. In 37th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, EMBC
2015, Milan, Italy, August 25-29, 2015, pages 7683–7687, 2015.

[189] Mark W. Schmidt, Alexandru Niculescu-Mizil, and Kevin P. Murphy. Learn-
ing graphical model structure using l1-regularization paths. In Proceedings of
the Twenty-Second AAAI Conference on Artificial Intelligence, July 22-26, 2007,
Vancouver, British Columbia, Canada, pages 1278–1283, 2007.

[190] François Schnitzler, Alexander Artikis, Matthias Weidlich, Ioannis Boutsis,
Thomas Liebig, Nico Piatkowski, Christian Bockermann, Katharina Morik, Vana
Kalogeraki, Jakub Marecek, Avigdor Gal, Shie Mannor, Dermot Kinane, and Dim-
itrios Gunopulos. Heterogeneous stream processing and crowdsourcing for traffic
monitoring: Highlights. In Toon Calders, Floriana Esposito, Eyke Hüllermeier,
and Rosa Meo, editors, European Conference on Machine Learning and Knowl-
edge Discovery in Databases, Part III, volume 8726 of Lecture Notes in Computer
Science, pages 520–523. Springer, 2014.

[191] Nicol N. Schraudolph and Dmitry Kamenetsky. Efficient exact inference in planar
Ising models. In Daphne Koller, Dale Schuurmans, Yoshua Bengio, and Léon
Bottou, editors, Advances in Neural Information Processing Systems, volume 21,
pages 1417–1424, 2008.

[192] Glenn Shafer and Prakash P. Shenoy. Probability propagation. Annals of Mathe-
matics and Artificial Intelligence, 2:327–351, 1990.

[193] Lufeng Shi and Jindong Tan. Two-tier target tracking framework in distributed
sensor networks. IJSNet, 16(1):32–40, 2014.

[194] Le Song, Mladen Kolar, and Eric P Xing. Time-varying dynamic Bayesian net-
works. Advances in Neural Information Processing Systems, 22:1732–1740, 2009.

[195] David Sontag, Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss.
Tightening LP relaxations for MAP using message passing. In Proceedings of the
Twenty-Fourth Conference Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-08), pages 503–510, Corvallis, Oregon, 2008. AUAI Press.

[196] Stephan Stilkerich and Joachim K. Anlauf. High-level design environment for
massive parallel VLSI-implementations of statistical signal- and image processing
models. In Proceedings of the 2004 International Symposium on Circuits and
Systems, ISCAS 2004, Vancouver, BC, Canada, May 23-26, 2004, pages 37–40,
2004.

[197] Tzu-Pin Sung and Hsin-Mu Tsai. Real-time traffic light recognition on mobile
devices with geometry-based filtering. In Seventh International Conference on

227

Bibliography

Distributed Smart Cameras, ICDSC 2013, October 29 2013-November 1, 2013,
Palm Springs, CA, USA, pages 1–7, 2013.

[198] Charles Sutton and Andrew McCallum. An introduction to conditional random
fields. Foundations and Trends in Machine Learning, 4(4):267–373, 2011.

[199] Istvan Szentandrasi, Adam Herout, and Markéta Dubská. Fast detection and
recognition of QR codes in high-resolution images. In Spring Conference on Com-
puter Graphics, SCCG’12, Smolenice, Slovakia, May 2-4, 2012, pages 129–136,
2012.

[200] Toyokazu Takagi and Tsutomu Maruyama. Accelerating HMMER search using
FPGA. In 19th International Conference on Field Programmable Logic and Appli-
cations, FPL 2009, August 31 - September 2, 2009, Prague, Czech Republic, pages
332–337, 2009.

[201] Micron Technology. DDR3L SDRAM, MT41K512M4, MT41K256M8,
MT41K128M16. In 2Gb DDR3L.pdf; Rev.N07/16EN, 2015.

[202] Micron Technology. DDR4 SDRAM, MT40A2G4, MT40A1G8, MT40A512M16.
In 8gb ddr4 dram.pdf; Rev.G1/17EN, 2015.

[203] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B, 58:267–288, 1996.

[204] Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight.
Sparsity and smoothness via the fused lasso. Journal of the Royal Statistical Society
Series B, 67(1):91–108, 2005.

[205] Ghada Trabelsi, Philippe Leray, Mounir Ben Ayed, and AdelMohamed Alimi. Dy-
namic mmhc: A local search algorithm for dynamic Bayesian network structure
learning. In Allan Tucker, Frank Höppner, Arno Siebes, and Stephen Swift, edi-
tors, Advances in Intelligent Data Analysis XII, volume 8207 of Lecture Notes in
Computer Science, pages 392–403. Springer Berlin Heidelberg, 2013.

[206] Lloyd N. Trefethen. Is Gauss quadrature better than Clenshaw-Curtis? SIAM
Review, 50(1):67–87, 2008.

[207] Jean-Baptiste Tristan, Joseph Tassarotti, and Guy L. Steele Jr. Efficient training
of LDA on a GPU by mean-for-mode estimation. In Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11
July 2015, pages 59–68, 2015.

[208] Sebastian Tschiatschek and Franz Pernkopf. On Bayesian network classifiers with
reduced precision parameters. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 37(4):774–785, 2015.

228

Bibliography

[209] Sebastian Tschiatschek, Peter Reinprecht, Manfred Mücke, and Franz Pernkopf.
Bayesian network classifiers with reduced precision parameters. In European Con-
ference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2012.

[210] Paul Tseng. Convergence of a block coordinate descent method for nondif-
ferentiable minimization. Journal of Optimization Theory and Applications,
109(3):475–494, 2001.

[211] Unknown. Artificial intelligence and go—showdown. The Economist, March
2016. https://www.economist.com/news/science-and-technology/21694540-win-
or-lose-best-five-battle-contest-another-milestone, accessed at July 10 2017.

[212] Leslie Gabriel Valiant. The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410–421, 1979.

[213] Leslie Gabriel Valiant and Vijay V. Vazirani. NP is as easy as detecting unique
solutions. Theoretical Computer Science, 47(3):85–93, 1986.

[214] Lou van den Dries, Angus Macintyre, and David Marker. The elementary theory
of restricted analytic fields with exponentiation. Annals of Mathematics, Second
Series, 140(1):183–205, July 1994.

[215] Lou van den Dries, Angus Macintyre, and David Marker. Logarithmic-exponential
power series. Journal of the London Mathematical Society, 56(3):417–434, 1997.

[216] Lou van den Dries and Chris Miller. On the real exponential field with restricted
analytic functions. Israel Journal of Mathematics, 85(1):19–56, 1994.

[217] Lou van den Dries and Chris Miller. Geometric categories and o-minimal struc-
tures. Duke Mathematical Journal, 84(2):497–540, August 1996.

[218] Maarten van der Heijden and Peter J. F. Lucas. Probabilistic models for smart
monitoring. In Proceedings of CBMS 2012, The 25th IEEE International Sympo-
sium on Computer-Based Medical Systems, June 20-22, 2012, Rome, Italy, pages
1–6, 2012.

[219] Fabian Luis Vargas, Rubem Dutra Ribeiro Fagundes, and D. Barros Júnior. A
FPGA-based Viterbi algorithm implementation for speech recognition systems.
In IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP 2001, 7-11 May, 2001, Salt Palace Convention Center, Salt Lake City,
Utah, USA, Proceedings, pages 1217–1220, 2001.

[220] Benjamin Vigoda, David Reynolds, Jeffrey Bernstein, Theophane Weber, and Bill
Bradley. Low power logic for statistical inference. In Proceedings of the 2010
International Symposium on Low Power Electronics and Design, 2010, Austin,
Texas, USA, August 18-20, 2010, pages 349–354, 2010.

229

Bibliography

[221] Martin J. Wainwright. Estimating the ”wrong” graphical model: Benefits in the
computation-limited setting. Journal of Machine Learning Research, 7:1829–1859,
2006.

[222] Martin J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity
recovery using l1-constrained quadratic programming (lasso). IEEE Transactions
on Information Theory, 55(5):2183–2202, 2009.

[223] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. Exact MAP
estimates by (hyper)tree agreement. In Advances in Neural Information Processing
Systems 15 [Neural Information Processing Systems, NIPS 2002, December 9-14,
2002, Vancouver, British Columbia, Canada], pages 809–816, 2002.

[224] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. Tree-based repa-
rameterization for approximate inference on loopy graphs. In T.G. Dietterich,
S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Process-
ing Systems 14, pages 1001–1008. MIT Press, Cambridge, MA, USA, 2002.

[225] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. Tree-reweighted
belief propagation algorithms and approximate ML estimation by pseudo-moment
matching. In Christopher M. Bishop and Brendan J. Frey, editors, 9th Work-
shop on Artificial Intelligence and Statistics. Society for Artificial Intelligence and
Statistics, Key West, FL, 2003.

[226] Martin J. Wainwright, Tommi S. Jaakkola, and Alan S. Willsky. A new class of
upper bounds on the log partition function. IEEE Transactions on Information
Theory, 51(7):2313–2335, 2005.

[227] Martin J. Wainwright and Michael I. Jordan. Graphical models, exponential fam-
ilies, and variational inference. Foundations and Trends in Machine Learning,
1(1–2):1–305, 2008.

[228] Di Wang, Elke A. Rundensteiner, and Richard T. Ellison. Active complex event
processing of event streams. In Procs. of the VLDB Endowment, volume 4, 2011.

[229] Ingo Wegener. Complexity Theory—Exploring the Limits of Efficient Algorithms.
Springer, 2005.

[230] Yair Weiss. Comparing the mean field method and belief propagation for approxi-
mate inference in MRFs. In M. Opper and D. Saad, editors, Advanced Mean Field
Methods:Theory and Practice, pages 229–239. MIT Press, Cambridge, MA, USA,
2001.

[231] Yair Weiss and William T. Freeman. On the optimality of solutions of the max-
product belief-propagation algorithm in arbitrary graphs. IEEE Transactions on
Information Theory, 47(2):736–744, 2001.

230

Bibliography

[232] Yair Weiss, Chen Yanover, and Talya Meltzer. MAP estimation, linear program-
ming and belief propagation with convex free energies. In Proceedings of the
Twenty-Third Conference Annual Conference on Uncertainty in Artificial Intel-
ligence (UAI-07), pages 416–425, Corvallis, Oregon, 2007. AUAI Press.

[233] A. J. Wilkie. Model completeness results for expansions of the ordered field of real
numbers by restricted Pfaffian functions and the exponential function. Journal of
the American Mathematical Society, 9(4):397–421, 1996.

[234] Anja Wille and Peter Bühlmann. Low-order conditional independence graphs
for inferring genetic networks. Statistical Applications in Genetics and Molecular
Biology, 5(1):1–34, 2006.

[235] Ran Wolff, Kanishka Badhuri, and Hillol Kargupta. A generic local algorithm for
mining data streams in large distributed systems. IEEE Transactions on Knowl-
edge and Data Engineering, 21(4):465–478, 2009.

[236] Eleanor Wong, Suyash Awate, and Thomas Fletcher. Adaptive sparsity in Gaus-
sian graphical models. In JMLR W&CP 28, pages 311–319, 2013.

[237] Shuhuang Xiang, Xiaojun Chen, and Haiyong Wang. Error bounds for approxi-
mation in Chebyshev points. Numerische Mathematik, 116(3):463–491, 2010.

[238] Zhixiang Eddie Xu, Kilian Q. Weinberger, and Olivier Chapelle. The greedy
miser: Learning under test-time budgets. In Proceedings of the 29th International
Conference on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26
- July 1, 2012, 2012.

[239] Xiang Xuan and Kevin Murphy. Modeling changing dependency structure in multi-
variate time series. In Proceedings of the 24th International Conference on Machine
Learning, pages 1055–1062. ACM, 2007.

[240] Eunho Yang, Aurelie C. Lozano, and Pradeep Ravikumar. Elementary estimators
for graphical models. In Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing Systems 2014, December
8-13 2014, Montreal, Quebec, Canada, pages 2159–2167, 2014.

[241] Eunho Yang and Pradeep Ravikumar. On the use of variational inference for learn-
ing discrete graphical model. In Proceedings of the 28th International Conference
on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2,
2011, pages 1009–1016, 2011.

[242] Chen Yanover, Talya Meltzer, and Yair Weiss. Linear programming relaxations
and belief propagation - an empirical study. Journal of Machine Learning Research,
7:1887–1907, 2006.

231

Bibliography

[243] Chen Yanover and Yair Weiss. Finding the m most probable configurations using
loopy belief propagation. In S. Thrun, L. K. Saul, and P. B. Schölkopf, editors,
Advances in Neural Information Processing Systems 16, pages 289–296. MIT Press,
2004.

[244] J. Yarkony, C. Fowlkes, and A. Ihler. Covering trees and lower-bounds on quadratic
assignment. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pages 887–894, June 2010.

[245] Jonathan S Yedidia, William T. Freeman, and Yair Weiss. Generalized belief
propagation. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances in
Neural Information Processing Systems 13, pages 689–695. MIT Press, 2001.

[246] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Exploring artificial
intelligence in the new millennium. chapter Understanding Belief Propagation
and its Generalizations, pages 239–269. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2003.

[247] Jonathan S. Yedidia, William T. Freeman, and Yair Weiss. Constructing free-
energy approximations and generalized belief propagation algorithms. IEEE
Transactions on Information Theory, 51(7):2282–2312, 2005.

[248] Zhaozheng Yin and Robert Collins. Belief propagation in a 3D spatio-temporal
MRF for moving object detection. IEEE Computer Vision and Pattern Recogni-
tion, 2007.

[249] H. Zhang, J. Liu, and N. Kato. Threshold tuning-based wearable sensor fault
detection for reliable medical monitoring using Bayesian network model. IEEE
Systems Journal, PP(99):1–11, 2016.

[250] Shuheng Zhou, John D. Lafferty, and Larry A. Wasserman. Time varying undi-
rected graphs. Machine Learning, 80(2–3):295–319, 2010.

[251] Shuheng Zhou, Philipp Rütimann, Min Xu, and Peter Bühlmann. High-
dimensional covariance estimation based on Gaussian graphical models. Journal
of Machine Learning Research, 12:2975–3026, 2011.

232

	Abstract
	Introduction
	Approach and Techniques
	Organization
	Contributions
	Acknowledgements

	Background
	Notation
	Graphical Models and Exponential Families
	The Exponential Family of Densities
	Probabilistic Inference

	Numerical Optimization and Regularization
	Parameter Estimation
	First-Order Methods
	Regularization
	Structure Estimation

	Polynomial Approximation
	Chebyshev Polynomials
	Remez Algorithm

	Memory Constraints
	Sufficiency
	Reparametrization
	Parameter Tying

	Multivariate Sensor Data
	Generalized Sequence Structures
	Redundancy

	Compressible Reparametrization
	Decay Types
	Reparametrization and Optimization

	Continuous State Spaces
	Parameter Estimation
	Linear Dynamical Systems and Undirected Models
	Reparametrization

	Experimental Demonstration
	Setup
	Results

	Discussion

	Arithmetic Constraints
	Low-Precision Machine Learning
	Integer Exponential Families
	Integer Probabilistic Inference
	General Variational Inference
	Message Passing Algorithms
	Bit-Length Propagation
	Computing Bit-Length Messages
	Gibbs Sampling

	Integer Parameter Estimation
	Tree-Structured Models
	The Integer Gradient Descent Method
	Learning with Integer Arithmetic
	Alternative Integer-Valued Estimation Procedures

	Experimental Demonstration
	Setup
	Results

	Discussion

	Computation and Quality Constraints
	Integration, Hashing and Optimization
	Quadrature
	Integrable Sufficient Statistics
	Discrete Random Variables
	Continuous Random Variables

	Stochastic Quadrature Method
	Approximation Error and Sample Complexity
	Normalizing the Tuple Density
	Index Tuple Sampling

	Parameter Learning and SQM
	Marginal Inference
	Parameter Estimation

	Experimental Demonstration
	Setup
	Results

	Discussion

	Conclusion
	Future Directions

	Appendix
	Basic Probability and Information Theory
	Information Entropy and Related Functionals

