695,803 research outputs found

    Top-Down Causation and the Rise of Information in the Emergence of Life

    Get PDF
    abstract: Biological systems represent a unique class of physical systems in how they process and manage information. This suggests that changes in the flow and distribution of information played a prominent role in the origin of life. Here I review and expand on an emerging conceptual framework suggesting that the origin of life may be identified as a transition in causal structure and information flow, and detail some of the implications for understanding the early stages chemical evolution

    Strong-Pinning Effects in Low-Temperature Creep: Charge-Density Waves in TaS_3

    Full text link
    Nonlinear conduction in the quasi-one dimensional conductor o-TaS_3 has been studied in the low-temperature region down to 30 mK. It was found that at temperatures below a few Kelvins the current-voltage (I-V) characteristics consist of several branches. The temperature evolution of the I-V curve proceeds through sequential freezing-out of the branches. The origin of each branch is attributed to a particular strong pinning impurity type. Similar behavior is expected for other physical systems with collective transport (spin-density waves, Wigner crystals, vortex lattices in type-II superconductors etc.) in the presence of strong pinning centers.Comment: 11 pages, 3 ps figures, Revtex, To be published in Phys. Rev. Letters (1997

    A disk census for the nearest group of young stars: Mid-infrared observations of the TW Hydrae Association

    Full text link
    A group of young, active stars in the vicinity of TW Hydrae has recently been identified as a possible physical association with a common origin. Given its proximity (∼\sim50 pc), age (∼\sim10 Myr) and abundance of binary systems, the TW Hya Association is ideally suited to studies of diversity and evolution of circumstellar disks. Here we present mid-infrared observations of 15 candidate members of the group, 11 of which have no previous flux measurements at wavelengths longer than 2μ\mum. We report the discovery of a possible 10μ\mum excess in CD -33∘^{\circ}7795, which may be due to a circumstellar disk or a faint, as yet undetected binary companion. Of the other stars, only TW Hya, HD 98800, Hen 3-600A, and HR 4796A -- all of which were detected by IRAS -- show excess thermal emission. Our 10μ\mum flux measurements for the remaining members of the Association are consistent with photospheric emission, allowing us to rule out dusty inner disks. In light of these findings, we discuss the origin and age of the TW Hya Association as well as implications for disk evolution timescales.Comment: 10 pages and 1 PostScript figure, accepted for publication in The Astrophysical Journal Letter

    MOSFIRE Spectroscopy of Quiescent Galaxies at 1.5 < z < 2.5. I - Evolution of Structural and Dynamical Properties

    Get PDF
    We present deep near-infrared spectra for a sample of 24 quiescent galaxies in the redshift range 1.5 < z < 2.5 obtained with the MOSFIRE spectrograph at the W. M. Keck Observatory. In conjunction with a similar dataset we obtained in the range 1 < z < 1.5 with the LRIS spectrograph, we analyze the kinematic and structural properties for 80 quiescent galaxies, the largest homogeneously-selected sample to date spanning 3 Gyr of early cosmic history. Analysis of our Keck spectra together with measurements derived from associated HST images reveals increasingly larger stellar velocity dispersions and smaller sizes to redshifts beyond z~2. By classifying our sample according to Sersic indices, we find that among disk-like systems the flatter ones show a higher dynamical to stellar mass ratio compared to their rounder counterparts which we interpret as evidence for a significant contribution of rotational motion. For this subset of disk-like systems, we estimate that V/sigma, the ratio of the circular velocity to the intrinsic velocity dispersion, is a factor of two larger than for present-day disky quiescent galaxies. We use the velocity dispersion measurements also to explore the redshift evolution of the dynamical to stellar mass ratio, and to measure for the first time the physical size growth rate of individual systems over two distinct redshift ranges, finding a faster evolution at earlier times. We discuss the physical origin of this time-dependent growth in size in the context of the associated reduction of the systematic rotation.Comment: Updated to match the published versio

    Interferences in quantum eraser reveal geometric phases in modular and weak values

    Full text link
    In this letter, we present a new procedure to determine completely the complex modular values of arbitrary observables of pre- and post-selected ensembles, which works experimentally for all measurement strengths and all post-selected states. This procedure allows us to discuss the physics of modular and weak values in interferometric experiments involving a qubit meter. We determine both the modulus and the argument of the modular value for any measurement strength in a single step, by controlling simultaneously the visibility and the phase in a quantum eraser interference experiment. Modular and weak values are closely related. Using entangled qubits for the probed and meter systems, we show that the phase of the modular and weak values has a topological origin. This phase is completely defined by the intrinsic physical properties of the probed system and its time evolution. The physical significance of this phase can thus be used to evaluate the quantumness of weak values
    • …
    corecore