4,520 research outputs found

    The orbit rigidity matrix of a symmetric framework

    Full text link
    A number of recent papers have studied when symmetry causes frameworks on a graph to become infinitesimally flexible, or stressed, and when it has no impact. A number of other recent papers have studied special classes of frameworks on generically rigid graphs which are finite mechanisms. Here we introduce a new tool, the orbit matrix, which connects these two areas and provides a matrix representation for fully symmetric infinitesimal flexes, and fully symmetric stresses of symmetric frameworks. The orbit matrix is a true analog of the standard rigidity matrix for general frameworks, and its analysis gives important insights into questions about the flexibility and rigidity of classes of symmetric frameworks, in all dimensions. With this narrower focus on fully symmetric infinitesimal motions, comes the power to predict symmetry-preserving finite mechanisms - giving a simplified analysis which covers a wide range of the known mechanisms, and generalizes the classes of known mechanisms. This initial exploration of the properties of the orbit matrix also opens up a number of new questions and possible extensions of the previous results, including transfer of symmetry based results from Euclidean space to spherical, hyperbolic, and some other metrics with shared symmetry groups and underlying projective geometry.Comment: 41 pages, 12 figure

    Finite motions from periodic frameworks with added symmetry

    Get PDF
    Recent work from authors across disciplines has made substantial contributions to counting rules (Maxwell type theorems) which predict when an infinite periodic structure would be rigid or flexible while preserving the periodic pattern, as an engineering type framework, or equivalently, as an idealized molecular framework. Other work has shown that for finite frameworks, introducing symmetry modifies the previous general counts, and under some circumstances this symmetrized Maxwell type count can predict added finite flexibility in the structure. In this paper we combine these approaches to present new Maxwell type counts for the columns and rows of a modified orbit matrix for structures that have both a periodic structure and additional symmetry within the periodic cells. In a number of cases, this count for the combined group of symmetry operations demonstrates there is added finite flexibility in what would have been rigid when realized without the symmetry. Given that many crystal structures have these added symmetries, and that their flexibility may be key to their physical and chemical properties, we present a summary of the results as a way to generate further developments of both a practical and theoretic interest.Comment: 45 pages, 13 figure

    Symmetry adapted Assur decompositions

    Get PDF
    Assur graphs are a tool originally developed by mechanical engineers to decompose mechanisms for simpler analysis and synthesis. Recent work has connected these graphs to strongly directed graphs, and decompositions of the pinned rigidity matrix. Many mechanisms have initial configurations which are symmetric, and other recent work has exploited the orbit matrix as a symmetry adapted form of the rigidity matrix. This paper explores how the decomposition and analysis of symmetric frameworks and their symmetric motions can be supported by the new symmetry adapted tools.Comment: 40 pages, 22 figure

    Linking Rigid Bodies Symmetrically

    Full text link
    The mathematical theory of rigidity of body-bar and body-hinge frameworks provides a useful tool for analyzing the rigidity and flexibility of many articulated structures appearing in engineering, robotics and biochemistry. In this paper we develop a symmetric extension of this theory which permits a rigidity analysis of body-bar and body-hinge structures with point group symmetries. The infinitesimal rigidity of body-bar frameworks can naturally be formulated in the language of the exterior (or Grassmann) algebra. Using this algebraic formulation, we derive symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of body-bar frameworks with Abelian point group symmetries in an arbitrary dimension. In particular, from the patterns of these new matrices, we derive combinatorial characterizations of infinitesimally rigid body-bar frameworks which are generic with respect to a point group of the form Z/2Z×⋯×Z/2Z\mathbb{Z}/2\mathbb{Z}\times \dots \times \mathbb{Z}/2\mathbb{Z}. Our characterizations are given in terms of packings of bases of signed-graphic matroids on quotient graphs. Finally, we also extend our methods and results to body-hinge frameworks with Abelian point group symmetries in an arbitrary dimension. As special cases of these results, we obtain combinatorial characterizations of infinitesimally rigid body-hinge frameworks with C2\mathcal{C}_2 or D2\mathcal{D}_2 symmetry - the most common symmetry groups found in proteins.Comment: arXiv:1308.6380 version 1 was split into two papers. The version 2 of arXiv:1308.6380 consists of Sections 1 - 6 of the version 1. This paper is based on the second part of the version 1 (Sections 7 and 8

    One brick at a time: a survey of inductive constructions in rigidity theory

    Full text link
    We present a survey of results concerning the use of inductive constructions to study the rigidity of frameworks. By inductive constructions we mean simple graph moves which can be shown to preserve the rigidity of the corresponding framework. We describe a number of cases in which characterisations of rigidity were proved by inductive constructions. That is, by identifying recursive operations that preserved rigidity and proving that these operations were sufficient to generate all such frameworks. We also outline the use of inductive constructions in some recent areas of particularly active interest, namely symmetric and periodic frameworks, frameworks on surfaces, and body-bar frameworks. We summarize the key outstanding open problems related to inductions.Comment: 24 pages, 12 figures, final versio

    Rigidity of frameworks on expanding spheres

    Get PDF
    A rigidity theory is developed for bar-joint frameworks in Rd+1\mathbb{R}^{d+1} whose vertices are constrained to lie on concentric dd-spheres with independently variable radii. In particular, combinatorial characterisations are established for the rigidity of generic frameworks for d=1d=1 with an arbitrary number of independently variable radii, and for d=2d=2 with at most two variable radii. This includes a characterisation of the rigidity or flexibility of uniformly expanding spherical frameworks in R3\mathbb{R}^{3}. Due to the equivalence of the generic rigidity between Euclidean space and spherical space, these results interpolate between rigidity in 1D and 2D and to some extent between rigidity in 2D and 3D. Symmetry-adapted counts for the detection of symmetry-induced continuous flexibility in frameworks on spheres with variable radii are also provided.Comment: 22 pages, 2 figures, updated reference
    • …
    corecore