2,507 research outputs found

    The optimization of a symbolic execution engine for detecting runtime errors

    Get PDF
    In a software system, most of the runtime failures may come to light only during test execution, and this may have a very high cost. To help address this problem, a symbolic execution engine called RTEHunter, which has been developed at the Department of Software Engineering at the University of Szeged, is able to detect runtime errors (such as null pointer dereference, bad array indexing, division by zero) in Java programs without actually running the program in a real-life environment. Applying the theory of symbolic execution, RTEHunter builds a tree, called a symbolic execution tree, composed of all the possible execution paths of the program. RTEHunter detects runtime issues by traversing the symbolic execution tree and if a certain condition is fulfilled the engine reports an issue. However, as the number of execution paths increases exponentially with the number of branching points, the exploration of the whole symbolic execution tree becomes impossible in practice. To overcome this problem, different kinds of constraints can be set up over the tree. E.g. the number of symbolic states, the depth of the execution tree, or the time consumption could be restricted. Our goal in this study is to find the optimal parametrization of RTEHunter in terms of the maximum number of states, maximum depth of the symbolic execution tree and search strategy in order to find more runtime issues in a shorter time. Results on three open-source Java systems demonstrate that more runtime issues can be detected in the 0 to 60 basic block-depth levels than in deeper ones within the same time frame. We also developed two novel search strategies for traversing the tree based on the number of null pointer references in the program and on linear regression that performs better than the default depth-first search strategy

    IntRepair: Informed Repairing of Integer Overflows

    Full text link
    Integer overflows have threatened software applications for decades. Thus, in this paper, we propose a novel technique to provide automatic repairs of integer overflows in C source code. Our technique, based on static symbolic execution, fuses detection, repair generation and validation. This technique is implemented in a prototype named IntRepair. We applied IntRepair to 2,052C programs (approx. 1 million lines of code) contained in SAMATE's Juliet test suite and 50 synthesized programs that range up to 20KLOC. Our experimental results show that IntRepair is able to effectively detect integer overflows and successfully repair them, while only increasing the source code (LOC) and binary (Kb) size by around 1%, respectively. Further, we present the results of a user study with 30 participants which shows that IntRepair repairs are more than 10x efficient as compared to manually generated code repairsComment: Accepted for publication at the IEEE TSE journal. arXiv admin note: text overlap with arXiv:1710.0372

    Symbolic crosschecking of data-parallel floating-point code

    Get PDF
    • …
    corecore