
Acta Cybernetica 23 (2017) 573–597.

The Optimization of a Symbolic Execution Engine

for Detecting Runtime Errors

István Kádára

Abstract

In a software system, most of the runtime failures may come to light only
during test execution, and this may have a very high cost.

To help address this problem, a symbolic execution engine called RTE-
Hunter, which has been developed at the Department of Software Engineer-
ing at the University of Szeged, is able to detect runtime errors (such as null
pointer dereference, bad array indexing, division by zero) in Java programs
without actually running the program in a real-life environment.

Applying the theory of symbolic execution, RTEHunter builds a tree,
called a symbolic execution tree, composed of all the possible execution paths
of the program. RTEHunter detects runtime issues by traversing the sym-
bolic execution tree and if a certain condition is fulfilled the engine reports
an issue.

However, as the number of execution paths increases exponentially with
the number of branching points, the exploration of the whole symbolic execu-
tion tree becomes impossible in practice. To overcome this problem, different
kinds of constraints can be set up over the tree. E.g. the number of symbolic
states, the depth of the execution tree, or the time consumption could be
restricted.

Our goal in this study is to find the optimal parametrization of RTEHunter
in terms of the maximum number of states, maximum depth of the symbolic
execution tree and search strategy in order to find more runtime issues in a
shorter time.

Results on three open-source Java systems demonstrate that more run-
time issues can be detected in the 0 to 60 basic block-depth levels than in
deeper ones within the same time frame. We also developed two novel search
strategies for traversing the tree based on the number of null pointer refer-
ences in the program and on linear regression that performs better than the
default depth-first search strategy.

aUniversity of Szeged, Department of Software Engineering Árpád tér 2. H-6720 Szeged,
Hungary, E-mail: ikadar@inf.u-szeged.hu

DOI: 10.14232/actacyb.23.2.2017.9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Szeged

https://core.ac.uk/display/153364389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

574 István Kádár

1 Introduction

Nowadays, in software engineering it is a big challenge to produce huge, reliable
and robust software systems. About 40% of the total development costs go on
testing [29]; and the maintenance activities, especially the bug fixing of the system
also require a considerable amount of resources [35]. In this area, symbolic execution
has proven to be a practical technique for building automated test case generation
and bug finding tools [6, 7, 15, 34], which supports the maintenance phase of the
software engineering lifecycle.

In the context of software testing, the key goal of symbolic execution is to explore
as many different program paths as possible in a given amount of time, and for each
path to (1) generate a set of concrete test input values which exercises that path
during a normal execution, and (2) check for the presence of various kinds of errors
including uncaught exceptions, memory corruption and security vulnerabilities.

Our symbolic execution engine called RTEHunter developed at the Department
of Software Engineering at the University of Szeged was developed with the goal
of detecting runtime errors (such as null pointer dereference, bad array indexing,
division by zero) in Java programs without actually running the program in a real-
life environment.

Symbolic execution [21] is based on the notion that the program is operated on
symbolic variables instead of specific input data, and the output will be a function
of these symbolic variables. A symbolic variable is a set of the possible values
of a concrete variable in the program, hence a symbolic state is a set of concrete
program states. When the execution of the program arrives at a branching condition
containing a symbolic variable which has an unknown value, the condition cannot
be evaluated and the execution continues on both branches. The execution paths
created this way compose a tree called the symbolic execution tree.

However, as the number of execution paths increases exponentially with the
number of branching points these tools struggle to achieve scalability. To overcome
this problem the symbolic execution engines set up different kinds of constraints
over the tree. For example, the number of symbolic states, the depth of the execu-
tion tree, or the runtime is limited. With RTEHunter, the maximum depth of the
symbolic execution tree (i.e. the symbolic state depth) and the maximum number
of states can be adjusted and arbitrary strategies of the tree traversal can also be
implemented.

The main aim of this study is to find the optimal parametrization of RTEHunter
in terms of the maximum number of states, maximum depth of the symbolic execu-
tion tree and search strategy in order to identify more runtime issues in less time.
This means we have to figure out which part of the whole execution tree contains
most of the runtime issues while taking into consideration the time consumption
of the exploration. Moreover, the search strategy is also essential to direct the ex-
ploration towards those states in the sub-tree where it is more likely to find issues
and skip those that are supposed to be error-free. The maximum depth limits the
height of the tree, and with a fixed depth the maximum number of states defines
its width, while the search strategy determines the order in which the states in this

The Optimization of a Symbolic Execution Engine 575

limited size tree should be traversed.

The main contributions of this study are the following:

• We discovered how the maximum number of states affects the execution time
and the number of errors found without any constraint on the depth.

• We learned how the maximum number of states together with the maximum
depth of the symbolic execution tree affects both the amount of runtime issues
detected and the analysis time required.

• As our main contribution, we propose two novel search strategies that suc-
cessfully detect more runtime issues by guiding the search towards the more
error-prone parts of the source-code.

2 Background

2.1 Overview of Symbolic Execution

During execution, each program performs operations on the input data in a pre-
defined order. The main idea behind symbolic execution [21] is to use symbolic
variables instead of the actual data as input values and represent the values prop-
agated during execution as symbolic expressions. A symbolic variable is a set of
the possible values of a concrete variable in the program, hence a symbolic state
is a set of concrete states. The output values computed by the program are then
expressed as a function of the input symbolic variables.

When the execution encounters a selection control structure (e.g. an if state-
ment) where the logical expression contains a symbolic variable whose value is
unknown or uncertain, the expression cannot be evaluated, implying that the execu-
tion continues on both branches accordingly. This way all of the possible execution
branches of the program can be simulated in theory.

Each state of a symbolically executed program contains a path condition (PC).
The path condition is a quantifier-free logical formula over the input symbolic
variables with the initial value of true. It accumulates constraints which the inputs
must satisfy in order to direct the execution to follow the path associated with the
formula.

In addition to maintaining the path condition, symbolic execution engines make
use of the so-called constraint solver programs. Constraint solvers are used to solve
the path condition by assigning values to the symbolic variables that satisfy the
logical formula at any state of the symbolic execution. Practically speaking, the
solutions serve as test inputs that can be used to run the program in such a way
that the concrete execution follows the execution path for which the PC was solved.

All of the possible execution paths define a connected and acyclic directed graph
called the symbolic execution tree. Each point of the tree corresponds to a symbolic
state of the program.

576 István Kádár

1 int d i s t ance (int x , int y) {
2 int d i s t ;
3 i f (x > y) {
4 d i s t = x − y ;
5 } else {
6 d i s t = y − x ;
7 }
8 i f (d i s t < 0) {
9 System . out . p r i n t l n (” Error ”) ;

10 }
11 return d i s t ;
12 }

(a)

(b)

Figure 1: (a) Sample code that determines the distance between two integers on the
number line. (b) The symbolic execution tree of the sample code that handles variable x
and y symbolically.

The Optimization of a Symbolic Execution Engine 577

Figure 1 (a) shows a simple Java method that determines the distance between
the two integer parameters x and y. The symbolic execution of this code is illus-
trated in Figure 1 (b) with the corresponding symbolic execution tree, showing the
actual path condition. Suppose that parameters x and y are handled symbolically,
the initial value of the path condition is true. Encountering the first if statement
in line 3, there are two possibilities, namely the logical expression may be true or
false; hence the execution branches and the logical expression and its negation are
added to the PC.

The value of variable dist will be a symbolic expression: x − y on the true
branch and y − x on the false one. As a result of the second if statement (line 8),
the execution branches and the appropriate PCs are again appended. On the true
branches it is obvious that the formulas are unsatisfiable (shown in red), meaning
we cannot specify such x and y that meet the conditions. So long as the PC is
unsatisfiable at a state, the sub-tree starting from that state can be pruned; then
there is no sense in continuing the controversial execution.

2.2 RTEHunter

Now we will give a brief description of our symbolic execution engine called RTE-
Hunter in order to explain the optimization approaches and investigations presented
in this study.

RTEHunter was created with the goal of detecting runtime errors in Java appli-
cations without running the program in a real-life environment. In contrast with
other symbolic execution tools [6, 21, 36, 37, 38], generating test cases which lead
to failure is not a goal here, but rather to produce a descriptive designation of the
execution path that led to a fault.

RTEHunter was developed in C++ and so far the detection of four kinds of
runtime faults have been implemented: (1) null pointer dereferences, (2) array over-
indexing, (3) array creation with a negative size, and (4) division-by-zero errors.

Instead of starting the symbolic execution from the main() method that is the
entry point of a Java program, RTEHunter performs the analysis by symbolically
executing each method of the system one after the other [20]. This does not mean
that the engine cannot handle method calls, as the analysis is interprocedural. The
engine handles method calls by placing the actual parameters onto the stack and
giving the control to the callee.

The parameters of the method and the referred but not initialized variables
are handled as symbols at the beginning of the symbolic execution. It is essential
that we only report an error if it is proved that during the execution the value
that causes the problem can be determined by constant propagation. In other
words, if a method call passes a concrete null value, and RTEHunter finds a path
in the called method that dereferences this parameter, we will fire an error, but if
the dereferenced variable is a symbol we will not, because its value is unknown or
uncertain.

The symbolic execution is performed using the language-dependent abstract
semantic graph (ASG) [11] of the program by interpreting the nodes of this graph

578 István Kádár

in a defined order. The order is defined by the language-independent control flow
graph (CFG) [2], which is constructed for each method. The nodes of the control
flow graph are called basic blocks. A basic block represents a straight-line piece
of code that is guaranteed to execute sequentially (i.e. it does not include any
jumps or jump targets) by lining up the appropriate ASG nodes according to the
sequential execution. Directed edges between any two basic blocks are used to
represent jumps in the control flow. In RTEHunter, for each method analyzed the
symbolic execution tree is constructed by traversing the CFG and for each basic
block a symbolic state will be created in the tree. Loops and recursions are not
handled in any special way and the traversal of the CFG results in simple unrolling.
Figure 2 shows the control flow graph constructed for the method distance() shown
in Figure 1 (a) and the symbolic execution tree that RTEHunter creates using the
control flow graph is shown in Figure 3.

Listing 1 shows the pseudo-code of the algorithm used in RTEHunter which
builds up the symbolic execution tree while executing symbolically each path with
a C++-like syntax. The search-and-build strategy shown here is depth-first search.
The construction of the execution tree commences with the method search(). Here,
we first get the root state of the tree, and initialize the strategy object with this.
Afterwards, the while loop always gets the next state to be executed. The execution
of a state is performed by method called executeState(), which interprets the nodes
that are in the basic block which the state is created from according to the semantic
of the Java programing language. The strategy object provides the next state
according to the implemented strategy. In this listing, the strategy is implemented
in the class DepthFirstSearchStrategy, in which the getNextState() method is the
essential part of the traversal. It gets the top-most element from the stack and
expands this state, intending to get all of its descendants, then it puts them onto
the stack. The expandState() method of our expander object constructs the child
states according to the descendent Basic Blocks in the CFG and the information
that is got from the execution of the parent states. For instance, if the parent state
represents an if statement that would have two children, but the logical expression
could be evaluated by execution of the parent, the expandState() will not provide
both children, but just the appropriate one. The stack data structure (LIFO queue)
provides the depth-first search traversal.

Listing 1: The main algorithm of tree building and execution in RTEHunter.

1 Strategy ∗ s t r a t egy = new DepthFirstSearchStrategy (expander) ;
2
3 void search (StateFactory s tateFactory) {
4 State ∗ rootSta te = stateFactory . getRootState () ;
5 s t rategy−> i n i t i a l i z e (∗ rootSta te) ;
6 State ∗ nextState = NULL;
7 while (nextState = strategy−>getNextState ())
8 executeState (∗ nextState) ;
9 }

10
11 c lass DepthFirstSearchStrategy : public SearchStrategy {
12 private :
13 std : : stack<State∗> s tack ;
14
15 public :
16 DepthFirstSearchStrategy (StateExpander Inter face& expander)
17 : SearchStrategy (expander) , s tack () {}
18
19 void i n i t i a l i z e (State& rootState) {
20 stack . push(& s ta t e) ;

The Optimization of a Symbolic Execution Engine 579

21 }
22
23 State ∗ getNextState () {
24 State ∗ f r on t = stack . top () ;
25 stack . pop () ;
26 std : : vector<State∗> ch i l d r en=expander . expandState (∗ f r on t) ;
27 for (State ∗ ch i l d : ch i l d r en)
28 stack . push (ch i l d) ;
29 i f (s tack . empty ())
30 return NULL;
31 return s tack . top ()
32 }
33 } ;

Figure 2: The control flow graph (CFG) constructed for the method in Figure 1 (a).

580 István Kádár

Figure 3: The symbolic execution tree constructed by RTEHunter for the code shown in
Figure 1 (a).

RTEHunter is able to handle integer, floating point, reference (including alias-
ing), and array type data. It models the memory by storing the variables in a
special data structure optimized for memory usage. We do not store the whole
variable set for each state, but only the changes. That is, if the engine wants to
read a variable that was assigned in a parent state, it will be found only in the
storage of the appropriate parent, but if the value a variable was changed by the
current state, the updated value will be stored in the variable storage of the current
state. Moreover, each state has a stack that is used for passing parameters during
method invocation and for calculating expressions.

The same runtime failure can be detected repeatedly if multiple execution paths
have been explored which led to the same program location. However, it is not
obvious how to determine in which cases we consider two errors the same, because
the original cause of two errors may be different despite the fact that the detection
points are the same. For example, a reference type variable can be set to null at
different locations in the program, and then dereferenced at the same place; then

The Optimization of a Symbolic Execution Engine 581

this will cause a NullPointerException. The detection location is the same, but the
causes (and the possible fixes) may differ. However, by examining the results, we
realized that if multiple paths led to the same location, in most of the cases the
cause is the same too because the one path is a suffix for the others. Then it seems
that if multiple paths lead to the same error location, we should retain only the
shorter one and filter out the others.

To limit the size of the symbolic execution trees built up for each method and
the maximum depth and the maximum number of states can be specified. In
accordance with the above, depth here means basic block depth. Furthermore, it
is also possible to define custom search search strategies with which the traversing
of the execution tree can be guided.

The output of the RTEHunter contains the errors detected that indicate their
type and the execution path by a list of states from the entry point to the exact
location where the error occurred. This data are written to a formatted text file,
but RTEHunter has also been integrated into the SonarQube quality management
platform [8].

3 Approach

3.1 Optimal Maximum Depth and State Number

As we mentioned in Section 2.2, two kinds of constraints can be set up in RTE-
Hunter in order to limit the size of the symbolic execution tree and prevent a state
explosion. Namely, (1) the maximum depth (which means state depth), and (2) the
maximum number of states can both be adjusted. With a given maximum depth,
the maximum state number defines the width of the tree. It should be added that
these constraints are applied to each symbolic execution tree built for each method
of the given system separately and they are not global limits for the system-wide
analysis.

In our experiments, we ran RTEHunter with different depth and state number
limits on three open source Java systems. The systems analyzed with their total
lines of code metric are listed in Table 1.

Table 1: The chosen Java systems on which the measurements were carried out

System TLOC
ArgoUML 372K
Jetspeed 275K
JFreeChart 329K

In addition to the maximum depth and the maximum state number, the final
shape of the symbolic execution tree is also determined by the search strategy
applied.

582 István Kádár

In our experiments we sought to ascertain the optimal depth and state number;
and in order to find more runtime errors in less time, we used the default depth-first
search strategy.

3.2 Custom Search Strategies

Since the search strategy that is used to direct the traversal influences the shape of
the final symbolic execution tree, it plays a significant role in finding those states
where runtime errors actually occur.

In the actual stage of the traversal of the state space (i.e. the symbolic execution
tree), a search strategy tells us from which state among the current leaf states the
exploration has to continue, i.e. which state has to be expanded as the next step
of the traversal.

In contrast to depth-first search where the actual leaf states placed into a LIFO
(last in, first out) queue, in our custom search strategies a score is assigned to every
current leaf, which will be placed into a priority queue. When the engine have to
chose a state as the next step, it chooses the one with the highest score to continue
the traversal. The implementations of these strategies are very similar to the code
of class DepthFirstStrategy shown on Listing 1, but the stack member is replaced
by a priority queue that orders the states by score, and the top is the one has the
highest score.

Next, we will describe two new search strategies which implement heuristics to
direct the search towards the potential runtime issues.

3.2.1 The Null-heuristic Search Strategy

This search strategy attempts to drive the traversal to find more null pointer deref-
erence issues. Our motivation of focusing on null pointer dereferences is that accord-
ing to static analysis the most common checks against exceptions are null-checks
in Java sources, implying that this is the most common runtime issue that may oc-
cur [12, 32]. We also discovered that this type of runtime error is the most common
one that RTEHunter encounters.

For each state we summarize the number of reachable reference-type values
(variable values, literals, function return values, etc.), whose value is null at the
current symbolic state of the given Java program. To continue the traversal, the
engine chooses the state with the highest number of null values assigning higher
probability value to find possible null pointer dereferences in that state and in the
sub-tree obtained from it.

3.2.2 A Linear Regression-Based Search Strategy

We developed a search strategy that supports the detection of not just null pointer
dereferences, but also all the four types of issues that RTEHunter is able to detect.
To implement such a search strategy we used a linear regression model that assigns
a score to each leaf state during the search. The score is the estimated number of

The Optimization of a Symbolic Execution Engine 583

runtime issues that might have been detected in the sub-tree reachable from the
state. We chose linear regression because it can be applied on continuous class
labels and it provides a relatively quick result for an unseen example.

The training data of the linear regression model contains one training example
for each state got from symbolic execution trees that were traversed previously by
the engine. The label (i.e. the supervisory signal) for each example is the number of
runtime issues that were detected in the sub-tree under the state that the example
belongs to.

We defined five attributes as predictors that can be determined for each state.
Attributes may containe both static source-code information and dynamic infor-
mation that the symbolic execution supplies.

The attributes are the following:

1. The depth of the state in the symbolic execution tree. If there is a tendency
of how deep the significant part of the faults occur, the information will be
encoded into the model.

2. The number of null values in the state, as described in Section 3.2.1.

3. The sum of the number of zero numeric type values (variable values, literals,
function return values, etc.) in the state, and the number of division operators
reachable from the state according to the control flow graph in 15 basic block
depth. Here, we combined the dynamic information of zero values and the
static information of the number of division operators in the possible future of
the execution. This attribute is a heuristic for finding division-by-zero errors.

4. The Logical Lines of Code (LLOC) metric of the method that the state belongs
to.

5. The cyclomatic complexity metric [26] of the method that the state belongs to.

As lines of code (LOC) and cyclomatic complexity have proved to be promising
defect predictors [27, 28], attributes 4 and 5 should be useful in our heuristic. Both
of them were calculated using static a source code analyzer tool called SourceMeter1.

We applied the linear regression algorithm implemented in the Shark machine
learning library [18].

4 Results

4.1 Optimal Maximum Depth and State Number

In order to ascertain the optimal limitations of the symbolic execution tree built
by RTEHunter with the goal of finding runtime issues in a minimal time frame, we
performed numerous analyses and applied different constraints.

1http://www.sourcemeter.com/

584 István Kádár

Figure 4: The increase in the number of errors at analysis time using different depth limits
in ArgoUML.

Figure 5: The increase in the number of errors at analysis time using different depth limits
in Jetspeed.

Figure 6: The increase in the number of errors at analysis time using different depth limits
in JFreeChart.

The Optimization of a Symbolic Execution Engine 585

(a) (b)

Figure 7: (a) The distribution of the errors at different depth levels in ArgoUML. (b) The
distribution of the states at different depth levels in ArgoUML.

(a) (b)

Figure 8: (a) The distribution of the errors at different depth levels in Jetspeed. (b) The
distribution of the states at different depth levels in Jetspeed.

(a) (b)

Figure 9: (a) The distribution of the errors at different depth levels in JFreeChart. (b)
The distribution of the states at different depth levels in JFreeChart.

586 István Kádár

First of all, we found that the number of executed states is closely correlated
with the analysis time. The Pearson-correlation coefficients are all above 0.99,
which is a strong positive correlation, and it means that the high state limit cor-
responds to a high run-time. The results are significant at p < 0.05. However,
the correlation coefficients among the number of states and the number of issues
found range from 0.3 to 0.8, indicating a weaker relationship, and the results are
not significant in many cases at p < 0.05. Hence the number of states seems to
determine the execution time, but the number of errors probably depends on other
factors as well.

To understand the role of maximum depth, we ran RTEHunter with different
depth limits, at each depth limit level and with different maximum state sizes,
and this allowed us to investigate how the results varied by increasing the analysis
time. The depth limits chosen were 50, 100, 200, 400, 600 and 800, for each the
maximum state values differ from 200 to 10,000. The results were put onto line
diagrams shown in figures 4, 5 and 6 for ArgoUML, Jetspeed and JFreeChart,
respectively. The diagrams show how the number of errors grows in time at each
depth limit level. On each line the dots represents an RTEHunter run with a
specific state number limit, which are formed to extend the analysis at least nearly
500 seconds.

In general, each line starts increasing, and after a while the number of errors
does not increase anymore. The reason why the number of errors stagnate after
a time may be because all of the errors were found at that depth level, and to
detect new ones the analysis needs to go deeper. The depth limit is considered to
be better which rises rapidly and with which the engine detects higher number of
errors. The best depth limit varies from system to system.

As regards ArgoUML, the 100-depth configuration increases the most rapidly,
but at the depth of 200 one can find 24 errors in slightly shorter time. By decreasing
the depth limit to 50, the results get worse, and the 400- 600- and 800-depth
configurations also perform worse.

With Jetspeed, the 50-depth limit is far better than the others. While with
the depths of 100, 600 and 800 we can reach only 32 errors under 500 seconds, we
managed to detect 37 errors with the 50-depth configuration. These results suggest
that the majority of the errors in Jetspeed are at a depth of below 50.

Among the investigated depth limits, the 400-depth may be considered to be
the optimum in the case of JFreeChart. However, the 50-depth one starts to rise
the most rapidly, then it stops growing after 100 seconds. After 600 seconds the
600-depth limit becomes slightly better than the 400-depth one, but in general the
400-depth one performs the best.

To understand why the above-mentioned depth-limits performed the best in
the experiments, we analyzed the distribution of the errors at different depth lev-
els. Subfigures (a) of figures 7, 8 and 9 show that the number of errors found
at each depth level. The depth-level intervals formed to be 20-length intervals in
each diagram. The height of the bars in each diagram represents the number of
errors found in 20-length depth intervals. The data is derived from an 800 depth
and 15,000 state limit run, with which we attempted to analyze as big symbolic

The Optimization of a Symbolic Execution Engine 587

execution trees as the memory consumption made possible.
In general, the same pattern appears to be present in all three systems. The

number of errors are significant at shallower levels, then in the middle just a few of
them were detected, and close to the depth limit errors occur again but not at such
high numbers as in the shallower levels. E.g. the error distribution of Jetspeed in
Figure 8 (a) tells us that the majority of the errors were found at a depth limit
of 40 or less, which explains why the 50-depth limit is so satisfactory in Figure 5.
Although deeper configurations reached more states, the error density is rather low
there, hence we wasted time spent in executing these.

We have also plotted the distributions of all the states that were explored by
RTEHunter in figures 7, 8 and 9 (b). These diagrams show the overall shape of
the symbolic execution trees traversed through the analysis. A similar pattern
can be seen in the error distribution diagrams, which partially explains the error
distribution: at depth levels where more states are explored, more errors can be
found. However, there are many more states near the 800-depth maximum-limit
than in the shallow parts of the tree, but the number of errors is higher in the
shallow levels than at the bottom. This leads us conclude that the the runtime
issues that RTEHunter can detect are in general more common between levels 0 to
60 basic block depths compared to the deeper levels.

It should be added that the search strategy which is used to explore the state
space has a marked effect on the state distribution, and hence on the error distri-
bution too.

4.2 Null-heuristic Search Strategy

The goal of the null-heuristic search strategy is to increase the number of runtime
issues detected in the given time frame, compared to the default depth-first search.
In particular, we focused on the number of null pointer dereferences. To make
a comparison, we used those configurations which were found to be the best in
Section 4.1 as a reference. The maximum depth for ArgoUML is 100, 50 for Jetseed
and 400 for JFreeChart. We also chose the same state number limit sequence to
expand the analysis time as before. With these parameters, but this time with our
novel null-heuristic we repeated the experiments. The results of these experiments
are shown in Figure 10.

In each case the null-heuristic approach performed better, because the number
of detected issues increases more rapidly and the values higher, i.e. it found more
runtime issues in less time which surely confirms the efficiency of our algorithm. It
is worth mentioning here that over 90% of the errors found in these systems are
null pointer dereferences, and the new search strategy applied does not modify this
ratio significantly.

What is more interesting is that the same analysis sequence with the null-
heuristic approach finished faster than before. E.g. in the case of ArgoUML the
last analysis (the last dot on the line) lasted 431 seconds with the null-heuristic, and
522 seconds with the conventional DFS. This point is surprising because we need
to calculate the number of null reference values for each state and also maintain

588 István Kádár

(a) (b) (c)

Figure 10: The efficiency of null-heuristic search compared to the default depth-first search
on ArgoUML (a), Jetspeed (b), JFreeChart (c).

a priority queue to keep the leaves in for the null-heuristic algorithm. Probably
the reason why it is still faster is that it guides the search towards states whose
execution time is shorter.

4.3 Linear Regression Based Search Strategy

Table 2: The number of detected runtime issues with the linear regression based search
strategy (LR based) compared to the default depth-first search (DFS)

500 max state 1000 max state 1500 max state
ArgoUML
(max depth: 100)

DFS 22 23 23
LR based 51 54 55

Jetspeed
(max depth: 50)

DFS 33 35 35
LR based 66 74 73

JFreeChart
(max depth: 400)

DFS 91 93 94
LR based 122 131 138

In the evaluation of the linear regression-based search strategy, we use 10-fold
cross-validation on each system in the following way. Firstly, to form the folds we
sort the methods of the system by lines of code (LOC). In the sorted list, each
jthmethod is placed into foldi if equation j mod 10 = i is satisfied. In other
words, every tenth method will go to the same fold (see Figure 11), ensuring that
no fold differs too much from the others in the length of the methods contained.

After running RTEHunter on 10 folds, we summarized the number of errors
that were detected in each fold. The structure of the folds ensures that each error
is counted only once. The number of errors found using this strategy (LR-based)
is shown in Table 2 and it is compared to the errors found by the default depth-
first search strategy (DFS). With all the subject systems we examined the depth
limit that was found to be the best in Section 4.1 using DFS: 100 for ArgoUML,
400 for JFreeChart, and 50 for Jetspeed. As regards the maximum state number
constraint, we provide results for 500, 1000 and 1500 maximum state values.

The Optimization of a Symbolic Execution Engine 589

Figure 11: The formation of the folds used to perform 10-fold cross validation.

As the results demonstrate, our novel algorithm outperforms the default one in
each case. In ArgoUML and Jetspeed, we found more than twice as many errors
as we did with DFS. However, in the case of JFreeChart this ratio is smaller,
the difference being still significant: it formed around 30 to 40 more issues were
discovered.

The reason why we do not present the runtime here is due to the implemen-
tation details of the 10-fold cross validation. Currently, before RTEHunter starts
the analysis of each fold, it has to load the ASG and then rebuild the CFG for
architectural reasons. This introduces an overhead, which is not present in the case
of a conventional run. Apart from this shortcoming, the difference in the number
of detected issues is still significant.

5 Threats to Validity

In the present study we do not focus on the precision of RTEHunter. Some of the
issues found may be false positives and these may change or invalidate the result of
our investigations. Manual validation needs a considerable amount of work in the
case of such a high number of errors presented here. However, in a future work we
plan to perform the manual validation and repeat the experiments with the updated
dataset. We also intend to examine how the false positive rate is affected by the
traversal strategy because we wish to avoid situations where a deeper analysis on
a path produces more false positives for instance because of an incorrectly handled
coding pattern.

6 Related Work

Symbolic execution engines and similar tools. The idea of symbolic execu-
tion is not new, and the first publications and execution engines appeared in the
1970’s. One of the earliest papers is by King, which laid down the fundamentals
of symbolic execution [21] and presented the EFFIGY system that is able to ex-
ecute PL/I programs symbolically. Even though EFFIGY handles only integers

590 István Kádár

symbolically, it is an interactive system with which the user is able to examine
the process of symbolic execution by placing breakpoints and saving and restoring
states. Another paper from the 1970’s is by Boyer et al., who presented a similar
system called SELECT [3] that can be used for executing LISP programs symboli-
cally. The users are allowed to define conditions for variables and return values and
get back whether these conditions are satisfied or not as an output. The system
can be applied for test input generation and in addition, for each path it returns
the path condition over the symbolic variables.

Starting from the last decade interest in this technique has been steadily grow-
ing, and numerous programs have been developed that seek to dynamically test
input generation using symbolic execution. There are also approaches and tools
for generating test suites for .NET programs using symbolic execution. Pex [36] is
a tool that automatically produces a small test suite with high code coverage for
.NET programs using dynamic symbolic execution, similar to path-bounded model-
checking. Jamrozik et al. introduce an extension of the previous approach called
augmented dynamic symbolic execution [19], which seeks to produce representative
test sets with DSE by augmenting path conditions with additional conditions that
enforce target criteria such as boundary or mutation adequacy, or logical coverage
criteria. Experiments with the Apex prototype demonstrate that the resulting test
cases can detect up to 30% more seeded defects than those produced with Pex.

In Section 2.2, we mentioned that the results of RTEHunter can be published
into a SonarQube instance [8]. SonarQube has its own symbolic execution engine
for Java language, which similar to us is intended to find tricky bugs that are
almost undetectable by developers unaided. It is able to find three kinds of issues
compared to our five: (1) null pointer dereference, (2) unclosed resource and (3) a
rule named ”condition should not unconditionally evaluate to true or false”. Based
on our thorough testing of the tool it has a constraints solver, but it does not handle
function calls, meaning it might miss serious errors like null pointer dereferences
that RTEHunter is able to detect even if the control flows through multiple function
calls. Another difference with RTEHunter is that if an issue is found, SonarQube
presents only that part in the source code where the issue actually appears, and it
does not give the path that leads to the fault which can really help the developer in
the debugging work. It should be added that widely used static analysis tools like
PMD [1] and FindBugs [17] can also be integrated into SonarQube to find issues
and bugs. PMD performs syntactic checks on the source-code by building an ASG
first and it does not carry out any deeper analysis to detect runtime issues like a
symbolic execution tool. Beyond syntactic checks, FindBugs syntactically matches
source code to known suspicious programming practice and also uses data-flow
analysis to check for bugs like null pointer dereference, class cast exception and
array index out of bounds exception in an intraprocedural way, but this approach
does not present the results as an interprocedural symbolic execution.

The handling of the state explosion in symbolic execution. To reduce the
state space of the symbolic execution, Symbolic PathFinder [30] based on the Java
PathFinder model checker offers a number of options. Similar to RTEHunter, the

The Optimization of a Symbolic Execution Engine 591

maximum depth of the symbolic execution tree can be specified, and the number of
elementary formulas in the path condition can be restricted. Another possibility is
that with options we can restrict the value ranges of the integer and floating point
type symbolic variables. In addition, Symbolic PathFinder lazily initializes object
references and uses types to infer aliasing.

Bucur et al. [4] addresses the problem of path explosion by parallelizing symbolic
execution in such a way that it scales well on large clusters of cheap commodity
hardware. The system, called Cloud9, can automatically test real systems that
interact in complex ways with their environment.

Another approach for reducing the state space, presented by Chipounov [9], is
not to execute the whole program symbolically, but just portions of it. The engine
can start the symbolic execution at arbitrary places of a whole system, including
applications, libraries, the operating system, and device drivers. It seamlessly goes
back and forth between symbolic and concrete execution, while transparently con-
verting system states from symbolic to concrete and back. A similar approach is
used for testing NASA Software [31]. The idea is also to start the program in nor-
mal mode as in a real-life environment, then at given points (e.g. at more complex
or problematic parts in the program) it can switch to the symbolic execution mode.
The CUTE and jCUTE systems [33] constructed by Sen and Agha, are also concolic
executors, where they start at an arbitrary function by initializing pointers based
at first on a simple heap with abstract addresses and incrementally increase the
heap complexity in subsequent runs.

In order to make symbolic execution more scalable, Majumdar and Xu propose
using symbolic grammars to guide symbolic execution by reducing the space of
possible inputs [25]. Godefroid et al. utilized a similar approach. They set up the
grammar-based specification of highly-structured inputs of symbolic execution such
as compilers and interpreters [14].

Another approach is to reuse and merge the paths that were explored earlier.
Also, reusing the analysis of lower-level functions in subsequent computations im-
proves the scalability of symbolic execution [13].

Loops and recursions with conditions that cannot be evaluated during the sym-
bolic execution result in infinite constructs that can explode the state space without
benefit. For this reason, the handling of these constructs may have significant ef-
fects. CBMC is a Bounded Model Checker for C and C++ programs [10]. CBMC
is able to verify array bounds, exception handling correctness, pointer safety and
user defined assertions as well. In bounded model checking, the potentially infinite
constructs (e.g. while loops, recursion) are unwound only n times, where this num-
ber n is the upper bound. CBMC pre-processes the program into an equivalent
program that uses only while, if, goto statements, and assignments. Next, all while
loops are unwound using the following transformation n times:

while (cond) instruction; → if (e) {instruction; while(cond) instruction}
The last while loop is replaced by assertion !cond, which ensures that the program
never performs more iterations. This unwinding assertion is verified along with
the user defined assertions, and if it fails, one more iteration is required in the
unwinding. Afterwards, the program only consists of if instructions, assignments,

592 István Kádár

assertions, labels, and forward goto instructions, and it is then transformed into
static single assignment (SSA) form, from which a bit vector equation is created
together with the target rule to be verified. If this equation is satisfiable, the tool
finds a violation. The mechanism presented here of unrolling loops only a certain
number of times would be a good idea to integrate it into RTEHunter to reduce
the state space generated by loops. Currently, we use a simple unrolling until we
reach the depth or the overall state limit. Another strategy would be to recognize
patterns in the basic block sequence during a loop unwinding. For example, when
a basic block is visited too many times, the execution is deep inside a recursion or
a loop. This strategy works well for the Clang Static Analyzer [22].

Search heuristics in symbolic execution. One of the key mechanisms used by
symbolic execution tools to prioritize path exploration is the use of search heuristics.
Most heuristics focus on achieving high statement or branch coverage, but they
could also be employed to optimize other desired criteria. The main difference
compared to our study is that we optimize for execution time and also for the
number of detected issues.

KLEE [6] is another symbolic execution engine that seeks to automatically gen-
erate tests that achieve high coverage. Similar to our approach, it is possible to use
various heuristics to prioritize the most interesting paths first. KLEE selects the
next state to run by interleaving the two search heuristics, namely random state
selection and a coverage-optimized search that attempts to select states likely to
cover new code. Currently, our search heuristics do not incorporate any test cover-
age information, but in the future we intend to examine this possibility. Random
exploration proved to be an efficient test generation approach by Burnim et al [5]
as well.

The EXE (EXecution generated Executions) [7] presented by Cadar et al. at
Stanford University is an error checking tool designed for generating input data on
which the program terminates with failure. The heuristic in EXE favors previously
visited statements that were run the least number of times.

The AUSTIN tool applies fitness functions to drive an evolutionary search of
the test input space with dynamic symbolic execution [23].

Ma et al. [24] focus on debugging scenarios when the developer already knows
about the faulty line, but they might not know exactly how to reproduce the failure
or even whether it is reproducible. The approach also applies search strategies that
try to direct the symbolic execution to the target line. One strategy is the shortest-
distance symbolic execution (SDSE), where we pick the path that currently has the
shortest distance to the target line according to the control flow graph (CFG) of the
program. The other one starts at the target line and works backward until it finds
a realizable path from the start of the program, using standard forward symbolic
execution as a subroutine.

In general, our problem lies in the domain of Search-Based Software Engineering
(SBSE), where search-based optimization algorithms are used to address problems
in software engineering - e.g. to figure out the smallest set of test cases that cover
all branches in this program or the set of requirements that balances software

The Optimization of a Symbolic Execution Engine 593

development cost and customer satisfaction. Harman et al. give a comprehensive
survey addressing this area [16]. In our case, we look for the symbolic execution
tree that has smallest exploration time and covers the greatest number of runtime
issues.

7 Conclusions and Future Work

The main goal of this study was to optimize the RTEHunter symbolic execution
engine to detect more runtime issues in less time. Because of the path explosion
problem, the limitation of the state space of the symbolic execution assumes a
major importance in this scenario. In the empirical investigations on three open-
source Java systems, it turned out that adjusting the maximum number of states
for the symbolic execution trees has an effect on the execution time, but not on the
number of issues found. However, the constraints on the depth of the tree is more
important in the detection of runtime errors. We found different optimal depth
limits for the three different systems, but we can say that errors occur more often
at the basic block depth of 0 to 60 compared to the deeper levels in the systems we
analyzed, but it also strongly depends on the search strategy that is applied.

Here, we propose two novel search strategies that seek to guide the symbolic
execution towards the more error prone source-code fragments using both static and
dynamic information. The null-heuristuc search strategy performs better by finding
up to 16 % more errors within the same time frame than those found using the
default depth-first search. The linear regression-based heuristic also outperforms
DFS, and it can detect over twice as many errors in ArgoUML and Jetspeed.

In the future, we would like to include more systems into the empirical exper-
iments and this may help us to find the optimal depth and state number limits of
symbolic execution tree in general, which should make RTEHunter and other sym-
bolic execution engines more efficient. We also plan to develop more efficient search
strategies, by adding new features and applying other machine learning approaches.
Also, we think that the investigation of including test coverage information in the
search heuristic might be a promising approach. We would also like to manually
validate the errors reported by the RTEHunter to discover its precision in practice.

In this study we did not place any emphasis on the practical usage of the
search strategies developed in a real-life product or examine which strategy is good
for which type of error. The null-heuristic search might be good for finding null
dereferences, but it might also degrade the quality of detecting other types of issue.
In real-life applications, one option might be to develop specific, well performing
search strategies for each issue type. However, it may be time consuming to rerun
the symbolic execution for each type. Another option might be to develop one
complex search strategy with general predictors that performs well for all or for
most of the issues. This approach might require less time because we need to
construct the state space only once, but it might not scale well as the number of
checks increase or do not perform as well as the issue-specific heuristics. We plan
to investigate this in more detail as well.

594 István Kádár

8 Acknowledgment

My sincere thanks goes to Dr. Rudolf Ferenc. Without his precious support and
help, it would not have been possible to conduct this study.

References

[1] Pmd/java. https://pmd.github.io/. Accessed: 2017-03-21.

[2] Allen, Frances E. Control flow analysis. SIGPLAN Not., 5(7):1–19, July 1970.

[3] Boyer, Robert S., Elspas, Bernard, and Levitt, Karl N. SELECT – a Formal
System for Testing and Debugging Programs by Symbolic Execution. In Pro-
ceedings of the International Conference on Reliable Software, pages 234–245,
New York, NY, USA, 1975. ACM.

[4] Bucur, Stefan, Ureche, Vlad, Zamfir, Cristian, and Candea, George. Parallel
symbolic execution for automated real-world software testing. In Proceedings
of the Sixth Conference on Computer Systems, EuroSys ’11, pages 183–198,
New York, NY, USA, 2011. ACM.

[5] Burnim, J. and Sen, K. Heuristics for scalable dynamic test generation. In
Proceedings of the 2008 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE ’08, pages 443–446, Washington, DC, USA,
2008. IEEE Computer Society.

[6] Cadar, Cristian, Dunbar, Daniel, Engler, Dawson R, et al. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems programs.
In OSDI, volume 8, pages 209–224, 2008.

[7] Cadar, Cristian, Ganesh, Vijay, Pawlowski, Peter M., Dill, David L., and
Engler, Dawson R. EXE: Automatically Generating Inputs of Death. In
Proceedings of the 13th ACM Conference on Computer and Communications
Security, CCS ’06, pages 322–335, New York, NY, USA, 2006. ACM.

[8] Campbell, G. Ann and Papapetrou, Patroklos P. SonarQube in Action. Man-
ning Publications Co., Greenwich, CT, USA, 1st edition, 2013.

[9] Chipounov, Vitaly, Georgescu, Vlad, Zamfir, Cristian, and Candea, George.
Selective Symbolic Execution. In 5th Workshop on Hot Topics in System
Dependability (HotDep), 2009.

[10] Clarke, Edmund, Kroening, Daniel, and Yorav, Karen. Behavioral consistency
of c and verilog programs using bounded model checking. In Proceedings of
the 40th annual Design Automation Conference, pages 368–371. ACM, 2003.

[11] Ferenc, R., Beszédes, Á., Tarkiainen, M., and Gyimóthy, T. Columbus –
Reverse Engineering Tool and Schema for C++. In Proceedings of the 18th
International Conference on Software Maintenance (ICSM’02), pages 172–181.
IEEE Computer Society, IEEE Computer Society, oct 2002.

The Optimization of a Symbolic Execution Engine 595

[12] Flanagan, Cormac and Leino, K. Rustan M. Houdini, an annotation assistant
for esc/java. In Proceedings of the International Symposium of Formal Methods
Europe on Formal Methods for Increasing Software Productivity, FME ’01,
pages 500–517, London, UK, UK, 2001. Springer-Verlag.

[13] Godefroid, Patrice. Compositional dynamic test generation. In Proceedings
of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’07, pages 47–54, New York, NY, USA, 2007.
ACM.

[14] Godefroid, Patrice, Kiezun, Adam, and Levin, Michael Y. Grammar-based
whitebox fuzzing. SIGPLAN Not., 43(6):206–215, June 2008.

[15] Godefroid, Patrice, Klarlund, Nils, and Sen, Koushik. DART: Directed Auto-
mated Random Testing. In Proceedings of the 2005 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI ’05, pages
213–223, New York, NY, USA, 2005. ACM.

[16] Harman, Mark, Mansouri, S Afshin, and Zhang, Yuanyuan. Search based soft-
ware engineering: A comprehensive analysis and review of trends techniques
and applications. Department of Computer Science, King’s College London,
Tech. Rep. TR-09-03, 2009.

[17] Hovemeyer, David and Pugh, William. Finding bugs is easy. ACM Sigplan
Notices, 39(12):92–106, 2004.

[18] Igel, Christian, Heidrich-Meisner, Verena, and Glasmachers, Tobias. Shark.
Journal of Machine Learning Research, 9:993–996, 2008.

[19] Jamrozik, Konrad, Fraser, Gordon, Tillman, Nikolai, and Halleux, Jonathan.
Generating Test Suites with Augmented Dynamic Symbolic Execution. In
Tests and Proofs, volume 7942 of Lecture Notes in Computer Science, pages
152–167. Springer Berlin Heidelberg, 2013.

[20] Kádár, István, Hegedűs, Péter, and Ferenc, Rudolf. Runtime exception detec-
tion in java programs using symbolic execution. Acta Cybernetica, 21(3):331–
352, 2014.

[21] King, James C. Symbolic Execution and Program Testing. Communications
of the ACM, 19(7):385–394, July 1976.

[22] Kremenek, Ted. Finding software bugs with the clang static analyzer. Apple
Inc, 2008.

[23] Lakhotia, Kiran, McMinn, Phil, and Harman, Mark. An empirical investi-
gation into branch coverage for c programs using {CUTE} and {AUSTIN}.
Journal of Systems and Software, 83(12):2379 – 2391, 2010.

[24] Ma, Kin-Keung, Phang, Khoo Yit, Foster, Jeffrey S., and Hicks, Michael. Di-
rected symbolic execution. In Proceedings of the 18th International Conference
on Static Analysis, SAS’11, pages 95–111, Berlin, Heidelberg, 2011. Springer-
Verlag.

596 István Kádár

[25] Majumdar, Rupak and Xu, Ru-Gang. Directed test generation using symbolic
grammars. In Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ASE ’07, pages 134–143, New
York, NY, USA, 2007. ACM.

[26] McCabe, Thomas J. A complexity measure. In Proceedings of the 2Nd In-
ternational Conference on Software Engineering, ICSE ’76, pages 407–, Los
Alamitos, CA, USA, 1976. IEEE Computer Society Press.

[27] Menzies, Tim, Greenwald, Jeremy, and Frank, Art. Data mining static code
attributes to learn defect predictors. IEEE Transactions on Software Engi-
neering, 33(1):2–13, 2007.

[28] Moser, Raimund, Pedrycz, Witold, and Succi, Giancarlo. A comparative anal-
ysis of the efficiency of change metrics and static code attributes for defect
prediction. In Proceedings of the 30th International Conference on Software
Engineering, ICSE ’08, pages 181–190, New York, NY, USA, 2008. ACM.

[29] Pressman, Roger S. Software Engineering: A Practitioner’s Approach.
McGraw-Hill Science/Engineering/Math, November 2001.

[30] Păsăreanu, Corina S. and Rungta, Neha. Symbolic PathFinder: Symbolic
Execution of Java Bytecode. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering, ASE ’10, pages 179–180, New
York, NY, USA, 2010. ACM.

[31] Pǎsǎreanu, Corina S., Mehlitz, Peter C., Bushnell, David H., Gundy-Burlet,
Karen, Lowry, Michael, Person, Suzette, and Pape, Mark. Combining Unit-
level Symbolic Execution and System-level Concrete Execution for Testing
NASA Software. In Proceedings of the 2008 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’08, pages 15–26, New York, NY, USA,
2008. ACM.

[32] Ryder, Barbara G., Smith, Donald, Kremer, Ulrich, Gordon, Michael, and
Shah, Nirav. A Static Study of Java Exceptions Using JESP. In Proceedings
of the Ninth International Conference on Compiler Construction, volume 1781
of Lecture Notes in Computer Science, pages 67–81. Springer-Verlag, 2000.

[33] Sen, Koushik and Agha, Gul. CUTE and jCUTE: Concolic Unit Testing and
Explicit Path Model-checking Tools. In Proceedings of the 18th International
Conference on Computer Aided Verification, CAV’06, pages 419–423, Berlin,
2006. Springer-Verlag.

[34] Song, JaeSeung, Ma, Tiejun, Cadar, Cristian, and Pietzuch, Peter. Rule-Based
Verification of Network Protocol Implementations Using Symbolic Execution.
In Proceedings of the 20th IEEE International Conference on Computer Com-
munications and Networks (ICCCN’11), pages 1–8, 2011.

[35] Tassey, G. The Economic Impacts of Inadequate Infrastructure for Software
Testing. Technical report, National Institute of Standards and Technology,
2002.

The Optimization of a Symbolic Execution Engine 597

[36] Tillmann, Nikolai and De Halleux, Jonathan. Pex: White Box Test Generation
for .NET. In Proceedings of the 2nd International Conference on Tests and
Proofs, TAP’08, pages 134–153, Berlin, Heidelberg, 2008. Springer-Verlag.

[37] Visser, Willem, Pǎsǎreanu, Corina S., and Khurshid, Sarfraz. Test input gen-
eration with Java PathFinder. SIGSOFT Softw. Eng. Notes, 29(4):97–107,
July 2004.

[38] Xie, Tao, Marinov, Darko, Schulte, Wolfram, and Notkin, David. Symstra:
A framework for generating object-oriented unit tests using symbolic execu-
tion. In Proceedings of the 11th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, TACAS’05, pages 365–
381, Berlin, Heidelberg, 2005. Springer-Verlag.

