2,443 research outputs found

    The Object Management Group Ontology Definition Metamodel

    Get PDF
    Report of a submission being made to a major international software engineering standards group, the Object Management Group which ties together OMG standards with World-Wide Web Consortium and International Standards Organization standards. Major industry bodies including IBM are collaborating, and the submission has the support of 24 companies. OMG, W3C and ISO standards strongly influence the industry, especially in combination. Colomb was a major contributor, responsible for 30% of the submission, and the primary author of the paper

    Change Impact Analysis based on Formalization of Trace Relations for Requirements

    Get PDF
    Evolving customer needs is one of the driving factors in software development. There is a need to analyze the impact of requirement changes in order to determine possible conflicts and design alternatives influenced by these changes. The analysis of the impact of requirement changes on related requirements can be based on requirements traceability. In this paper, we propose a requirements metamodel with well defined types of requirements relations. This metamodel represents the common concepts extracted from some prevalent requirements engineering approaches. The requirements relations in the metamodel are used to trace related requirements for change impact analysis. We formalize the relations. Based on this formalization, we define change impact rules for requirements. As a case study, we apply these rules to changes in the requirements specification for Course Management System

    Ontology-based patterns for the integration of business processes and enterprise application architectures

    Get PDF
    Increasingly, enterprises are using Service-Oriented Architecture (SOA) as an approach to Enterprise Application Integration (EAI). SOA has the potential to bridge the gap between business and technology and to improve the reuse of existing applications and the interoperability with new ones. In addition to service architecture descriptions, architecture abstractions like patterns and styles capture design knowledge and allow the reuse of successfully applied designs, thus improving the quality of software. Knowledge gained from integration projects can be captured to build a repository of semantically enriched, experience-based solutions. Business patterns identify the interaction and structure between users, business processes, and data. Specific integration and composition patterns at a more technical level address enterprise application integration and capture reliable architecture solutions. We use an ontology-based approach to capture architecture and process patterns. Ontology techniques for pattern definition, extension and composition are developed and their applicability in business process-driven application integration is demonstrated

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Semantics of trace relations in requirements models for consistency checking and inferencing

    Get PDF
    Requirements traceability is the ability to relate requirements back to stakeholders and forward to corresponding design artifacts, code, and test cases. Although considerable research has been devoted to relating requirements in both forward and backward directions, less attention has been paid to relating requirements with other requirements. Relations between requirements influence a number of activities during software development such as consistency checking and change management. In most approaches and tools, there is a lack of precise definition of requirements relations. In this respect, deficient results may be produced. In this paper, we aim at formal definitions of the relation types in order to enable reasoning about requirements relations. We give a requirements metamodel with commonly used relation types. The semantics of the relations is provided with a formalization in first-order logic. We use the formalization for consistency checking of relations and for inferring new relations. A tool has been built to support both reasoning activities. We illustrate our approach in an example which shows that the formal semantics of relation types enables new relations to be inferred and contradicting relations in requirements documents to be determined. The application of requirements reasoning based on formal semantics resolves many of the deficiencies observed in other approaches. Our tool supports better understanding of dependencies between requirements
    corecore