95 research outputs found

    Fast emergency paths schema to overcome transient link failures in ospf routing

    Full text link
    A reliable network infrastructure must be able to sustain traffic flows, even when a failure occurs and changes the network topology. During the occurrence of a failure, routing protocols, like OSPF, take from hundreds of milliseconds to various seconds in order to converge. During this convergence period, packets might traverse a longer path or even a loop. An even worse transient behaviour is that packets are dropped even though destinations are reachable. In this context, this paper describes a proactive fast rerouting approach, named Fast Emergency Paths Schema (FEP-S), to overcome problems originating from transient link failures in OSPF routing. Extensive experiments were done using several network topologies with different dimensionality degrees. Results show that the recovery paths, obtained by FEPS, are shorter than those from other rerouting approaches and can improve the network reliability by reducing the packet loss rate during the routing protocols convergence caused by a failure.Comment: 18 page

    Distributed algorithms for green IP networks2012 Proceedings IEEE INFOCOM Workshops

    Get PDF
    We propose a novel distributed approach to exploit sleep mode capabilities of links in an Internet Service Provider network. Differently from other works, neither a central controller, nor the knowledge of the current traffic matrix is assumed, favoring a major step towards making sleep mode enabled networks practical in the current Internet architecture. Our algorithms are able to automatically adapt the state of network links to the actual traffic in the network. Moreover, the required input parameters are intuitive and easy to set. Extensive simulations that consider a real network and traffic demand prove that our algorithms are able to follow the daily variation of traffic, reducing energy consumption up to 70% during off peak time, with little overheads and while guaranteeing Quality of Service constraint

    Extensions to OSPF for Advertising Optional Router Capabilities

    Full text link

    Effective Planning and Analysis of Huawei and Cisco Routers for MPLS Network Design Using Fast Reroute Protection

    Get PDF
    This chapter deals with a description of the MPLS traffic engineering technology behavior on two heterogeneous, but nowadays the most commonly used network vendors are Cisco and Huawei. Compatibility and functionality between network devices Huawei and Cisco were verified by testing the appropriate network topology. In this topology, we mainly focused on the useful feature of MPLS TE called Fast Reroute (FRR) protection. It provides link protection, node protection and also bandwidth protection during the failure of the primary link, especially on backbone networks. After successful validation, compatibility and functionality of the network topology between the heterogeneous routers using the Fast Reroute protection will be possible to use this MPLS TE application in the real networks

    Quality of Service routing: state of the art report

    Get PDF
    • 

    corecore