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Abstract 

In this paper, a GMPLS controlled core network model that 

takes energy efficiency into account is built using OPNET 

MODELER. By extending the standard GMPLS routing 

protocol -- OSPF-TE, we are able to spread desired energy 

related information over the local area, and subsequently use 

RSVP-TE for connection setup. The OSPF designing process 

of the simulation model is given in details, including 

necessary simplifications to enable a fast implementation 

while keeping the key characteristics of the GMPLS protocol 

behaviors. The efficiency of the proposed extensions are 

analyzed, and improved energy efficiency is shown through 

the results collected from OPNET MODELER simulation 

models. 

 
Introduction 

A Generalized Multiprotocol Label Switching (GMPLS) [1] 

controlled optical core network model is proposed, and built in 

this paper. The model utilizes Open Shortest Path First – 

Traffic Engineering (OSPF-TE) [2] as the routing protocol, 

and Resource Reservation Protocol – Traffic Engineering 

(RSVP-TE) as the signaling protocol. In order to combine 

energy efficiency [3] with the model built, the existing OSPF-

TE protocols are extended to enable energy related 

information to be flooded over the local network area, and 

thus be used in the routing decision. The flooding procedure 

defined in OSPF-TE is revised and simplified to carry energy 

related information. Accordingly, the routing decision is based 

on “lowest energy consumption”, rather than “shortest path”, 

to achieve our goal of building an energy-efficient network. 

 

In section II, the changes in the OSPF-TE protocol and routing 

decisions are introduced. The model built is discussed in 

details in section III, and results are shown in IV. Conclusions 

are given in section V. 

 
OSPF-TE new extensions and routing calculation 

OSPF-TE new extensions 

In order to spread the energy related information using the 

OSPF-TE protocol, the protocol needs to be further extended 

to be able to carry the defined energy cost information.  

 
In this paper, we consider opaque Link State Advertisements 

(LSAs) [5] of OSPF protocol for implementing the proposed 

GMPLS protocol extensions. New Type, Length, Value 

(TLVs) to TE extensions for OSPF [5] (TE LSA in this paper) 

are added. The TE LSA formats start with the standard LSA 

header, with TLVs as payload, as shown in Figure 1. The 

detailed explanations of each field can be found in [5].  

 

TE LSAs defined two types of top-level TLVs. Our proposal 

is to add sub-TLVs to Link level TLV. Thus, the energy 

information is carried by setting up new sub-TLVs inside Link 

TLV (type 2) of TE LSAs [5]. Type in sub-TLVs is considered 

in the range of 32768-32777, as defined for experimental use. 

Length could be defined as 4 octets, as most of the other sub-

TLVs defined in this level. Value is defined to carry the 

energy information, normally a value assigned to represent 

energy “cost”. 

  

 

Figure 1: TE LSA format [3] 

 

The flooding procedure follows the standard procedure of 

OSPFv2 flooding. In the simulation model, no designated 

routers are selected. Thus, LSAs are flooded in broadcasting 

manner. MinLSInterval defines the minimum time to update 

the same entry in the Link State Database of each node, so that 

duplicated LSAs received from multiple neighbors can be 

ignored. After receiving a new LSA, the node decides whether 

to forward the LSA or discard it according to the LSA type 

and the carried timestamp. Link State Database is updated 

upon receiving valid LSAs. Please refer to [2], Section 13 for 

details. According to the definition of sub-TLVs for TE LSA, 

the defined sub-TLVs may occur at most once. TE LSAs are 

flooded upon changes of contents. The triggers for originating 

new TE LSAs are implemented with fixed time-outs. For 

nodes that do not support proposed TLVs, the TLVs will be 

ignored. 

 

Routing calculation 

Routing calculation is based on standard Dijkstra algorithm 

used in OSPF-TE protocol. The “cost” assigned in route 

calculations will be updated by the energy cost carried in TE 

LSAs. The proposed model defines two types of cost value. 

The number could represent green energy source (0), and dirty 

energy source (1). Or simply cheaper energy source (0) and 

more expensive energy source (1), which applies to both link 

and node cost. In the proposed model, both link energy cost 

and node energy cost should influence the routing decision. 

However, as Dijkstra algorithm only takes one single value per 

mailto:jwan@fotonik.dtu.dk
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edge, the weight assigned to Djikstra algorithm should be 

revised to fit the need. Thus, each edge cost is represented by 

link cost + 0.5 * source node cost + 0.5 * destination node 

cost. The whole route cost will be a sum of all the edges cost. 

In this way, both node energy cost and link energy cost are 

taken into consideration.  

 
An OPNET MODELER GMPLS model 

The network simulation model is developed in three different 

layers: 

 

Network model; 

Node model; 

Process model; 

 

Network Model 

The simulated environment is shown in Figure 2, which 

consists of twenty-eight nodes spanning over Europe. Each 

node is configured the same, with ability to support up to 

seven different neighbors/links.  

 

 

Figure 2: Network model [COST 266 topology] 

 

Node Model 

As shown in Figure 3, node model consists of a request 

generator (ReqGen), a routing module (Routing_module), an 

OSPF entity, a RSVP-TE entity, seven receivers and seven 

transmitters.  

 

The request generator is responsible for generating connection 

requests. OSPF entity creates and processes the proposed TE 

LSA packets. It sends updates of routing table to the routing 

module, and ensures all the TE LSAs are flooded all over the 

network. The routing module initializes and calculates the 

routing table maintained in each node. Once the connection 

request arrived, it is up to the RSVP-TE entity to calculate the 

route, set up the connection, allocate wavelengths and reserve 

the resources. The routing decision is based on the routing 

table updated by the OSPF module. The transmitters and 

receivers support up to seven direct neighbors/links.  

 

Process Model 

Request generator 

Request generator process schedules self-interrupts to generate 

traffic using an exponential distribution, and sends remote 

interrupts to invoke the RSVP-TE process once a request is 

generated. The Finite State Machine (FSM) can be seen in 

Figure 4. After checking the node status and initialize 

variables in Init state, the state enters Idle state, where it 

schedules self-interrupt. Request is generated in Gen_req state, 

where the remote interrupts to RSVP-TE model is also sent.   

 

 
Figure 3: Node model 

 

 

Figure 4: ReqGen process model 

 

Routing module 

The routing module is the key entity in making routing 

decisions. The module maintains a graph to be used for the 

Dijkstra algorithm built in OPNET MODELER. The graph 

creates a mapping between Dijkstra edge-vertex model with 

the topology implemented. After the routing graph is 
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initialized, the routing module sends a remote interrupt to 

invoke all the other modules. The FSM for the routing module 

is shown in Figure 5. In init state, variables are initialized and 

a routing table is built, describing the relationship between the 

simulated network and Dijkstra routing calculation. The state 

also checks the route’s status, if the router is enabled in the 

network, the state goes to operational, and otherwise the state 

goes to End_Sim. In Disable Edge state, the links local 

resources are checked. When all the wavelengths are used up, 

the edge value in Dijkstra graph will be disabled.  

 

 

Figure 5: Routing module process model 

 

OSPF module  

The OSPF module processes all the OSPF messages flooded 

over the network. New TE LSAs are created in this node, and 

LSA database are maintained here as well. Upon flooding the 

TE LSAs over the whole network, new energy cost is updated 

in each LSA database, and thus updated in Dijkstra edge-

vertex graph, which is also maintained in routing module.  

 

OSPF version 2 is implemented in the OSPF module. For 

simplification, “Hello” process is skipped, and the process 

starts with automatic detection of links and neighbors (which 

is implemented in Routing module). The OSPF module only 

needs to look up the list in Routing module to achieve “Hello” 

process results. “Database Exchange” process is also skipped. 

The neighbors’ routing table is exchanged directly by flooding 

process. The main function implemented is the flooding 

process. According to the information needed in the routing 

calculation, two types of energy related LSAs are flooded, 

node energy cost LSAs and link energy cost LSAs. Node 

energy cost LSAs are only flooded to their direct neighbors, 

since the node energy cost information is only needed when 

calculating the energy edge cost. Upon calculating energy 

edge cost, the information is flooded by link energy cost LSA 

over the whole network area. The flooding procedure follows 

standard procedure defined in [5]. Both of the extended TE 

LSAs are flooded at a fixed time interval, which can be user 

defined before running the simulation. Other parameters that 

can be user defined are, MinLSInterval [3] time, 

retransmission time, energy cost value.    

 

The FSM of OSPF module is shown in Figure 6. In Init state, 

all variables are initialized. Once a remote interrupt from 

Routing module is received (indicating the finishing of 

initialization of routing module), the state enters Begin, where 

the list of neighbors and links are initialized, together with the 

Dijkstra graph. The self-interrupt for the power source 

changes are also scheduled. The flooding process is 

accomplished by all the green states surrounding state 

Exchange. State Create is responsible for creating new LSAs, 

lists for keeping track of LSAs (Link Sate Database) and the 

corresponding acknowledgements (ACKs) are also built. In a 

fixed power change time, new node LSAs and link LSAs are 

created. The link LSAs are created based on a master-slave 

relation. The link power type (both directions) can only be 

changed by either the source or destination node, which has a 

bigger node ID value. State WaitOver is reserved for standard 

OSPF Database Exchange process, which will not be used in 

this module. All the received packets are processed according 

to their types. After the state CheckType, which returns the 

type of the received packet, the LSA packets will be processed 

in state LS_update, and the ACKs will be processed in state 

LS_ack. The state LS_update includes judgments of the 

received LSA, whether it is valid (new or updated) or should 

be discarded. All the valid LSAs are stored in Link State 

Database and re-flooded to neighbors, together with updates of 

Dijkstra graph. Once a new LSA is flooded out from the router, 

the ACK status is recorded in the neighbor ACK list, and the 

possible retransmissions are prepared. In state LS_ack, the 

router checks each received ACK from neighbors. If the ACK 

is not duplicated, it is registered in the neighbor ACK list. 

Once ACKs from all the neighbors for a particular LSA are 

received, the entries for neighbor ACK list and 

retransmissions are deleted. In state Retransmission, 

retransmissions are sent upon receiving retransmission timeout. 

The packet for retransmission is chosen by looking up the 

neighbor ACK list.  

 

 

Figure 6: OSPF module process model 

 

RSVP-TE module 

The RSVP-TE module is responsible for processing 

connection requests. It responds to either PATH or RESV 

messages to allocate labels and reserve resources. Each 
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request is handled by child processes. The RSVP-TE module 

also calculates routing decisions based on the value updated 

from OSPF module. The cost calculation results are collected 

and recorded. In comparison, a parallel process model that 

uses the shortest path algorithm is also built. The 

corresponding energy cost based on the result of shortest path 

calculation is also recorded.  

 

The FSM is shown in Figure 7. In state Init, the graph for 

mapping between the links in the simulated model and the 

edge values in Dijkstra graph is built. The same as in OSPF 

module, the state enters Idle state after receiving a remote 

interrupt from Routing module. The connection requests are 

handled in the state Req_handle, including processing of 

PATH and RESV messages. If stream interrupt is received, the 

state passes through state check, and process packets from 

OSPF module in state OSPF_module, and packets received 

from other sources in Intrpt_steer. Once the connection is 

expired, the releasing of resources is performed in the state 

Rem_conn.  

 

 

Figure 7: RSVP-TE process model 

 
Simulation Results 

In this section, the results of our proposed model are discussed 

and evaluated, with focus on the energy cost reduction. As a 

comparison to the proposed energy efficient routing algorithm, 

the results using hop based Shortest Path (SP) algorithm are 

also collected. Both of the scenarios are compared in the 

performance of energy cost and routing hops.  

 

In the twenty-eight nodes model, the request inter-arrival time 

for each node is configured to be exponentially distributed 

with a mean value of 10s, and duration of each request is 

exponentially distributed with a mean value of 10s.  The 

wavelength per link is configured to be 10. Each LSP request 

destination is uniform distributed between all possible 

destinations.  

 

Under scenario 1, our proposed energy efficient algorithm is 

used. We set up OSPF to flood energy cost information at a 

fixed interval of 10 minutes, and the energy cost is selected 

from a random value of either 0 or 1. Node energy cost is 

flooded to its direct neighbors, and link energy cost is flooded 

over the whole network. The cost taken into Dijkstra 

calculation is a combination of both node and link energy cost, 

as stated in the section routing calculation. MinLSInterval is 

defined to be 30 seconds.  

 

Under scenario 2, the same settings as above are used. Instead 

of calculating the route based on energy cost, the route is 

calculated based on the least hops. With different routes 

selected compared to scenario 1, the energy cost values are 

looked up and added along the routes as in scenario 1. Thus, 

the energy cost result using the SP algorithm is obtained. Both 

of the results of energy cost are shown in Figure 8, with a 

simulation runtime of 2 hours. 

 

 
Figure 8: Energy cost 

 

As shown in Figure 8, due to the initialization of different 

modules, the results line can be unstable at the beginning, as 

we see in the figure. The results become stable from 2000 

seconds, and the energy cost using the proposed energy 

efficiency algorithm is indeed lower than that using the SP 

algorithm. If we consider the energy cost 0 to be green energy 

source, and energy cost 1 to be dirty energy source, the result 

shows the proposed algorithm can effectively route the traffic 

away from dirty energy sources, since the average energy cost 

is less than 1.  

 

However, with the cost of energy being lowered using the 

proposed algorithm, the length of routes selected has 

increased. As shown in Figure 9, the average number of hops 

of each selected route is higher by using the proposed 

algorithm than that using the SP algorithm. The hop count 

number of using SP algorithm is higher than the one using 

proposed algorithm at the beginning, which might due to the 

instability of the system. With higher hop count number using 

the proposed algorithm, the average hop count can still be 
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maintained below 6, which is one or two hops longer than the 

results using SP algorithm, but are still below the network 

dimension, which is 8 hops.  

 

 
 

Figure 9: Routing hops 

 
Conclusion 

In this paper, a GMPLS controlled network simulation model   

is built with OPNET MODELER. In order to enable energy 

efficiency in the built network, an energy efficient GMPLS 

protocol extension is proposed and simulated. Compared to 

the traditional SP algorithm used in routing decisions, the 

results show our proposed algorithm can effectively lower the 

energy cost by either routing the traffic away from dirty 

energy sources, or by choosing lower energy cost routes 

(depending on the definition of assigned energy cost value), 

while still maintaining acceptable routing hops numbers.  

 

The obtained results are based on a random energy cost 

assignment. In order to get results closer to the real world 

implementation, more complex energy cost models could be 

employed as input to run the simulations, as part of our on-

going work. Optimization could also be done in order to 

further reduce the hop count.   
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