

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 19, 2017

Energy-Efficient Routing in GMPLS Network

Wang, Jiayuan; Fagertun, Anna Manolova; Ruepp, Sarah Renée; Dittmann, Lars

Published in:
Proceedings of OPNETWORK 2011

Publication date:
2011

Link back to DTU Orbit

Citation (APA):
Wang, J., Fagertun, A. M., Ruepp, S. R., & Dittmann, L. (2011). Energy-Efficient Routing in GMPLS Network. In
Proceedings of OPNETWORK 2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13777633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/energyefficient-routing-in-gmpls-network(c3094c97-eb15-46c3-a103-a2cf9ea093ed).html

 1

Energy-efficient routing in GMPLS network

 Jiayuan Wang, Anna Manolova, Sarah Ruepp, Lars Dittmann
Technical University of Denmark

E-mail: jwan@fotonik.dtu.dk

Abstract

In this paper, a GMPLS controlled core network model that

takes energy efficiency into account is built using OPNET

MODELER. By extending the standard GMPLS routing

protocol -- OSPF-TE, we are able to spread desired energy

related information over the local area, and subsequently use

RSVP-TE for connection setup. The OSPF designing process

of the simulation model is given in details, including

necessary simplifications to enable a fast implementation

while keeping the key characteristics of the GMPLS protocol

behaviors. The efficiency of the proposed extensions are

analyzed, and improved energy efficiency is shown through

the results collected from OPNET MODELER simulation

models.

Introduction

A Generalized Multiprotocol Label Switching (GMPLS) [1]

controlled optical core network model is proposed, and built in

this paper. The model utilizes Open Shortest Path First –

Traffic Engineering (OSPF-TE) [2] as the routing protocol,

and Resource Reservation Protocol – Traffic Engineering

(RSVP-TE) as the signaling protocol. In order to combine

energy efficiency [3] with the model built, the existing OSPF-

TE protocols are extended to enable energy related

information to be flooded over the local network area, and

thus be used in the routing decision. The flooding procedure

defined in OSPF-TE is revised and simplified to carry energy

related information. Accordingly, the routing decision is based

on “lowest energy consumption”, rather than “shortest path”,

to achieve our goal of building an energy-efficient network.

In section II, the changes in the OSPF-TE protocol and routing

decisions are introduced. The model built is discussed in

details in section III, and results are shown in IV. Conclusions

are given in section V.

OSPF-TE new extensions and routing calculation

OSPF-TE new extensions

In order to spread the energy related information using the

OSPF-TE protocol, the protocol needs to be further extended

to be able to carry the defined energy cost information.

In this paper, we consider opaque Link State Advertisements

(LSAs) [5] of OSPF protocol for implementing the proposed

GMPLS protocol extensions. New Type, Length, Value

(TLVs) to TE extensions for OSPF [5] (TE LSA in this paper)

are added. The TE LSA formats start with the standard LSA

header, with TLVs as payload, as shown in Figure 1. The

detailed explanations of each field can be found in [5].

TE LSAs defined two types of top-level TLVs. Our proposal

is to add sub-TLVs to Link level TLV. Thus, the energy

information is carried by setting up new sub-TLVs inside Link

TLV (type 2) of TE LSAs [5]. Type in sub-TLVs is considered

in the range of 32768-32777, as defined for experimental use.

Length could be defined as 4 octets, as most of the other sub-

TLVs defined in this level. Value is defined to carry the

energy information, normally a value assigned to represent

energy “cost”.

Figure 1: TE LSA format [3]

The flooding procedure follows the standard procedure of

OSPFv2 flooding. In the simulation model, no designated

routers are selected. Thus, LSAs are flooded in broadcasting

manner. MinLSInterval defines the minimum time to update

the same entry in the Link State Database of each node, so that

duplicated LSAs received from multiple neighbors can be

ignored. After receiving a new LSA, the node decides whether

to forward the LSA or discard it according to the LSA type

and the carried timestamp. Link State Database is updated

upon receiving valid LSAs. Please refer to [2], Section 13 for

details. According to the definition of sub-TLVs for TE LSA,

the defined sub-TLVs may occur at most once. TE LSAs are

flooded upon changes of contents. The triggers for originating

new TE LSAs are implemented with fixed time-outs. For

nodes that do not support proposed TLVs, the TLVs will be

ignored.

Routing calculation

Routing calculation is based on standard Dijkstra algorithm

used in OSPF-TE protocol. The “cost” assigned in route

calculations will be updated by the energy cost carried in TE

LSAs. The proposed model defines two types of cost value.

The number could represent green energy source (0), and dirty

energy source (1). Or simply cheaper energy source (0) and

more expensive energy source (1), which applies to both link

and node cost. In the proposed model, both link energy cost

and node energy cost should influence the routing decision.

However, as Dijkstra algorithm only takes one single value per

mailto:jwan@fotonik.dtu.dk
http://en.wikipedia.org/wiki/Resource_reservation_protocol

 2

edge, the weight assigned to Djikstra algorithm should be

revised to fit the need. Thus, each edge cost is represented by

link cost + 0.5 * source node cost + 0.5 * destination node

cost. The whole route cost will be a sum of all the edges cost.

In this way, both node energy cost and link energy cost are

taken into consideration.

An OPNET MODELER GMPLS model

The network simulation model is developed in three different

layers:

Network model;

Node model;

Process model;

Network Model

The simulated environment is shown in Figure 2, which

consists of twenty-eight nodes spanning over Europe. Each

node is configured the same, with ability to support up to

seven different neighbors/links.

Figure 2: Network model [COST 266 topology]

Node Model

As shown in Figure 3, node model consists of a request

generator (ReqGen), a routing module (Routing_module), an

OSPF entity, a RSVP-TE entity, seven receivers and seven

transmitters.

The request generator is responsible for generating connection

requests. OSPF entity creates and processes the proposed TE

LSA packets. It sends updates of routing table to the routing

module, and ensures all the TE LSAs are flooded all over the

network. The routing module initializes and calculates the

routing table maintained in each node. Once the connection

request arrived, it is up to the RSVP-TE entity to calculate the

route, set up the connection, allocate wavelengths and reserve

the resources. The routing decision is based on the routing

table updated by the OSPF module. The transmitters and

receivers support up to seven direct neighbors/links.

Process Model

Request generator

Request generator process schedules self-interrupts to generate

traffic using an exponential distribution, and sends remote

interrupts to invoke the RSVP-TE process once a request is

generated. The Finite State Machine (FSM) can be seen in

Figure 4. After checking the node status and initialize

variables in Init state, the state enters Idle state, where it

schedules self-interrupt. Request is generated in Gen_req state,

where the remote interrupts to RSVP-TE model is also sent.

Figure 3: Node model

Figure 4: ReqGen process model

Routing module

The routing module is the key entity in making routing

decisions. The module maintains a graph to be used for the

Dijkstra algorithm built in OPNET MODELER. The graph

creates a mapping between Dijkstra edge-vertex model with

the topology implemented. After the routing graph is

 3

initialized, the routing module sends a remote interrupt to

invoke all the other modules. The FSM for the routing module

is shown in Figure 5. In init state, variables are initialized and

a routing table is built, describing the relationship between the

simulated network and Dijkstra routing calculation. The state

also checks the route’s status, if the router is enabled in the

network, the state goes to operational, and otherwise the state

goes to End_Sim. In Disable Edge state, the links local

resources are checked. When all the wavelengths are used up,

the edge value in Dijkstra graph will be disabled.

Figure 5: Routing module process model

OSPF module

The OSPF module processes all the OSPF messages flooded

over the network. New TE LSAs are created in this node, and

LSA database are maintained here as well. Upon flooding the

TE LSAs over the whole network, new energy cost is updated

in each LSA database, and thus updated in Dijkstra edge-

vertex graph, which is also maintained in routing module.

OSPF version 2 is implemented in the OSPF module. For

simplification, “Hello” process is skipped, and the process

starts with automatic detection of links and neighbors (which

is implemented in Routing module). The OSPF module only

needs to look up the list in Routing module to achieve “Hello”

process results. “Database Exchange” process is also skipped.

The neighbors’ routing table is exchanged directly by flooding

process. The main function implemented is the flooding

process. According to the information needed in the routing

calculation, two types of energy related LSAs are flooded,

node energy cost LSAs and link energy cost LSAs. Node

energy cost LSAs are only flooded to their direct neighbors,

since the node energy cost information is only needed when

calculating the energy edge cost. Upon calculating energy

edge cost, the information is flooded by link energy cost LSA

over the whole network area. The flooding procedure follows

standard procedure defined in [5]. Both of the extended TE

LSAs are flooded at a fixed time interval, which can be user

defined before running the simulation. Other parameters that

can be user defined are, MinLSInterval [3] time,

retransmission time, energy cost value.

The FSM of OSPF module is shown in Figure 6. In Init state,

all variables are initialized. Once a remote interrupt from

Routing module is received (indicating the finishing of

initialization of routing module), the state enters Begin, where

the list of neighbors and links are initialized, together with the

Dijkstra graph. The self-interrupt for the power source

changes are also scheduled. The flooding process is

accomplished by all the green states surrounding state

Exchange. State Create is responsible for creating new LSAs,

lists for keeping track of LSAs (Link Sate Database) and the

corresponding acknowledgements (ACKs) are also built. In a

fixed power change time, new node LSAs and link LSAs are

created. The link LSAs are created based on a master-slave

relation. The link power type (both directions) can only be

changed by either the source or destination node, which has a

bigger node ID value. State WaitOver is reserved for standard

OSPF Database Exchange process, which will not be used in

this module. All the received packets are processed according

to their types. After the state CheckType, which returns the

type of the received packet, the LSA packets will be processed

in state LS_update, and the ACKs will be processed in state

LS_ack. The state LS_update includes judgments of the

received LSA, whether it is valid (new or updated) or should

be discarded. All the valid LSAs are stored in Link State

Database and re-flooded to neighbors, together with updates of

Dijkstra graph. Once a new LSA is flooded out from the router,

the ACK status is recorded in the neighbor ACK list, and the

possible retransmissions are prepared. In state LS_ack, the

router checks each received ACK from neighbors. If the ACK

is not duplicated, it is registered in the neighbor ACK list.

Once ACKs from all the neighbors for a particular LSA are

received, the entries for neighbor ACK list and

retransmissions are deleted. In state Retransmission,

retransmissions are sent upon receiving retransmission timeout.

The packet for retransmission is chosen by looking up the

neighbor ACK list.

Figure 6: OSPF module process model

RSVP-TE module

The RSVP-TE module is responsible for processing

connection requests. It responds to either PATH or RESV

messages to allocate labels and reserve resources. Each

 4

request is handled by child processes. The RSVP-TE module

also calculates routing decisions based on the value updated

from OSPF module. The cost calculation results are collected

and recorded. In comparison, a parallel process model that

uses the shortest path algorithm is also built. The

corresponding energy cost based on the result of shortest path

calculation is also recorded.

The FSM is shown in Figure 7. In state Init, the graph for

mapping between the links in the simulated model and the

edge values in Dijkstra graph is built. The same as in OSPF

module, the state enters Idle state after receiving a remote

interrupt from Routing module. The connection requests are

handled in the state Req_handle, including processing of

PATH and RESV messages. If stream interrupt is received, the

state passes through state check, and process packets from

OSPF module in state OSPF_module, and packets received

from other sources in Intrpt_steer. Once the connection is

expired, the releasing of resources is performed in the state

Rem_conn.

Figure 7: RSVP-TE process model

Simulation Results

In this section, the results of our proposed model are discussed

and evaluated, with focus on the energy cost reduction. As a

comparison to the proposed energy efficient routing algorithm,

the results using hop based Shortest Path (SP) algorithm are

also collected. Both of the scenarios are compared in the

performance of energy cost and routing hops.

In the twenty-eight nodes model, the request inter-arrival time

for each node is configured to be exponentially distributed

with a mean value of 10s, and duration of each request is

exponentially distributed with a mean value of 10s. The

wavelength per link is configured to be 10. Each LSP request

destination is uniform distributed between all possible

destinations.

Under scenario 1, our proposed energy efficient algorithm is

used. We set up OSPF to flood energy cost information at a

fixed interval of 10 minutes, and the energy cost is selected

from a random value of either 0 or 1. Node energy cost is

flooded to its direct neighbors, and link energy cost is flooded

over the whole network. The cost taken into Dijkstra

calculation is a combination of both node and link energy cost,

as stated in the section routing calculation. MinLSInterval is

defined to be 30 seconds.

Under scenario 2, the same settings as above are used. Instead

of calculating the route based on energy cost, the route is

calculated based on the least hops. With different routes

selected compared to scenario 1, the energy cost values are

looked up and added along the routes as in scenario 1. Thus,

the energy cost result using the SP algorithm is obtained. Both

of the results of energy cost are shown in Figure 8, with a

simulation runtime of 2 hours.

Figure 8: Energy cost

As shown in Figure 8, due to the initialization of different

modules, the results line can be unstable at the beginning, as

we see in the figure. The results become stable from 2000

seconds, and the energy cost using the proposed energy

efficiency algorithm is indeed lower than that using the SP

algorithm. If we consider the energy cost 0 to be green energy

source, and energy cost 1 to be dirty energy source, the result

shows the proposed algorithm can effectively route the traffic

away from dirty energy sources, since the average energy cost

is less than 1.

However, with the cost of energy being lowered using the

proposed algorithm, the length of routes selected has

increased. As shown in Figure 9, the average number of hops

of each selected route is higher by using the proposed

algorithm than that using the SP algorithm. The hop count

number of using SP algorithm is higher than the one using

proposed algorithm at the beginning, which might due to the

instability of the system. With higher hop count number using

the proposed algorithm, the average hop count can still be

 5

maintained below 6, which is one or two hops longer than the

results using SP algorithm, but are still below the network

dimension, which is 8 hops.

Figure 9: Routing hops

Conclusion

In this paper, a GMPLS controlled network simulation model

is built with OPNET MODELER. In order to enable energy

efficiency in the built network, an energy efficient GMPLS

protocol extension is proposed and simulated. Compared to

the traditional SP algorithm used in routing decisions, the

results show our proposed algorithm can effectively lower the

energy cost by either routing the traffic away from dirty

energy sources, or by choosing lower energy cost routes

(depending on the definition of assigned energy cost value),

while still maintaining acceptable routing hops numbers.

The obtained results are based on a random energy cost

assignment. In order to get results closer to the real world

implementation, more complex energy cost models could be

employed as input to run the simulations, as part of our on-

going work. Optimization could also be done in order to

further reduce the hop count.

References

[1] E. Mannie, “Generalized Multi-Protocol Label Switching

(GMPLS) Architecture”, RFC3945, Oct. 2004.

[2] J. Moy, “OSPF Version 2,” RFC2178, Apr. 1998.

[3] S. László, “Energy-efficient Networking: An Overview”,

Acta Universitatis Sapientiae, Oct. 2010.

[4] R. Coltun, “The OSPF Opaque LSA Option,” RFC2328,

Jul. 1998.

[5] D. Katz, “Traffic Engineering (TE) Extensions to OSPF

Version 2,” RFC2370, Sep. 2003.

