54,407 research outputs found

    A Shift Selection Strategy for Parallel Shift-invert Spectrum Slicing in Symmetric Self-consistent Eigenvalue Computation

    Get PDF
    © 2020 ACM. The central importance of large-scale eigenvalue problems in scientific computation necessitates the development of massively parallel algorithms for their solution. Recent advances in dense numerical linear algebra have enabled the routine treatment of eigenvalue problems with dimensions on the order of hundreds of thousands on the world's largest supercomputers. In cases where dense treatments are not feasible, Krylov subspace methods offer an attractive alternative due to the fact that they do not require storage of the problem matrices. However, demonstration of scalability of either of these classes of eigenvalue algorithms on computing architectures capable of expressing massive parallelism is non-trivial due to communication requirements and serial bottlenecks, respectively. In this work, we introduce the SISLICE method: a parallel shift-invert algorithm for the solution of the symmetric self-consistent field (SCF) eigenvalue problem. The SISLICE method drastically reduces the communication requirement of current parallel shift-invert eigenvalue algorithms through various shift selection and migration techniques based on density of states estimation and k-means clustering, respectively. This work demonstrates the robustness and parallel performance of the SISLICE method on a representative set of SCF eigenvalue problems and outlines research directions that will be explored in future work

    Solving eigenvalue problems on curved surfaces using the Closest Point Method

    Full text link
    Eigenvalue problems are fundamental to mathematics and science. We present a simple algorithm for determining eigenvalues and eigenfunctions of the Laplace--Beltrami operator on rather general curved surfaces. Our algorithm, which is based on the Closest Point Method, relies on an embedding of the surface in a higher-dimensional space, where standard Cartesian finite difference and interpolation schemes can be easily applied. We show that there is a one-to-one correspondence between a problem defined in the embedding space and the original surface problem. For open surfaces, we present a simple way to impose Dirichlet and Neumann boundary conditions while maintaining second-order accuracy. Convergence studies and a series of examples demonstrate the effectiveness and generality of our approach

    Spectral-based Propagation Schemes for Time-Dependent Quantum Systems with Application to Carbon Nanotubes

    Full text link
    Effective modeling and numerical spectral-based propagation schemes are proposed for addressing the challenges in time-dependent quantum simulations of systems ranging from atoms, molecules, and nanostructures to emerging nanoelectronic devices. While time-dependent Hamiltonian problems can be formally solved by propagating the solutions along tiny simulation time steps, a direct numerical treatment is often considered too computationally demanding. In this paper, however, we propose to go beyond these limitations by introducing high-performance numerical propagation schemes to compute the solution of the time-ordered evolution operator. In addition to the direct Hamiltonian diagonalizations that can be efficiently performed using the new eigenvalue solver FEAST, we have designed a Gaussian propagation scheme and a basis transformed propagation scheme (BTPS) which allow to reduce considerably the simulation times needed by time intervals. It is outlined that BTPS offers the best computational efficiency allowing new perspectives in time-dependent simulations. Finally, these numerical schemes are applied to study the AC response of a (5,5) carbon nanotube within a 3D real-space mesh framework

    Solving polynomial eigenvalue problems by means of the Ehrlich-Aberth method

    Full text link
    Given the n×nn\times n matrix polynomial P(x)=i=0kPixiP(x)=\sum_{i=0}^kP_i x^i, we consider the associated polynomial eigenvalue problem. This problem, viewed in terms of computing the roots of the scalar polynomial detP(x)\det P(x), is treated in polynomial form rather than in matrix form by means of the Ehrlich-Aberth iteration. The main computational issues are discussed, namely, the choice of the starting approximations needed to start the Ehrlich-Aberth iteration, the computation of the Newton correction, the halting criterion, and the treatment of eigenvalues at infinity. We arrive at an effective implementation which provides more accurate approximations to the eigenvalues with respect to the methods based on the QZ algorithm. The case of polynomials having special structures, like palindromic, Hamiltonian, symplectic, etc., where the eigenvalues have special symmetries in the complex plane, is considered. A general way to adapt the Ehrlich-Aberth iteration to structured matrix polynomial is introduced. Numerical experiments which confirm the effectiveness of this approach are reported.Comment: Submitted to Linear Algebra App

    Diagonalization- and Numerical Renormalization-Group-Based Methods for Interacting Quantum Systems

    Full text link
    In these lecture notes, we present a pedagogical review of a number of related {\it numerically exact} approaches to quantum many-body problems. In particular, we focus on methods based on the exact diagonalization of the Hamiltonian matrix and on methods extending exact diagonalization using renormalization group ideas, i.e., Wilson's Numerical Renormalization Group (NRG) and White's Density Matrix Renormalization Group (DMRG). These methods are standard tools for the investigation of a variety of interacting quantum systems, especially low-dimensional quantum lattice models. We also survey extensions to the methods to calculate properties such as dynamical quantities and behavior at finite temperature, and discuss generalizations of the DMRG method to a wider variety of systems, such as classical models and quantum chemical problems. Finally, we briefly review some recent developments for obtaining a more general formulation of the DMRG in the context of matrix product states as well as recent progress in calculating the time evolution of quantum systems using the DMRG and the relationship of the foundations of the method with quantum information theory.Comment: 51 pages; lecture notes on numerically exact methods. Pedagogical review appearing in the proceedings of the "IX. Training Course in the Physics of Correlated Electron Systems and High-Tc Superconductors", Vietri sul Mare (Salerno, Italy, October 2004

    Unconditional Stability for Multistep ImEx Schemes: Theory

    Get PDF
    This paper presents a new class of high order linear ImEx multistep schemes with large regions of unconditional stability. Unconditional stability is a desirable property of a time stepping scheme, as it allows the choice of time step solely based on accuracy considerations. Of particular interest are problems for which both the implicit and explicit parts of the ImEx splitting are stiff. Such splittings can arise, for example, in variable-coefficient problems, or the incompressible Navier-Stokes equations. To characterize the new ImEx schemes, an unconditional stability region is introduced, which plays a role analogous to that of the stability region in conventional multistep methods. Moreover, computable quantities (such as a numerical range) are provided that guarantee an unconditionally stable scheme for a proposed implicit-explicit matrix splitting. The new approach is illustrated with several examples. Coefficients of the new schemes up to fifth order are provided.Comment: 33 pages, 7 figure
    corecore