6,155 research outputs found

    The symplectic and twistor geometry of the general isomonodromic deformation problem

    Full text link
    Hitchin's twistor treatment of Schlesinger's equations is extended to the general isomonodromic deformation problem. It is shown that a generic linear system of ordinary differential equations with gauge group SL(n,C) on a Riemann surface X can be obtained by embedding X in a twistor space Z on which sl(n,C) acts. When a certain obstruction vanishes, the isomonodromic deformations are given by deforming X in Z. This is related to a description of the deformations in terms of Hamiltonian flows on a symplectic manifold constructed from affine orbits in the dual Lie algebra of a loop group.Comment: 35 pages, LATE

    Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials: The Regular Case

    Get PDF
    Let f=(f_1,…,f_m)\mathbf{f}=(f\_1,\ldots,f\_m) and g=(g_1,…,g_m)\mathbf{g}=(g\_1,\ldots,g\_m) be two sets of m≥1m\geq 1 nonlinear polynomials over K[x_1,…,x_n]\mathbb{K}[x\_1,\ldots,x\_n] (K\mathbb{K} being a field). We consider the computational problem of finding -- if any -- an invertible transformation on the variables mapping f\mathbf{f} to g\mathbf{g}. The corresponding equivalence problem is known as {\tt Isomorphism of Polynomials with one Secret} ({\tt IP1S}) and is a fundamental problem in multivariate cryptography. The main result is a randomized polynomial-time algorithm for solving {\tt IP1S} for quadratic instances, a particular case of importance in cryptography and somewhat justifying {\it a posteriori} the fact that {\it Graph Isomorphism} reduces to only cubic instances of {\tt IP1S} (Agrawal and Saxena). To this end, we show that {\tt IP1S} for quadratic polynomials can be reduced to a variant of the classical module isomorphism problem in representation theory, which involves to test the orthogonal simultaneous conjugacy of symmetric matrices. We show that we can essentially {\it linearize} the problem by reducing quadratic-{\tt IP1S} to test the orthogonal simultaneous similarity of symmetric matrices; this latter problem was shown by Chistov, Ivanyos and Karpinski to be equivalent to finding an invertible matrix in the linear space Kn×n\mathbb{K}^{n \times n} of n×nn \times n matrices over K\mathbb{K} and to compute the square root in a matrix algebra. While computing square roots of matrices can be done efficiently using numerical methods, it seems difficult to control the bit complexity of such methods. However, we present exact and polynomial-time algorithms for computing the square root in Kn×n\mathbb{K}^{n \times n} for various fields (including finite fields). We then consider \\#{\tt IP1S}, the counting version of {\tt IP1S} for quadratic instances. In particular, we provide a (complete) characterization of the automorphism group of homogeneous quadratic polynomials. Finally, we also consider the more general {\it Isomorphism of Polynomials} ({\tt IP}) problem where we allow an invertible linear transformation on the variables \emph{and} on the set of polynomials. A randomized polynomial-time algorithm for solving {\tt IP} when f=(x_1d,…,x_nd)\mathbf{f}=(x\_1^d,\ldots,x\_n^d) is presented. From an algorithmic point of view, the problem boils down to factoring the determinant of a linear matrix (\emph{i.e.}\ a matrix whose components are linear polynomials). This extends to {\tt IP} a result of Kayal obtained for {\tt PolyProj}.Comment: Published in Journal of Complexity, Elsevier, 2015, pp.3

    On Generalized Gauge-Fixing in the Field-Antifield Formalism

    Full text link
    We consider the problem of covariant gauge-fixing in the most general setting of the field-antifield formalism, where the action W and the gauge-fixing part X enter symmetrically and both satisfy the Quantum Master Equation. Analogous to the gauge-generating algebra of the action W, we analyze the possibility of having a reducible gauge-fixing algebra of X. We treat a reducible gauge-fixing algebra of the so-called first-stage in full detail and generalize to arbitrary stages. The associated "square root" measure contributions are worked out from first principles, with or without the presence of antisymplectic second-class constraints. Finally, we consider an W-X alternating multi-level generalization.Comment: 49 pages, LaTeX. v2: Minor changes + 1 more reference. v3,v4,v5: Corrected typos. v5: Version published in Nuclear Physics B. v6,v7: Correction to the published version added next to the Acknowledgemen

    Improved method for finding optimal formulae for bilinear maps in a finite field

    Get PDF
    In 2012, Barbulescu, Detrey, Estibals and Zimmermann proposed a new framework to exhaustively search for optimal formulae for evaluating bilinear maps, such as Strassen or Karatsuba formulae. The main contribution of this work is a new criterion to aggressively prune useless branches in the exhaustive search, thus leading to the computation of new optimal formulae, in particular for the short product modulo X 5 and the circulant product modulo (X 5 -- 1). Moreover , we are able to prove that there is essentially only one optimal decomposition of the product of 3 x 2 by 2 x 3 matrices up to the action of some group of automorphisms
    • …
    corecore