144 research outputs found

    Flat Zipper-Unfolding Pairs for Platonic Solids

    Get PDF
    We show that four of the five Platonic solids' surfaces may be cut open with a Hamiltonian path along edges and unfolded to a polygonal net each of which can "zipper-refold" to a flat doubly covered parallelogram, forming a rather compact representation of the surface. Thus these regular polyhedra have particular flat "zipper pairs." No such zipper pair exists for a dodecahedron, whose Hamiltonian unfoldings are "zip-rigid." This report is primarily an inventory of the possibilities, and raises more questions than it answers.Comment: 15 pages, 14 figures, 8 references. v2: Added one new figure. v3: Replaced Fig. 13 to remove a duplicate unfolding, reducing from 21 to 20 the distinct unfoldings. v4: Replaced Fig. 13 again, 18 distinct unfolding

    Ununfoldable Polyhedra with Convex Faces

    Get PDF
    Unfolding a convex polyhedron into a simple planar polygon is a well-studied problem. In this paper, we study the limits of unfoldability by studying nonconvex polyhedra with the same combinatorial structure as convex polyhedra. In particular, we give two examples of polyhedra, one with 24 convex faces and one with 36 triangular faces, that cannot be unfolded by cutting along edges. We further show that such a polyhedron can indeed be unfolded if cuts are allowed to cross faces. Finally, we prove that ``open'' polyhedra with triangular faces may not be unfoldable no matter how they are cut.Comment: 14 pages, 9 figures, LaTeX 2e. To appear in Computational Geometry: Theory and Applications. Major revision with two new authors, solving the open problem about triangular face

    Metric combinatorics of convex polyhedra: cut loci and nonoverlapping unfoldings

    Full text link
    This paper is a study of the interaction between the combinatorics of boundaries of convex polytopes in arbitrary dimension and their metric geometry. Let S be the boundary of a convex polytope of dimension d+1, or more generally let S be a `convex polyhedral pseudomanifold'. We prove that S has a polyhedral nonoverlapping unfolding into R^d, so the metric space S is obtained from a closed (usually nonconvex) polyhedral ball in R^d by identifying pairs of boundary faces isometrically. Our existence proof exploits geodesic flow away from a source point v in S, which is the exponential map to S from the tangent space at v. We characterize the `cut locus' (the closure of the set of points in S with more than one shortest path to v) as a polyhedral complex in terms of Voronoi diagrams on facets. Analyzing infinitesimal expansion of the wavefront consisting of points at constant distance from v on S produces an algorithmic method for constructing Voronoi diagrams in each facet, and hence the unfolding of S. The algorithm, for which we provide pseudocode, solves the discrete geodesic problem. Its main construction generalizes the source unfolding for boundaries of 3-polytopes into R^2. We present conjectures concerning the number of shortest paths on the boundaries of convex polyhedra, and concerning continuous unfolding of convex polyhedra. We also comment on the intrinsic non-polynomial complexity of nonconvex polyhedral manifolds.Comment: 47 pages; 21 PostScript (.eps) figures, most in colo

    Enumerating Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infinite.Comment: 12 pages; 10 figures; 10 references. Revision of version in Proceedings of the Japan Conference on Discrete and Computational Geometry, Tokyo, Nov. 2000, pp. 9-12. See also cs.CG/000701

    Grid Vertex-Unfolding Orthogonal Polyhedra

    Full text link
    An edge-unfolding of a polyhedron is produced by cutting along edges and flattening the faces to a *net*, a connected planar piece with no overlaps. A *grid unfolding* allows additional cuts along grid edges induced by coordinate planes passing through every vertex. A vertex-unfolding permits faces in the net to be connected at single vertices, not necessarily along edges. We show that any orthogonal polyhedron of genus zero has a grid vertex-unfolding. (There are orthogonal polyhedra that cannot be vertex-unfolded, so some type of "gridding" of the faces is necessary.) For any orthogonal polyhedron P with n vertices, we describe an algorithm that vertex-unfolds P in O(n^2) time. Enroute to explaining this algorithm, we present a simpler vertex-unfolding algorithm that requires a 3 x 1 refinement of the vertex grid.Comment: Original: 12 pages, 8 figures, 11 references. Revised: 22 pages, 16 figures, 12 references. New version is a substantial revision superceding the preliminary extended abstract that appeared in Lecture Notes in Computer Science, Volume 3884, Springer, Berlin/Heidelberg, Feb. 2006, pp. 264-27

    Examples, Counterexamples, and Enumeration Results for Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We investigate how to make the surface of a convex polyhedron (a polytope) by folding up a polygon and gluing its perimeter shut, and the reverse process of cutting open a polytope and unfolding it to a polygon. We explore basic enumeration questions in both directions: Given a polygon, how many foldings are there? Given a polytope, how many unfoldings are there to simple polygons? Throughout we give special attention to convex polygons, and to regular polygons. We show that every convex polygon folds to an infinite number of distinct polytopes, but that their number of combinatorially distinct gluings is polynomial. There are, however, simple polygons with an exponential number of distinct gluings. In the reverse direction, we show that there are polytopes with an exponential number of distinct cuttings that lead to simple unfoldings. We establish necessary conditions for a polytope to have convex unfoldings, implying, for example, that among the Platonic solids, only the tetrahedron has a convex unfolding. We provide an inventory of the polytopes that may unfold to regular polygons, showing that, for n>6, there is essentially only one class of such polytopes.Comment: 54 pages, 33 figure

    Nonorthogonal Polyhedra Built from Rectangles

    Get PDF
    We prove that any polyhedron of genus zero or genus one built out of rectangular faces must be an orthogonal polyhedron, but that there are nonorthogonal polyhedra of genus seven all of whose faces are rectangles. This leads to a resolution of a question posed by Biedl, Lubiw, and Sun [BLS99].Comment: 19 pages, 20 figures. Revised version makes two corrections: The statement of the old Lemma 14 was incorrect. It has been corrected and merged with Lemma 13 now. Second, Figure 19 (a skew quadrilateral) was incorrect, and is now removed. It played no substantive role in the proof
    • …
    corecore