5 research outputs found

    The number of solutions of pell equations x2 -ky2 = N and x2+xy- Ky2 = N over Fp

    No full text
    Let p be a prime number such that p equivalent to 1, 3(mod 4), let F-p, be a finite field, let N is an element of F-p* = F-p - {0} be a fixed. Let P-p(k) (N) : x(2) - ky(2) = N and (P) over tilde (k)(p)(N) : x(2) + xy - ky(2) = N be two Pell equations over F-p, where k = p-1/4 or k = p-3/4, respectively. Let P-p(k)(N)(F-p) and (P) over tilde (k)(p)(N)(F-p) denote the set of integer solutions of the Pell equations P-p(k)(N) and (P) over tilde (k)(p)(N), respectively. In the first section we give some preliminaries from general Pell equation x(2) - ky(2) = +/- N. In the second section, we determine the number of integer solutions of P-p(k)(N). We proved that P-p(k)(N)(F-p) = p+ 1 if p equivalent to 1(mod 4) or p equivalent to 7(mod 12) and P-p(k)(N)(F-p) = p - 1 if p equivalent to 11(mod 12). In the third section we consider the Pell equation (P) over tilde (k)(p)(N). We proved that (P) over tilde (k)(p)(N)(F-p) = 2p if p equivalent to 1(mod 4) and N is an element of Q(p); (P) over tilde (k)(p)(N)(F-p) = 0 if p equivalent to 1(mod 4) and N is not an element of Q(p) ; (P) over tilde (k)(p)(N)(F-p) = p + 1 if p equivalent to 3(mod 4)

    Diophantine equations in positive characteristic

    Get PDF
    In this thesis three different topics in number theory are studied. The first part deals with exponential Diophantine equations in positive characteristic. In the second part various statistical properties of class groups are proven. In the final part we apply the circle method to count the number of representations of an odd integer n as the sum of three primes all with a fixed primitive root. Number theory, Algebra and Geometr
    corecore