950 research outputs found

    Towards declarative diagnosis of constraint programs over finite domains

    Full text link
    The paper proposes a theoretical approach of the debugging of constraint programs based on a notion of explanation tree. The proposed approach is an attempt to adapt algorithmic debugging to constraint programming. In this theoretical framework for domain reduction, explanations are proof trees explaining value removals. These proof trees are defined by inductive definitions which express the removals of values as consequences of other value removals. Explanations may be considered as the essence of constraint programming. They are a declarative view of the computation trace. The diagnosis consists in locating an error in an explanation rooted by a symptom.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    Correctness and completeness of logic programs

    Full text link
    We discuss proving correctness and completeness of definite clause logic programs. We propose a method for proving completeness, while for proving correctness we employ a method which should be well known but is often neglected. Also, we show how to prove completeness and correctness in the presence of SLD-tree pruning, and point out that approximate specifications simplify specifications and proofs. We compare the proof methods to declarative diagnosis (algorithmic debugging), showing that approximate specifications eliminate a major drawback of the latter. We argue that our proof methods reflect natural declarative thinking about programs, and that they can be used, formally or informally, in every-day programming.Comment: 29 pages, 2 figures; with editorial modifications, small corrections and extensions. arXiv admin note: text overlap with arXiv:1411.3015. Overlaps explained in "Related Work" (p. 21

    Using global analysis, partial specifications, and an extensible assertion language for program validation and debugging

    Get PDF
    We discuss a framework for the application of abstract interpretation as an aid during program development, rather than in the more traditional application of program optimization. Program validation and detection of errors is first performed statically by comparing (partial) specifications written in terms of assertions against information obtained from (global) static analysis of the program. The results of this process are expressed in the user assertion language. Assertions (or parts of assertions) which cannot be checked statically are translated into run-time tests. The framework allows the use of assertions to be optional. It also allows using very general properties in assertions, beyond the predefined set understandable by the static analyzer and including properties defined by user programs. We also report briefly on an implementation of the framework. The resulting tool generates and checks assertions for Prolog, CLP(R), and CHIP/CLP(fd) programs, and integrates compile-time and run-time checking in a uniform way. The tool allows using properties such as types, modes, non-failure, determinacy, and computational cost, and can treat modules separately, performing incremental analysis

    Explanations and Proof Trees

    Get PDF
    This paper proposes a model for explanations in a set theoretical framework using the notions of closure or fixpoint. In this approach, sets of rules associated with monotonic operators allow to define proof trees. The proof trees may be considered as a declarative view of the trace of a computation. We claim they are explanations of the results of a computation. This notion of explanation is applied to constraint logic programming, and it is used for declarative error diagnosis. It is also applied to constraint programming, and used for constraint retraction
    • …
    corecore