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Abstract. This paper proposes a model for explanations in a set theoretical frame-
work using the notions of closure or fixpoint. In this approach, sets of rules associa-
ted with monotonic operators allow to define proof trees. The proof trees may be
considered as a declarative view of the trace of a computation. We claim they are
explanations of the results of a computation. This notion of explanation is applied
to constraint logic programming, and it is used for declarative error diagnosis. It is
also applied to constraint programming, and used for constraint retraction.
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1 INTRODUCTION

The motivation for our notion of explanation is to explain a result of a computation
or an intermediate result of a computation. Many applications need to understand
how a result is obtained, that is to have an explanation of it. The explanations may
be useful for applications such as:

• program debugging, in order to help error diagnosis as shown for example in
Section 3.4;
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• computation optimization, for example for intelligent backtracking in constraint
programming [6];

• to reason on results, for example to prove some properties of the results of the
computations;

• to justify a result, for example when the user wants to understand a result;

• as a theoretical tool, for example to prove the correctness of a system as shown
in Section 4.4 for the correctness of constraint retraction algorithms.

It is important to note that to compute a result is exactly to find a proof of it.
A trace of the computation can be considered as an explanation; but a trace may
be very large and intricate. Furthermore, it may contain events that are not useful
because they are not significant to explain the result (for example the order of
application of the operators in constraint programming).

It is then necessary to have high level explanations without all the details of
a particular operational semantics. We would like to define proofs of results which
are declarative.

Declarative languages, such as logic programming and constraint programming,
may be described in terms of fixpoint computations by monotonic operators.

This paper proposes a model for explanations in a set theoretical framework
using the notions of closure or fixpoint. In this approach, sets of rules associated
with monotonic operators allow to define proof trees [1]. We claim they are expla-
nations of the result of a computation. These explanations may be considered as
a declarative view of the trace of a computation.

First, the general scheme is given. This general scheme is applied to constraint
logic programming. Two notions of explanations are given: positive explanations
and negative explanations. Their use in declarative error diagnosis is proposed.

Next, the general scheme is applied to constraint programming. In this frame-
work, two definitions of explanations are described as well as an application to
constraint retraction.

2 PROOF TREES AND FIXPOINT

Our model for explanations is based on the notion of proof tree. To be more precise,
from a formal point of view we see an explanation as a proof tree, which is built
with rules. Here is an example: the following tree

a

/|\

b c d

| / \

e f g

is built with 7 rules including the rule a← {b, c, d}; the rule b← {e}; the rule e← ∅
and so on. From an intuitive point of view the rule a ← {b, c, d} is an immediate
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explanation of a by the set {b, c, d}, the rule e ← ∅ is a fact which means that e is
given as an axiom. The whole tree is a complete explanation of a.

For legibility, we do not write braces in the body of rules: the rule a← {b, c, d}
is written a← b, c, d, the fact e← ∅ is written e←.

2.1 Rules and Proof Trees

Rules and proof trees [1] are abstract notions which are used in various domains
in logic and computer science such as proof theory [31] or operational semantics of
programming languages [30, 28, 13].

A rule h ← B is merely a pair (h, B) where B is a set. If B is empty the rule
is a fact denoted by h ←. In general h is called the head and B is called the body
of the rule h ← B. In some contexts h is called the conclusion and B the set of
premises.

A tree is well founded if it has no infinite branch. In any tree t, with each node
ν is associated a rule h← B where h is the label of ν and B is the set of the labels
of the children of ν. Obviously a fact is associated with a leaf.

A set of rules R defines a notion of proof tree: a tree t is a proof tree wrt R if
it is well founded and the rules associated with its nodes belong to R.

2.2 Least Fixpoints and Upward Closures

In logic and computer science, interesting sets are often defined as least fixpoints
of monotonic operators. Our framework is set-theoretical, so here an operator is
merely a mapping T : P(S) → P(S) where P(S) is the power set of a set S. T is
monotonic if X ⊆ Y ⊆ S ⇒ T (X) ⊆ T (Y ). From now on T is supposed monotonic.

X is upward closed by T if T (X) ⊆ X and X is a fixpoint of T if T (X) = X.
The least X which is upward closed by T exists (it is the intersection of all

these X) and it is also the least fixpoint of T , denoted by lfp(T ) (it is a particular
case of the classical Knaster-Tarski theorem). Since lfp(T ) is the least X such that
T (X) ⊆ X, to prove lfp(T ) ⊆ X it is sufficient to prove T (X) ⊆ X. It is the
principle of proof by induction and lfp(T ) is called the set inductively defined by T .

Sometimes an interesting set is not directly defined as the least fixpoint of
a monotonic operator, it is defined as upward closure of a set by a monotonic op-
erator, but it is basically the same machinery: the upward closure of X by T is
the least Y such that X ⊆ Y and T (Y ) ⊆ Y , that is to say the least Y such that
X ∪ T (Y ) ⊆ Y , which is the least fixpoint of the operator Y 7→ X ∪ T (Y ) (but it is
not necessarily a fixpoint of T itself).

Now let R be a given set of rules. In practice a set S is supposed to be given
such that h ∈ S and B ⊆ S for each rule (h ← B) ∈ R. In this context the set of
rules R defines the operator TR : P(S)→ P(S) by

TR(X) = {h | ∃B ⊆ X (h← B) ∈ R}

which is obviously monotonic.
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For example h ∈ TR(∅) if and only if h ← is a rule (fact) of R; h ∈ TR(TR(∅))
if and only if there is a rule h ← B in R such that b ∈ TR(∅) for each b ∈ B (b ←
is a rule of R); it is easy to see that members of T n

R(∅) are proof tree roots.
Conversely, in this set-theoretical framework, each monotonic operator T is de-

fined by a set of rules, that is to say T = TR for someR (for example take the trivial
rules h← B such that h ∈ T (B)).

Now lfp(TR) is called the set inductively defined by R and to prove lfp(TR) ⊆ X

by induction, that is to say to prove merely TR(X) ⊆ X is exactly to prove B ⊆
X ⇒ h ∈ X for each rule h← B in R.

A significant property is that the members of the least fixpoint of TR are exactly
the proof tree roots wrt R. Let R the set of the proof tree roots wrt R. It is easy
to prove lfp(TR) ⊆ R by induction. R ⊆ lfp(TR) is also easy to prove: if t is a proof
tree, by well-founded induction all the labels of the nodes of t are in lfp(TR).

Note that for each monotonic operator T there are possibly many R such that
T = TR. In each particular context there is often one R that is natural, which can
provide a natural notion of explanation for the membership of the least fixpoint of T.
Here, the operator T is associated to a program and there exists a set of rules that
can be naturally deduced from the program and that gives an interesting notion of
explanation for the members of the least fixpoint of T .

2.3 Upward Iterations

The least fixpoint of a monotonic operator T : P(S) → P(S) can be computed by
iterating T from the empty set: let X0 = ∅, Xn+1 = T (Xn). It is easy to see that
X0 ⊆ X1 ⊆ · · · ⊆ Xn and that Xn ⊆ lfp(T ). If S is finite, obviously there exists
a natural number n such that Xn = Xn+1. It is easy to see that Xn = lfp(T ).

In the general case the iteration must be transfinite: n may be any ordinal.
Xn = T (Xn−1) if n is a successor ordinal, and Xn =

⋃
ν<nXν if n is a limit ordinal.

Then for some ordinal α we have Xα = Xα+1 which is lfp(T ). The first such α is
the (upward) closure ordinal of T .

In practice S is not necessarily finite but often T = TR for a set R of rules
which are finitary, that is to say that, in each rule h← B, B is finite. In that case
the closure ordinal of T is ≤ ω that is to say lfp(T ) = Xω =

⋃
n<w Xn =

⋃
n∈NXn

(intuitively, the natural numbers are sufficient because each proof tree is a finite
tree).

More generally the upward closure of X by T can be computed by iterating T

from X by defining: X0 = X,Xn+1 = Xn ∪ T (Xn), . . .
Sometimes the operator T is defined by T (X) =

⋃
i∈I Ti(X) where several ope-

rators Ti : P(S) → P(S) (i ∈ I) are given. It is the case when T = TR with
R =

⋃
i∈I Ri and Ti = TRi

. The upward closure of X by T is also called the upward
closure of X by the Ti (i ∈ I) and it is the least Y such that X ⊆ Y and Ti(Y ) ⊆ Y

for each i ∈ I . Instead of computing this closure by using T (X) =
⋃

i∈I Ti(X),
it is in practice more efficient to use an upward chaotic iteration [9, 14, 2] of the
Ti (i ∈ I), where at each step only one Ti is chosen and applied: X0 = X,Xn+1 =
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Xn ∪ Tin+1
(Xn), . . . with in+1 ∈ I . The sequence i1, i2, . . . is called a run and is

a formalization of the choices of the Ti. If S is finite, obviously for some natural
number n, we have Xn = Xn+1 that is to say Tin+1

(Xn) ⊆ Xn but Xn is the closure
only if Ti(Xn) ⊆ Xn for all i ∈ I . If also I is finite it is easy to see that finite runs
i1, i2, . . . , in exist such that Xn is the closure, for example by choosing each i in turn.

In general, from a theoretical point of view a fairness condition on the (infinite)
run is presupposed to ensure that the closure is reached. Such a run is called a fair
run but the details are beyond the scope of the paper. For the application below to
constraint satisfaction problems, I and S may be supposed to be finite.

2.4 Duality and Negative Information

Sometimes the interesting sets are greatest fixpoint or downward closures of some
monotonic operators.

Each monotonic operator T : P(S) → P(S) has a greatest fixpoint, denoted by
gfp(T ), that is to say the greatest X such that T (X) = X. In fact gfp(T ) is also
the greatest X which is downward closed by T , that is X ⊆ T (X). It is the reason
why to prove X ⊆ gfp(T ) it is sufficient to prove X ⊆ T (X) (principle of proof by
co-induction, gfp(T ) is called the set coinductively defined by T ).

The downward closure of X by T is the greatest Y such that Y ⊆ X and
Y ⊆ T (Y ), that is to say the greatest Y such that Y ⊆ X ∩ T (Y ), which is the
greatest fixpoint of the operator Y 7→ X ∩ T (Y ) (but it is not necessarily a fixpoint
of T itself).

Greatest fixpoint and downward closure can be computed by downward itera-
tions, similar to the upward iterations of the previous section, reversing ⊆, replac-
ing ∪ by ∩ and ∅ by S. Each monotonic operator has a (downward) closure ordinal
which is obviously finite (natural number) if S is a finite set. If S is infinite, the
downward closure ordinal may be > ω even if the upward closure ordinal is ≤ ω.
For example, it is the case for the application to constraint logic programming (but
it is outside the scope of this paper).

However, this apparent symmetry between least fixpoint and greatest fixpoint is
misleading because we are mainly interested in the notion of proof tree, as a model
for explanations, so we are interested in a set of rules R, which defines an operator
T = TR. It is only the least fixpoint of TR which has the significant property that
its members are exactly the proof tree roots wrt R. The greatest fixpoint can also
be described in terms of trees, but these trees are not necessarily well founded and
they are not in the scope of this paper. In this paper a tree must be well founded
in order to be an explanation.

However, concerning greatest fixpoint and downward closure, we are going to
see that a proof tree can be an explanation for the non-membership, that is to say
to deal with negative information.

In this set-theoretical framework we can use complementation: for X ⊆ S, the
complementary S \ X is denoted by X. The dual of T : P(S) → P(S) is the
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operator T ′ : P(S) → P(S) defined by T ′(X) = T (X). T ′ is obviously monotonic
if T is monotonic. X is a fixpoint of T ′ if and only if X is a fixpoint of T . Since
X ⊆ Y if and only if Y ⊆ X, gfp(T ) = lfp(T ′) and gfp(T ) = lfp(T ′). So if R′ is
a natural set of rules defining T ′, a proof tree wrt R′ can provide a natural notion of
explanation for the membership of the complementary of the greatest fixpoint of T
since it is the membership of the least fixpoint of T ′.

Concerning iterations it is easy to see that downward iterations which compute
greatest fixpoint of T and downward closures can be uniformly converted by com-
plementation into upward iterations which compute least fixpoint of T ′ and upward
closures.

Sometimes the operator T is defined by T (X) =
⋂

i∈I Ti(X) where several ope-
rators Ti : P(S) → P(S) (i ∈ I) are given. The downward closure of X by the
Ti (i ∈ I) is the greatest Y such that Y ⊆ X and Y ⊆ Ti(Y ) for each i ∈ I .
Instead of computing this closure by using T (X) =

⋂
i∈I Ti(X), it is more efficient

in practice to use a downward chaotic iteration of the Ti (i ∈ I), where at each step
only one Ti is chosen and applied. It is easy to see that downward chaotic iterations
which compute downward closures can be uniformly converted by complementation
into upward chaotic iterations which compute upward closures.

2.5 Explanations for Diagnosis

Intuitively, let us consider that a set of rules R is an abstract formalization of
a computational mechanism so that a proof tree is an abstract view of a trace.
The results of the possible computations are proof tree roots wrt R, that is to say
members of the least fixpoint of a monotonic operator T = TR. Infinite computations
related to non-well founded trees and greatest fixpoint are outside the scope of this
paper. For example, in the application below to constraint satisfaction problems the
formalization uses a greatest fixpoint but in fact by the previous duality we consider
proof trees related to a least fixpoint.

Now let us consider that the set of rules R may be erroneous, producing non
expected results: some r ∈ lfp(T ) are non expected and some others r ∈ lfp(T )
are expected. From a formal viewpoint this is represented by a set E ⊆ S such
that, for each r ∈ S, r is expected if and only if r ∈ E. A r ∈ lfp(T ) \ E (a non
expected result) is called a symptom wrt E. If there exists a symptom, lfp(T ) 6⊆ E so
T (E) 6⊆ E (otherwise lfp(T ) ⊆ E by the principle of proof by induction). T (E) 6⊆ E

means that there exists a rule h← B in R such that B ⊆ E but h 6∈ E. Such a rule
is called an error wrt E. Intuitively it is the existence of errors which explains the
existence of symptoms. Diagnosis consists in locating errors in R from symptoms.

Now the notion of proof tree can explain how an error can be a cause of a symp-
tom: if r is a symptom it is the root of a proof tree t wrt R. In t we call symptom
node a node whose label is a symptom (there is at least a symptom node which is the
root). Since t is well founded, the relation parent-child is well founded, so there is
at least a minimal symptom node wrt this relation. The rule h← B associated with
a minimal symptom node is obviously an error since h is a symptom but no b ∈ B is
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a symptom. The proof tree t is an abstract view of a trace of a computation which
has produced the symptom r. It explains how erroneous information is propagated
to the root. Moreover, by inspecting some nodes in t it is possible to locate an error.

3 CONSTRAINT LOGIC PROGRAMMING

We consider the general scheme of constraint logic programming [25] called CLP(X),
where X is the underlying constraint domain. For example, X may be the Herbrand
domain, infinite trees, finite domains, N, R. . .

Two kinds of atomic formula are considered in this scheme: constraints (with
built-in predicates) and atoms (with program predicates, i.e. predicates defined by
the program).

A clause is a formula

a0 ← c ∧ a1 ∧ · · · ∧ an (n ≥ 0)

where the ai are atoms and c is a (possibly empty) conjunction of constraints. In
order to simplify, we assume that each ai is an atom pi(x

i
1, . . . , x

i
ki
) and all the

variables xi
j (i = 0, . . . , n, j = 1, . . . , ki) are different. This is always possible by

adding equalities to the conjunction of constraints c.
Each program predicate p is defined by a set of clauses: the clauses that have

an atom with the predicate symbol p in the left part (the head of the clause). This
set of clauses is called the packet of p.

A constraint logic program is a set of clauses.

3.1 Positive Answer

In constraint logic programming, a logical answer to a goal ← a (a is an atom)
is a formula c → a where c is a conjunction of constraints and c → a is a logical
consequence of the program. So c → a is true in each model M of the program
expanding the underlying constraint domain D. In other words, inM, a is satisfied
by each solution of c. A solution of c is a valuation v in D for which c is true. If a is
the atom p(x1, . . . , xn) and v is a valuation assigning the value di to the variable xi,
then the expression p(d1, . . . , dn) is denoted by v(a). A modelM can be identified
with a set of such expressions v(a) = p(d1, . . . , dn), v(a) ∈ M meaning that, inM,
a is true for the valuation v. The program has a least model, which is a formalisation
of its declarative semantics, since c → a is a logical answer to the goal ← a if and
only if c→ a is true in this least model.

If no valuation satisfies c then the answer is not interesting (because c is false
and false → a is always true). Computed answers are logical answers which are
defined by the operational semantics. A reject criterion tests the satisfiability of
the conjunction of constraints built during the computation in order to end the
computation when it detects that the conjunction is unsatisfiable. The reject cri-
terion is often incomplete and it just ensures that rejected conjunctions of con-
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straints are unsatisfiable in the underlying constraint domain. From an operational
viewpoint, the reject criterion may be seen as an optimization of the computation
(needless to continue the computation when the conjunction of constraints has no
solution).

A monotonic operator may be defined such that its least fixpoint provides the
declarative semantics of the program. A candidate is an operator similar to the well
known immediate consequence operator (often denoted by TP ) in the framework of
pure logic programming (logic programming is a particular case of constraint logic
programming where unification is seen as equality constraint over terms).

A set of rules may be associated with this monotonic operator. For example,
a convenient set of rules is the set of all the v(a0) ← v(a1), . . . , v(an) such that
a0 ← c ∧ a1 ∧ · · · ∧ an is a clause of the program and v is a valuation solution of c.
This set of rules basically provides a notion of explanation. Because of the clause, if
v(a1), . . . , v(an) belong to the semantics of the program, then v(a0) belongs to the
semantics of the program. The point is that the explanations defined by this set
of rules are theoretical because they cannot always be expressed in the language of
the program (for example, if the constraint domain is R, each value of the domain
does not correspond to a constant of the programming language). Moreover, it is
better to use the same language for the program answers and their explanations.
Indeed, if the user is able to understand the program answers then s/he should
be able to understand the explanations (no need to understand the computational
behaviour).

Another monotonic operator may be defined such that its least fixpoint is the
set of computed answers (c→ a).

Again, we can give a set of rules which inductively defines the operator. The
rules come directly from the clauses of the program and the reject criterion [21].
The rules may be defined as follows:

• for all renamed clause a0 ← c ∧ a1 ∧ · · · ∧ an

• for all conjunction of constraints c1, . . . , cn

we have the rule:

(c0 → a0)← (c1 → a1), . . . , (cn → an)

where c0 is not rejected by the reject criterion and c0 is defined by c0 = ∃−a0(c ∧
c1 ∧ · · · ∧ cn), ∃−a0 denotes the existential quantification except on the variables
of a0.

Other sets of rules can be given and are discussed in [36]. Each set of rules
provides another notion of explanation. For each answer c → a, there exists an
explanation rooted by c → a. Moreover, each node of an explanation is also an
answer: a formula c→ a. An answer is explained as a consequence of other answers
using a rule deduced from a clause of the program. This notion of explanation
has been successfully used for declarative error diagnosis [36] in the framework of
algorithmic debugging [34] as shown later.
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3.2 Negative Answer

Because of the non-determinism of constraint logic programs, another level of answer
may be considered. It is built from the answers of the first level. If c1 → a, . . . , cn →
a are the answers of the first level to a goal ← a, we have c1 ∨ · · · ∨ cn → a in the
program semantics. For the second level of answer we now consider c1∨· · ·∨cn ← a.

The answers of the first level (the ci → a) are called positive answers because
they provide positive information on the goals (each solution of a ci is a solution
of a) whereas the answers of the second level (the c1 ∨ · · · ∨ cn ← a) are called
negative answers because they provide negative information on the goals (there is
no other solution of a than the solutions of the ci).

Again, the set of negative answers is the least fixpoint of a monotonic operator.
A set of rules may be naturally associated with the operator, each rule is defined
using the packet of clauses of a program predicate. The set of rules provides a notion
of negative explanation.

It is not possible to give in few lines the set of (negative) rules because it requires
several preliminary definitions (in particular, it needs to define very rigorously the
CSLD1-search tree with the notion of skeleton of partial explanations). The reader
may find details about some systems of negative rules and the explanations of ne-
gative answers in [21, 22, 35].

The nodes of a negative explanation are negative answers: formula C ← a,
where C is a disjunction of conjunctions of constraints.

3.3 Links Between Explanations and Computation

In this article, the notion of answer is defined when the computation is finite, that
is to say when the computation ends and provides a result.

The notion of positive computation corresponds to the notion of CSLD-deriva-
tion [29, 25]. It corresponds to the computation of a branch of the CSLD-search
tree. With each finite branch of the CSLD-search tree a positive answer is associated
(even when the CSLD-search tree is not finite).

The notion of negative computation corresponds to the notion of CSLD-reso-
lution [29, 25]. It corresponds to the computation of the whole CSLD-search tree.
Thus a negative answer is associated only with a finite CSLD-search tree.

A positive explanation explains an answer computed by a finite CSLD-derivation
(a positive answer) while a negative explanation explains an answer computed by
a finite CSLD-search tree (a negative answer).

The interesting point is that the nodes of the explanations are answers, that is,
an answer is explained as a consequence of other answers.

1 The CSLD-resolution is an adaptation of the well-known SLD-resolution (Linear re-
solution with a Selection rule for Definite programs) to constraint logic programs. The
main adaptation is to use the reject criterion instead of the unification.
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The explanations defined here may be seen as a declarative view of the trace: it
contains all the declarative information of the trace without the operational details.
This is important because in constraint logic programming, the programmer may
write his/her program using only a declarative knowledge of the problem to solve.
Thus it would be such a great pity that the explanations of answers used operational
aspects of the computation.

3.4 Declarative Error Diagnosis

An unexpected answer of a constraint logic program is the symptom of an error in
the program. Because we have an (unexpected) answer, the computation is finite.
If we have a positive symptom, that is an unexpected positive answer, the finite
computation corresponds to a finite branch of the CSLD-search tree. If we have
a negative symptom, that is an unexpected negative answer, then the CSLD-search
tree is finite.

Given some expected properties of a constraint logic program, given a (positive
or negative) symptom, using the previous notions of explanations (positive expla-
nations or negative explanations), using the general scheme for diagnosis given in
Section 2.5, we can locate an error (or several errors) in the constraint logic program.
The diagnoser asks an oracle (in practice, the user or a specification of the program)
in order to know if a node of the explanation is a symptom. The diagnoser searches
for a minimal symptom in the explanation. A minimal symptom exists because
the root of the explanation is a symptom and the explanation is well founded (it
is finite). The rule that links the minimal symptom to its children is erroneous in
some sense:

• If the symptom is a positive symptom, then it is a positive rule and the clause
used to define the rule is a positive error : the clause is incorrect according to the
expected properties of the program. Moreover, the constraint in the minimal
symptom provides a context in which the clause is not correct.

• If the symptom is a negative symptom, then it is a negative rule and the packet
of clauses used to define the rule is a negative error : the packet of clauses is
incomplete according to the expected properties of the program.

Different strategies may be used in order to locate a minimal symptom [36].
Thanks to the diagnosis, the programmer knows a clause, or a packet of clauses,

that is not correct and can fix his/her program.
A positive symptom is a wrong positive answer. A negative symptom is a wrong

negative answer, but a negative symptom is also the symptom of a missing positive
answer. Another kind of negative error diagnosis has been developed for pure logic
programs [16, 17]. It needs the definition of infinite (positive) explanations. The
set of roots of infinite positive explanations is the greatest fixpoint of the operator
defined by the set of positive rules. Note that if the programmer can notice that
a positive answer is missing then the CSLD-search tree is finite (there is a negative
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answer). Thus, if a positive answer is missing, then it is not in the greatest fixpoint
of the operator defined by the positive rules (in that case, the missing positive answer
is not also in the least fixpoint of the operator). Note however that, in this context,
the good notion refers to the greatest fixpoint and infinite positive explanations. The
principle of this other error diagnosis for missing positive answer consists in trying to
build an infinite positive explanation rooted by the missing positive answer. Because
it is not in the greatest fixpoint, the building of the infinite positive explanation fails.
When it fails, it provides an error: a packet of clauses insufficient according to the
expected properties of the program.

4 CONSTRAINT SATISFACTION PROBLEMS

Constraint Satisfaction Problems (CSP) [37, 3, 12] have proved to be efficient to
model many complex problems. A lot of modern constraint solvers (e.g. chip,
gnuProlog, Ilog solver, choco) are based on domain reduction to find the solutions
of a CSP. But these solvers are often black-boxes whereas the need to understand
the computations is crucial in many applications. Explanations have already proved
their efficiency for such applications. Furthermore, they are useful for dynamic
constraint satisfaction problems [5, 33, 7], over-constrained problems [27], search
methods [32, 24, 6], declarative error diagnosis [19]. . .

Here, two notions of explanations are described: explanation-tree and expla-
nation-set. The first one corresponds to the notion of proof tree. The second one,
which can be deduced from explanation-tree, is less precise but sufficient for a lot of
practical applications. A more detailed model of these explanations for constraint
programming over finite domains is proposed in [18] and a more precise presentation
of their application to constraint retraction can be found in [11].

4.1 CSP and Solutions

Following [37], a constraint satisfaction problem is made of two parts: a syntactic
part and a semantic part. The syntactic part is a finite set V of variables, a finite
set C of constraints and a function var : C → P(V ), which associates a set of
related variables to each constraint. Indeed, a constraint may involve only a subset
of V . For the semantic part, we need to consider various families f = (fi)i∈I . Such
a family is referred to by the function i 7→ fi or by the set {(i, fi) | i ∈ I}.

(Dx)x∈V is a family where each Dx is a finite non empty set of possible values
for x. We define the domain of computation by D =

⋃
x∈V ({x}×Dx). This domain

allows simple and uniform definitions of (local consistency) operators on a power-set.
For reduction, we consider subsets d of D. Such a subset is called an environment.
Let d ⊆ D, W ⊆ V , we denote by d|W the set {(x, e) ∈ d | x ∈ W}. d is actually
a family (dx)x∈V with dx ⊆ Dx: for x ∈ V , we define dx = {e ∈ Dx | (x, e) ∈ d}. dx
is the domain of the variable x.

Constraints are defined by their set of allowed tuples. A tuple t on W ⊆ V is
a particular environment such that each variable of W appears only once: t ⊆ D|W
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and ∀x ∈ W, ∃e ∈ Dx, t|{x} = {(x, e)}. For each c ∈ C, Tc is a set of tuples on
var(c), called the solutions of c. Note that a tuple t ∈ Tc is equivalent to a family
(ex)x∈var(c) and t is identified with {(x, ex) | x ∈ var(c)}.

We can now formally define a CSP and a solution:

A Constraint Satisfaction Problem (CSP) is defined by: a finite set V

of variables, a finite set C of constraints, a function var : C → P(V ),
a family (Dx)x∈V (the domains) and a family (Tc)c∈C (the constraints
semantics). A solution for a CSP (V, C, var, (Dx)x∈V , (Tc)c∈C) is a tuple
t on V such that ∀c ∈ C, t|var(c) ∈ Tc.

4.2 Domain Reduction

To find the possibly existing solutions, the solvers are often based on domain reduc-
tion. In this framework, monotonic operators are associated with the constraints of
the problem with respect to a notion of local consistency (in general, the more ac-
curate is the consistency, the more expensive is the computation). These operators
are called local consistency operators. In GNU-Prolog for example, these operators
correspond to the indexicals (the x in r) [8].

For the sake of clarity, we will consider in our presentation that each operator
is applied to the whole environment, but in practice it only removes from the en-
vironments of one variable some values which are inconsistent with respect to the
environments of a subset of V .

A local consistency operator is a monotonic function r : P(D)→ P(D).

Classically [4, 2], reduction operators are considered as monotonic, contracting
and idempotent functions. However, on the one hand, contractance is not mandatory
because environment reduction after applying a given operator r can be forced by
intersecting its result with the current environment, that is d ∩ r(d). On the other
hand, idempotence is useless from a theoretical point of view (it is only useful in
practice for managing the propagation queue). This is generally not mandatory to
design effective constraint solvers. We can therefore use only monotonic functions
to define the local consistency operators.

The solver semantics is completely described by the set of such operators associa-
ted with the handled constraints. More or less accurate local consistency operators
may be selected for each constraint. Moreover, this framework is not limited to
arc-consistency but may handle any local consistency which boils down to domain
reduction as shown in [18].

Of course local consistency operators should be correct with respect to the con-
straints. In practice, to each constraint c ∈ C is associated a set of local consistency
operators R(c). The set R(c) is such that for each r ∈ R(c), d ⊆ D and t ∈ Tc:
t ⊆ d⇒ t ⊆ r(d).

From a general point of view, domain reduction consists in applying these local
consistency operators according to a chaotic iteration until their common greatest
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fixpoint is reached. Note that finite domains and chaotic iteration ensure to reach
this fixpoint. Obviously, the common greatest fixpoint is an environment which
contains all the solutions of the CSP. It is the most accurate set which can be
computed using a set of local consistency operators.

In practice, constraint propagation is handled through a propagation queue. The
propagation queue contains local consistency operators that may reduce the environ-
ment (in other words, the operators which are not in the propagation queue cannot
reduce the environment). Informally, starting from the given initial environment
of the problem, a local consistency operator is selected from the propagation queue
(initialized with all the operators) and applied to the environment resulting in a new
one. If a domain reduction occurs, new operators may be added to the propagation
queue. Note that the operators’ selection corresponds to a fair run.

Of course, in practice the computations needs to be finite. Termination is
reached when:

• a domain of a variable is emptied: there is no solution to the associated problem;

• the propagation queue is emptied: a common fixpoint (or a desired consistency
state) is reached ensuring that further propagation will not modify the result.

Note that to obtain a solution, domain reduction steps are interlaced with split-
ting steps. Since splitting may be considered as additional constraints, it could be
easily included in our model. This leads to no conceptual difficulties but this is not
really necessary here.

4.3 Explanations

Now, we detail two notions of explanations for CSP: explanation-set and explanation-
tree. These two notions explain why a value is removed from the environment.
Note that explanation-trees are both more precise and general than explanation-
sets, but explanation-sets may be sufficient for some applications. For example, the
algorithm of constraint retraction [26] only uses explanation-sets, while its proof of
correctness [11] needs explanation-trees.

Let R be the set of all local consistency operators. Let h ∈ D and
d ⊆ D. We call explanation-set for h wrt d a set of local consistency
operators E ⊆ R such that h 6∈ CL ↓ (d, E) where CL ↓ (d, E) denotes
the downward closure of d by E.

Explanation-sets allow a direct access to direct and indirect consequences of
a given constraint c. For each h 6∈ CL ↓ (d, R), expl(h) represents any explanation-
set for h. Notice that for any h ∈ CL ↓ (d, R), expl(h) does not exist.

Several explanations generally exist for the removal of a given value. [26] shows
that a good compromise between precision (small explanation-sets) and ease of com-
putation of explanation-sets is to use the solver-embedded knowledge. Indeed, con-
straint solvers always know, although it is scarcely explicit, why they remove values
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from the environments of the variables. By making that knowledge explicit and
therefore kind of tracing the behavior of the solver, quite precise explanation-sets
can be computed. Indeed, explanation-sets are a compact representation of the
necessary constraints to achieve a given domain reduction.

A more complete description of the interaction of the constraints responsible for
this domain reduction can be introduced through explanation-trees which are closely
related to actual computation.

According to the solver mechanism, domain reduction must be considered from
a dual point of view. Indeed, we are interested in the values which may belong to
the solutions, but the solver keeps in the domains values for which it cannot prove
that they do not belong to a solution. In other words, it only computes proofs for
removed values.

With each local consistency operator considered above, its dual operator (the
one removing values) can be associated. Then, these dual operators can be defined
by sets of rules. Note that for each operator many such systems of rules can exist,
but in general one is more natural to express the notion of local consistency used.
Examples for classical notions of consistency are developed in [18]. At first, we
need to introduce the notion of deduction rule related to dual of local consistency
operators.

A deduction rule is a rule h← B such that h ∈ D and B ⊆ D.

The intended semantics of a deduction rule h← B can be presented as follows:
if all the elements of B are removed from the environment, then h does not appear
in any solution of the CSP and may be removed harmlessly (in the arc-consistency
case, the elements of B represent the support set of h).

A set of deduction rulesRr may be associated with each dual of local consistency
operator r. It is intuitively obvious that this is true for arc-consistency enforcement
but it has been proved [18] that for any dual of local consistency which boils down
to domain reduction it is possible to associate such a set of rules (moreover, it shows
that there exists a natural set of rules for classical local consistencies). Note that,
in the general case, there may exist several rules with the same head but different
bodies.

We consider the set ∪r∈RRr of all the deduction rules for all the local consistency
operators of R. But the initial environment must also be taken into account in the
set of deduction rules: the iteration starts from an environment d ⊆ D; it is therefore
necessary to add facts (deduction rules with an empty body) in order to directly
deduce the elements of d: let Rd = {h ← ∅ | h ∈ d} be this set. We denote by R
the set (∪r∈RRr) ∪Rd.

A proof tree with respect to a set of rules R is a finite tree such that
for each node labelled by h, let B be the set of labels of its children,
h← B ∈ R.

Proof trees are closely related to the computation of domain reduction. Let
d = d0, d1, . . . , di, . . . be an iteration. For each i, if h 6∈ di then h is the root of



Explanations and Proof Trees 119

a proof tree with respect to R. More generally, CL ↓ (d, R) is the set of the roots
of proof trees with respect to R.

Each deduction rule used in a proof tree comes from a packet of deduction rules,
either from a packet Rr defining a local consistency operator r, or from Rd. A set
of local consistency operators can be associated with a proof tree as follows.

Let t be a proof tree. A set X of local consistency operators associated
with t is such that for each node of t: let h be the label of the node and
B the set of labels of its children: either h 6∈ d (and B = ∅); or there
exists r ∈ X, h← B ∈ Rr.

Note that there may exist several sets associated with a proof tree. Moreover,
each super-set of a set associated with a proof tree is also convenient (R is associated
with all proof trees). It is important to recall that the root of a proof tree does not
belong to the closure of the initial environment d by the set of local consistency
operators R. So there exists an explanation-set for this value.

If t is a proof tree, then each set of local consistency operators associated
with t is an explanation-set for the root of t.

From now on, a proof tree with respect to R is therefore called an explanation-
tree. As we just saw, explanation-sets can be computed from explanation-trees.

Let us consider a fixed iteration d = d0, d1, . . . , di, . . . of R with respect to
r1, r2, . . . , ri+1, . . . In order to incrementally define explanation-trees during an iter-
ation, let (Si)i∈N be the family recursively defined as (where cons(h, T ) is the tree
defined by h is the label of its root and T is the set of its subtrees, and where
root(cons(h, T )) = h):

• S0 = {cons(h, ∅) | h 6∈ d};

• Si+1 = Si ∪ {cons(h, T ) | h ∈ di, T ⊆ Si, h← {root(t) | t ∈ T} ∈ Rri+1}.

It is important to note that some explanation-trees do not correspond to any ite-
ration, but when a value is removed there always exists an explanation-tree in

⋃
i S

i

for this value removal.
Among the explanation-sets associated with an explanation-tree t ∈ Si, one is

preferred. This explanation-set is denoted by expl(t) and defined as follows (where
t = cons(h, T )):

• if t ∈ S0 then expl(t) = ∅;

• else there exists i > 0 such that t ∈ Si\Si−1, then expl(t) = {ri}∪
⋃

t′∈T expl(t′).

In fact, expl(t) is a expl(h) previously defined where t is rooted by h.
Obviously explanation-trees are more precise than explanation-sets. An expla-

nation-tree describes the value removal thanks to deduction rules. Each deduction
rule comes from a set of deduction rules that defines an operator. The explanation-
set just provides these operators.
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Note also that in practice explanation-trees can easily be extracted from a trace
following the process described in [20].

In the following, we will associate a single explanation-tree, and therefore a single
explanation-set, to each element h removed during the computation. This set will
be denoted by expl(h).

4.4 Constraint Retraction

We detail an application of explanations to constraint retraction algorithms [11].
Thanks to explanations, sufficient conditions to ensure the correctness of any incre-
mental constraint retraction algorithms are given.

Dynamic constraint retraction is performed through the three following
steps [23, 26]: disconnecting (i.e. removing the retracted constraint), setting back
values (i.e. reintroducing the values removed by the retracted constraint) and repro-
pagating (i.e. some of the reintroduced values may be removed by other constraints).

4.4.1 Disconnecting

The first step is to cut the retracted constraints C ′ from the constraint network.
C ′ needs to be completely disconnected (and therefore will never get propagated
again in the future).

Disconnecting a set of constraints C ′ amounts to remove all their related ope-
rators from the current set of active operators. The resulting set of operators is
Rnew ⊆ R, where Rnew =

⋃
c∈C\C′ R(c). Constraint retraction amounts to computing

the closure of d by Rnew.

4.4.2 Setting Back Values

The second step is to undo the past effects of the retracted constraints: both direct
(each time the constraint operators have been applied) and indirect (further conse-
quences of the constraints through operators of other constraints) effects of those
constraints. This step results in the enlargement of the environment: values are put
back.

Here, we want to benefit from the previous computation of di instead of starting
a new iteration from d. Thanks to explanation-sets, we know the values of d \ di

which have been removed because of a retracted operator (that is an operator of
R \Rnew). This set of values is defined by d′ = {h ∈ d | ∃r ∈ R \Rnew, r ∈ expl(h)}
and must be re-introduced in the domain. Notice that all incremental algorithms for
constraint retraction amount to compute an (often strict) super-set of this set. The
next result (proof in [11]) ensures that we obtain the same closure if the computation
starts from d or from di∪d′ (the correctness of all the algorithms which re-introduce
a super-set of d′):

CL ↓ (d, Rnew) = CL ↓ (di ∪ d′, Rnew)
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4.4.3 Repropagating

Some of the put back values can be removed applying other active operators (i.e.
operators associated with non retracted constraints). Those domain reductions need
to be performed and propagated as usual. At the end of this process, the system will
be in a consistent state. It is exactly the state (of the domains) that would have been
obtained if the retracted constraint would not have been introduced into the system.

In practice the iteration is done with respect to a sequence of operators which
is dynamically computed thanks to the propagation queue. At the ith step, before
setting values back, the set of operators which are in the propagation queue is
denoted by Ri. Obviously, the operators of Ri ∩Rnew must stay in the propagation
queue. The other operators (Rnew \Ri) cannot remove any element of di, but they
may remove an element of d′ (the set of re-introduced values). So we have to put
some of them back in the propagation queue: the operators of the set R′ = {r ∈
Rnew | ∃h ← B ∈ Rr, h ∈ d′}. The next result (proof in [11]) ensures that the
operators which are not in Ri ∪ R′ do not modify the environment di ∪ d′, so it is
useless to put them back into the propagation queue (the correctness of all algorithms
which re-introduce a super-set of R′ in the propagation queue):

∀r ∈ Rnew \ (Ri ∪ R′), di ∪ d′ ⊆ r(di ∪ d′).

Therefore, by the two previous results, any algorithm which restarts with a pro-
pagation queue including Ri ∪ R′ and an environment including di ∪ d′ is proved
correct.

Note that the presented constraint retraction process encompasses both infor-
mation recording methods and recomputation-based methods. The only difference
relies on the way values to set back are determined. The first kind of methods record
information to allow an easy computation of values to set back into the environment
upon a constraint retraction. [5] and [10] use justifications : for each value removal
the applied responsible constraint (or operator) is recorded. [15] uses a dependency
graph to determine the portion of past computation to be reset upon constraint
retraction. More generally, those methods amount to record some dependency in-
formation about past computation. A generalization [6] of both previous techniques
relies upon the use of explanation-sets.

Note that constraint retraction is useful for dynamic constraint satisfaction prob-
lems but also for over-constrained problems. Indeed, users often prefer to have
a solution to a relaxed problem than no solution for their problem. In this case,
explanation does not only allow to compute a solution to the relaxed problem but
it may also help the user choose the constraint to retract [7].

5 CONCLUSION

The paper recalls the notions of closure and fixpoint. When program semantics
can be described by some notions of closure or fixpoint, proof trees are suitable
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to provide explanations: the computation has proved a result and a proof tree is
a declarative explanation of this result.

The paper shows two different domains where these notions apply: Constraint
Logic Programming (CLP) and Constraint Satisfaction Problems (CSP).

Obviously, these proof trees are explanations because they can be considered as
a declarative view of the trace of a computation and so, they may help understand
how the results are obtained. Consequently, debugging is a natural application for
explanations. Considering the explanation of an unexpected result it is possible to
locate an error in the program (in fact an incorrect rule used to build the explanation,
and this rule can be associated to an incorrect piece of program). As an example,
the paper presents the declarative error diagnosis of constraint logic programs. The
same method has also been investigated for constraint programming in [19]. In
this framework, a symptom is a removed value which was expected to belong to
a solution and the error is a rule associated with a local consistency operator.

It is interesting to note the difference between the application to CLP and CSP.
In CLP, it is easier to understand a wrong (positive) answer because a wrong answer
is a logical consequence of the program then there exists a proof of it (which should
not exist). In CSP, it is easier to understand a missing answer because explanations
are proofs of value removals. A finite domain constraint solver just tries to prove
that some values cannot belong to a solution, but it does not prove that remaining
values belong to a solution.

In constraint programming, when a constraint is removed from the set of con-
straints, a first possibility is to restart the computation of the new solutions from
the initial domain. But it may be more efficient to benefit from the past computa-
tions. This is achieved by a constraint retraction algorithm. The paper has shown
how explanations can be used to prove the correctness of a large class of constraint
retraction algorithm [11]. In practice, such algorithms use explanations for dynamic
problems, for intelligent backtracking during the search, for failure analysis. . .

The notion of explanation presented in this article has been applied to CLP and
CSP. We claim that this general framework should easily apply to every semantics
based on rules.
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