67,011 research outputs found

    Domain Computing: The Next Generation of Computing

    Get PDF
    Computers are indispensable in our daily lives. The first generation of computing started the era of human automation computing. These machine’s computational resources, however, were completely centralized in local machines. With the appearance of networks, the second generation of computing significantly improved data availability and portability so that computing resources could be efficiently shared among the networks. The service-oriented third generation of computing provided functionality by breaking down applications into services, on-demand computing through utility and cloud infrastructures, as well as ubiquitous accesses from wide-spread geographical networks. Services as primary computing resources are far spread from lo- cal to worldwide. These services loosely couple applications and servers, which allows services to scale up easily with higher availability. The complexity of locating, utilizing and optimizing computational resources becomes even more challenging as these resources become more available, fault-tolerant, scalable, better per- forming, and spatially distributed. The critical question becomes how do applications dynamically utilize and optimize unique/duplicate/competitive resources at runtime in the most efficient and effective way without code changes, as well as providing high available, scalable, secured and easy development services. Domain computing proposes a new way to manage computational resources and applications. Domain computing dy- namically manages resources within logic entities, domains, and without being bound to physical machines so that application functionality can be extended at runtime. Moreover, domain computing introduces domains as a replacement of a traditional computer in order to run applications and link different computational resources that are distributed over networks into domains so that a user can greatly improve and optimize the resource utilization at a global level. By negotiating with different layers, domain computing dynamically links different resources, shares resources and cooperates with domains at runtime so applications can more quickly adapt to dynamically changing environments and gain better performance. Also, domain computing presents a new way to develop applications which are resource stateless based. In this work, a prototype sys- tem was built and the performance of its various aspects has been examined, including network throughput, response time, variance, resource publishing and subscription, and secured communications

    Building Programmable Wireless Networks: An Architectural Survey

    Full text link
    In recent times, there have been a lot of efforts for improving the ossified Internet architecture in a bid to sustain unstinted growth and innovation. A major reason for the perceived architectural ossification is the lack of ability to program the network as a system. This situation has resulted partly from historical decisions in the original Internet design which emphasized decentralized network operations through co-located data and control planes on each network device. The situation for wireless networks is no different resulting in a lot of complexity and a plethora of largely incompatible wireless technologies. The emergence of "programmable wireless networks", that allow greater flexibility, ease of management and configurability, is a step in the right direction to overcome the aforementioned shortcomings of the wireless networks. In this paper, we provide a broad overview of the architectures proposed in literature for building programmable wireless networks focusing primarily on three popular techniques, i.e., software defined networks, cognitive radio networks, and virtualized networks. This survey is a self-contained tutorial on these techniques and its applications. We also discuss the opportunities and challenges in building next-generation programmable wireless networks and identify open research issues and future research directions.Comment: 19 page

    GPU-Based Volume Rendering of Noisy Multi-Spectral Astronomical Data

    Full text link
    Traditional analysis techniques may not be sufficient for astronomers to make the best use of the data sets that current and future instruments, such as the Square Kilometre Array and its Pathfinders, will produce. By utilizing the incredible pattern-recognition ability of the human mind, scientific visualization provides an excellent opportunity for astronomers to gain valuable new insight and understanding of their data, particularly when used interactively in 3D. The goal of our work is to establish the feasibility of a real-time 3D monitoring system for data going into the Australian SKA Pathfinder archive. Based on CUDA, an increasingly popular development tool, our work utilizes the massively parallel architecture of modern graphics processing units (GPUs) to provide astronomers with an interactive 3D volume rendering for multi-spectral data sets. Unlike other approaches, we are targeting real time interactive visualization of datasets larger than GPU memory while giving special attention to data with low signal to noise ratio - two critical aspects for astronomy that are missing from most existing scientific visualization software packages. Our framework enables the astronomer to interact with the geometrical representation of the data, and to control the volume rendering process to generate a better representation of their datasets.Comment: 4 pages, 1 figure, to appear in the proceedings of ADASS XIX, Oct 4-8 2009, Sapporo, Japan (ASP Conf. Series

    Looking to the future: M-learning with the iPad

    Get PDF
    Might Apple’s new iPad gain unprecedented traction in education, or is just another example of the over-hyping of new devices in a time of technological determinism (Postman, 2000)? This paper explores the potential affordances and limitations of the Apple iPad in the wider context of emergent mobile learning theory, and the social and economic drivers that fuel technology development. Against the background of effective teaching and learning, the functionality offered by the iPad, and its potential uses for learning, are discussed. A critical review of the way the iPad may support learning, that draws on learning theory, contemporary articles and e-learning literature, suggests that the device may offer an exciting platform for consuming and creating content in a collaborative, interactive way. However, of greater importance is that effective, evidence-driven, innovative practices, combined with a clear-sighted assessment of the advantages and limitations of any product, should take priority over the device itself
    corecore