4 research outputs found

    The neural cognitive architecture

    Get PDF
    The development of a cognitive architecture based on neurons is currently viable. An initial architecture is proposed, and is based around a slow serial system, and a fast parallel system, with additional subsystems for behaviours such as sensing, action and language. Current technology allows us to emulate millions of neurons in real time supporting the development and use of relatively sophisticated systems based on the architecture. While knowledge of biological neural processing and learning rules, and cognitive behaviour is extensive, it is far from complete. This architecture provides a slowly varying neural structure that forms the framework for cognition and learning. It will provide support for exploring biological neural behaviour in functioning animals, and support for the development of artificial systems based on neurons

    A neural cognitive architecture

    Get PDF
    It is difficult to study the mind, but cognitive architectures are one tool. As the mind emerges from the behaviour of the brain, neuropsychological methods are another method to study the mind, though a rather indirect method. A cognitive architecture that is implemented in spiking neurons is a method of studying the mind that can use neuropsychological evidence directly. A neural cognitive architecture, based on rule based systems and associative memory, can be readily implemented, and would provide a good bridge between standard cognitive architectures, such as \Soar, and neuropsychology. This architecture could be implemented in spiking neurons, and made available via the Human Brain Project, which provides a good collaborative environment. The architecture could be readily extended to use spiking neurons for subsystems, such as spatial reasoning, and could evolve over time toward a complete architecture. The theory behind this architecture could evolve over time. Simplifying assumptions, made explicit, such as those behind the rule based system, could gradually be replaced by more neuropsychologically accurate behaviour. The overall task of collaborative architecture development would be eased by direct evidence of the actual neural cognitive architectures in human brains. While the initial architecture is biologically inspired, the ultimate goal is a biological cognitive architecture

    A Universal Knowledge Model and Cognitive Architecture for Prototyping AGI

    Full text link
    The article identified 42 cognitive architectures for creating general artificial intelligence (AGI) and proposed a set of interrelated functional blocks that an agent approaching AGI in its capabilities should possess. Since the required set of blocks is not found in any of the existing architectures, the article proposes a new cognitive architecture for intelligent systems approaching AGI in their capabilities. As one of the key solutions within the framework of the architecture, a universal method of knowledge representation is proposed, which allows combining various non-formalized, partially and fully formalized methods of knowledge representation in a single knowledge base, such as texts in natural languages, images, audio and video recordings, graphs, algorithms, databases, neural networks, knowledge graphs, ontologies, frames, essence-property-relation models, production systems, predicate calculus models, conceptual models, and others. To combine and structure various fragments of knowledge, archigraph models are used, constructed as a development of annotated metagraphs. As components, the cognitive architecture being developed includes machine consciousness, machine subconsciousness, blocks of interaction with the external environment, a goal management block, an emotional control system, a block of social interaction, a block of reflection, an ethics block and a worldview block, a learning block, a monitoring block, blocks of statement and solving problems, self-organization and meta learning block
    corecore