150,680 research outputs found

    Multi-source Pseudo-label Learning of Semantic Segmentation for the Scene Recognition of Agricultural Mobile Robots

    Full text link
    This paper describes a novel method of training a semantic segmentation model for environment recognition of agricultural mobile robots by unsupervised domain adaptation exploiting publicly available datasets of outdoor scenes that are different from our target environments i.e., greenhouses. In conventional semantic segmentation methods, the labels are given by manual annotation, which is a tedious and time-consuming task. A method to work around the necessity of the manual annotation is unsupervised domain adaptation (UDA) that transfer knowledge from labeled source datasets to unlabeled target datasets. Most of the UDA methods of semantic segmentation are validated by tasks of adaptation from non-photorealistic synthetic images of urban scenes to real ones. However, the effectiveness of the methods is not well studied in the case of adaptation to other types of environments, such as greenhouses. In addition, it is not always possible to prepare appropriate source datasets for such environments. In this paper, we adopt an existing training method of UDA to a task of training a model for greenhouse images. We propose to use multiple publicly available datasets of outdoor images as source datasets, and also propose a simple yet effective method of generating pseudo-labels by transferring knowledge from the source datasets that have different appearance and a label set from the target datasets. We demonstrate in experiments that by combining our proposed method of pseudo-label generation with the existing training method, the performance was improved by up to 14.3% of mIoU compared to the best score of the single-source training.Comment: 10 pages, 7 figures, submitted to Machine Vision And Application

    A hybrid approach combining control theory and AI for engineering self-adaptive systems

    Get PDF
    Control theoretical techniques have been successfully adopted as methods for self-adaptive systems design to provide formal guarantees about the effectiveness and robustness of adaptation mechanisms. However, the computational effort to obtain guarantees poses severe constraints when it comes to dynamic adaptation. In order to solve these limitations, in this paper, we propose a hybrid approach combining software engineering, control theory, and AI to design for software self-adaptation. Our solution proposes a hierarchical and dynamic system manager with performance tuning. Due to the gap between high-level requirements specification and the internal knob behavior of the managed system, a hierarchically composed components architecture seek the separation of concerns towards a dynamic solution. Therefore, a two-layered adaptive manager was designed to satisfy the software requirements with parameters optimization through regression analysis and evolutionary meta-heuristic. The optimization relies on the collection and processing of performance, effectiveness, and robustness metrics w.r.t control theoretical metrics at the offline and online stages. We evaluate our work with a prototype of the Body Sensor Network (BSN) in the healthcare domain, which is largely used as a demonstrator by the community. The BSN was implemented under the Robot Operating System (ROS) architecture, and concerns about the system dependability are taken as adaptation goals. Our results reinforce the necessity of performing well on such a safety-critical domain and contribute with substantial evidence on how hybrid approaches that combine control and AI-based techniques for engineering self-adaptive systems can provide effective adaptation

    Experiments on domain adaptation for English-Hindi SMT

    Get PDF
    Statistical Machine Translation (SMT) systems are usually trained on large amounts of bilingual text and monolingual target language text. If a significant amount of out-of-domain data is added to the training data, the quality of translation can drop. On the other hand, training an SMT system on a small amount of training material for given indomain data leads to narrow lexical coverage which again results in a low translation quality. In this paper, (i) we explore domain-adaptation techniques to combine large out-of-domain training data with small-scale in-domain training data for English—Hindi statistical machine translation and (ii) we cluster large out-of-domain training data to extract sentences similar to in-domain sentences and apply adaptation techniques to combine clustered sub-corpora with in-domain training data into a unified framework, achieving a 0.44 absolute corresponding to a 4.03% relative improvement in terms of BLEU over the baseline

    The Six concerns for Separation of Concerns

    Get PDF
    Despite a common agreement on the necessity of the application of the separation of concerns (SOC) principle, there is not yet a consensus for its key issues. The separation of the concerns is usually based on the adopted programming paradigm, the applied method or even the programming language. This paper presents the so-called six ‘C’ properties that can be applied as a guideline for defining and evaluating the approaches that adopt the SOC principle

    Culture and E-Learning: Automatic Detection of a Users’ Culture from Survey Data

    Get PDF
    Knowledge about the culture of a user is especially important for the design of e-learning applications. In the experiment reported here, questionnaire data was used to build machine learning models to automatically predict the culture of a user. This work can be applied to automatic culture detection and subsequently to the adaptation of user interfaces in e-learning

    Холістичний підхід до підготовки ІКТ-компетентних педагогічних кадрів

    Get PDF
    The article intends to explore and estimate the possible pedagogical advantages and potential of cloud computing technology application with aim to increase organizational level, availability and quality of ICT-based learning tools and re-sources. Holistic model of a specialist is proposed and the problems of development of a system of methodological and technological support for elaboration of cloud-based learning environment of educational institution are considered.Cтаття присвячена аналізу і оцінці можливих педагогічних переваг і потенціалу застосування технології хмарних обчислень з метою підвищення організаційного рівня, доступності і якості засобів та ресурсів ІКТ-орієнтованого навчання. Запропонована холістична модель фахівця та висвітлено проблеми розвитку системи методичного та технологічного підтримування процесів розгортання хмаро-орієнтованого навчального середовища освітньої установи
    corecore