80 research outputs found

    Hierarchical and High-Girth QC LDPC Codes

    Full text link
    We present a general approach to designing capacity-approaching high-girth low-density parity-check (LDPC) codes that are friendly to hardware implementation. Our methodology starts by defining a new class of "hierarchical" quasi-cyclic (HQC) LDPC codes that generalizes the structure of quasi-cyclic (QC) LDPC codes. Whereas the parity check matrices of QC LDPC codes are composed of circulant sub-matrices, those of HQC LDPC codes are composed of a hierarchy of circulant sub-matrices that are in turn constructed from circulant sub-matrices, and so on, through some number of levels. We show how to map any class of codes defined using a protograph into a family of HQC LDPC codes. Next, we present a girth-maximizing algorithm that optimizes the degrees of freedom within the family of codes to yield a high-girth HQC LDPC code. Finally, we discuss how certain characteristics of a code protograph will lead to inevitable short cycles, and show that these short cycles can be eliminated using a "squashing" procedure that results in a high-girth QC LDPC code, although not a hierarchical one. We illustrate our approach with designed examples of girth-10 QC LDPC codes obtained from protographs of one-sided spatially-coupled codes.Comment: Submitted to IEEE Transactions on Information THeor

    Check-hybrid GLDPC Codes: Systematic Elimination of Trapping Sets and Guaranteed Error Correction Capability

    Full text link
    In this paper, we propose a new approach to construct a class of check-hybrid generalized low-density parity-check (CH-GLDPC) codes which are free of small trapping sets. The approach is based on converting some selected check nodes involving a trapping set into super checks corresponding to a 2-error correcting component code. Specifically, we follow two main purposes to construct the check-hybrid codes; first, based on the knowledge of the trapping sets of the global LDPC code, single parity checks are replaced by super checks to disable the trapping sets. We show that by converting specified single check nodes, denoted as critical checks, to super checks in a trapping set, the parallel bit flipping (PBF) decoder corrects the errors on a trapping set and hence eliminates the trapping set. The second purpose is to minimize the rate loss caused by replacing the super checks through finding the minimum number of such critical checks. We also present an algorithm to find critical checks in a trapping set of column-weight 3 LDPC code and then provide upper bounds on the minimum number of such critical checks such that the decoder corrects all error patterns on elementary trapping sets. Moreover, we provide a fixed set for a class of constructed check-hybrid codes. The guaranteed error correction capability of the CH-GLDPC codes is also studied. We show that a CH-GLDPC code in which each variable node is connected to 2 super checks corresponding to a 2-error correcting component code corrects up to 5 errors. The results are also extended to column-weight 4 LDPC codes. Finally, we investigate the eliminating of trapping sets of a column-weight 3 LDPC code using the Gallager B decoding algorithm and generalize the results obtained for the PBF for the Gallager B decoding algorithm

    Shortened Array Codes of Large Girth

    Full text link
    One approach to designing structured low-density parity-check (LDPC) codes with large girth is to shorten codes with small girth in such a manner that the deleted columns of the parity-check matrix contain all the variables involved in short cycles. This approach is especially effective if the parity-check matrix of a code is a matrix composed of blocks of circulant permutation matrices, as is the case for the class of codes known as array codes. We show how to shorten array codes by deleting certain columns of their parity-check matrices so as to increase their girth. The shortening approach is based on the observation that for array codes, and in fact for a slightly more general class of LDPC codes, the cycles in the corresponding Tanner graph are governed by certain homogeneous linear equations with integer coefficients. Consequently, we can selectively eliminate cycles from an array code by only retaining those columns from the parity-check matrix of the original code that are indexed by integer sequences that do not contain solutions to the equations governing those cycles. We provide Ramsey-theoretic estimates for the maximum number of columns that can be retained from the original parity-check matrix with the property that the sequence of their indices avoid solutions to various types of cycle-governing equations. This translates to estimates of the rate penalty incurred in shortening a code to eliminate cycles. Simulation results show that for the codes considered, shortening them to increase the girth can lead to significant gains in signal-to-noise ratio in the case of communication over an additive white Gaussian noise channel.Comment: 16 pages; 8 figures; to appear in IEEE Transactions on Information Theory, Aug 200

    Two-Bit Bit Flipping Decoding of LDPC Codes

    Full text link
    In this paper, we propose a new class of bit flipping algorithms for low-density parity-check (LDPC) codes over the binary symmetric channel (BSC). Compared to the regular (parallel or serial) bit flipping algorithms, the proposed algorithms employ one additional bit at a variable node to represent its "strength." The introduction of this additional bit increases the guaranteed error correction capability by a factor of at least 2. An additional bit can also be employed at a check node to capture information which is beneficial to decoding. A framework for failure analysis of the proposed algorithms is described. These algorithms outperform the Gallager A/B algorithm and the min-sum algorithm at much lower complexity. Concatenation of two-bit bit flipping algorithms show a potential to approach the performance of belief propagation (BP) decoding in the error floor region, also at lower complexity.Comment: 6 pages. Submitted to IEEE International Symposium on Information Theory 201

    Novel Code-Construction for (3, k) Regular Low Density Parity Check Codes

    Get PDF
    Communication system links that do not have the ability to retransmit generally rely on forward error correction (FEC) techniques that make use of error correcting codes (ECC) to detect and correct errors caused by the noise in the channel. There are several ECC’s in the literature that are used for the purpose. Among them, the low density parity check (LDPC) codes have become quite popular owing to the fact that they exhibit performance that is closest to the Shannon’s limit. This thesis proposes a novel code-construction method for constructing not only (3, k) regular but also irregular LDPC codes. The choice of designing (3, k) regular LDPC codes is made because it has low decoding complexity and has a Hamming distance, at least, 4. In this work, the proposed code-construction consists of information submatrix (Hinf) and an almost lower triangular parity sub-matrix (Hpar). The core design of the proposed code-construction utilizes expanded deterministic base matrices in three stages. Deterministic base matrix of parity part starts with triple diagonal matrix while deterministic base matrix of information part utilizes matrix having all elements of ones. The proposed matrix H is designed to generate various code rates (R) by maintaining the number of rows in matrix H while only changing the number of columns in matrix Hinf. All the codes designed and presented in this thesis are having no rank-deficiency, no pre-processing step of encoding, no singular nature in parity part (Hpar), no girth of 4-cycles and low encoding complexity of the order of (N + g2) where g2«N. The proposed (3, k) regular codes are shown to achieve code performance below 1.44 dB from Shannon limit at bit error rate (BER) of 10 −6 when the code rate greater than R = 0.875. They have comparable BER and block error rate (BLER) performance with other techniques such as (3, k) regular quasi-cyclic (QC) and (3, k) regular random LDPC codes when code rates are at least R = 0.7. In addition, it is also shown that the proposed (3, 42) regular LDPC code performs as close as 0.97 dB from Shannon limit at BER 10 −6 with encoding complexity (1.0225 N), for R = 0.928 and N = 14364 – a result that no other published techniques can reach
    • …
    corecore