6 research outputs found

    The GW/LT3 VarDial 2016 shared task system for dialects and similar languages detection

    Get PDF
    This paper describes the GW/LT3 contribution to the 2016 VarDial shared task on the identification of similar languages (task 1) and Arabic dialects (task 2). For both tasks, we experimented with Logistic Regression and Neural Network classifiers in isolation. Additionally, we implemented a cascaded classifier that consists of coarse and fine-grained classifiers (task 1) and a classifier ensemble with majority voting for task 2. The submitted systems obtained state-of-the-art performance and ranked first for the evaluation on social media data (test sets B1 and B2 for task 1), with a maximum weighted F1 score of 91.94%

    Native Language Identification on Text and Speech

    Full text link
    This paper presents an ensemble system combining the output of multiple SVM classifiers to native language identification (NLI). The system was submitted to the NLI Shared Task 2017 fusion track which featured students essays and spoken responses in form of audio transcriptions and iVectors by non-native English speakers of eleven native languages. Our system competed in the challenge under the team name ZCD and was based on an ensemble of SVM classifiers trained on character n-grams achieving 83.58% accuracy and ranking 3rd in the shared task.Comment: Proceedings of the Workshop on Innovative Use of NLP for Building Educational Applications (BEA

    The NRC System for Discriminating Similar Languages

    No full text
    We describe the system built by the National Research Council Canada for the \u201dDiscriminating between similar languages\u201d (DSL) shared task. Our system uses various statistical classifiers and makes predictions based on a two-stage process: we first predict the language group, then discriminate between languages or variants within the group. Language groups are predicted using a generative classifier with 99.99% accuracy on the five target groups. Within each group (except English), we use a voting combination of discriminative classifiers trained on a variety of feature spaces, achieving an average accuracy of 95.71%, with per-group accuracy between 90.95% and 100% depending on the group. This approach turns out to reach the best performance among all systems submitted to the open and closed tasks.NRC publication: Ye

    The NRC System for Discriminating Similar Languages

    No full text
    We describe the system built by the National Research Council Canada for the \u201dDiscriminating between similar languages\u201d (DSL) shared task. Our system uses various statistical classifiers and makes predictions based on a two-stage process: we first predict the language group, then discriminate between languages or variants within the group. Language groups are predicted using a generative classifier with 99.99% accuracy on the five target groups. Within each group (except English), we use a voting combination of discriminative classifiers trained on a variety of feature spaces, achieving an average accuracy of 95.71%, with per-group accuracy between 90.95% and 100% depending on the group. This approach turns out to reach the best performance among all systems submitted to the open and closed tasks.NRC publication: Ye
    corecore