2,751 research outputs found

    The design of conservative finite element discretisations for the vectorial modified KdV equation

    Full text link
    We design a consistent Galerkin scheme for the approximation of the vectorial modified Korteweg-de Vries equation. We demonstrate that the scheme conserves energy up to machine precision. In this sense the method is consistent with the energy balance of the continuous system. This energy balance ensures there is no numerical dissipation allowing for extremely accurate long time simulations free from numerical artifacts. Various numerical experiments are shown demonstrating the asymptotic convergence of the method with respect to the discretisation parameters. Some simulations are also presented that correctly capture the unusual interactions between solitons in the vectorial setting

    Differential-Algebraic Equations and Beyond: From Smooth to Nonsmooth Constrained Dynamical Systems

    Get PDF
    The present article presents a summarizing view at differential-algebraic equations (DAEs) and analyzes how new application fields and corresponding mathematical models lead to innovations both in theory and in numerical analysis for this problem class. Recent numerical methods for nonsmooth dynamical systems subject to unilateral contact and friction illustrate the topicality of this development.Comment: Preprint of Book Chapte

    On dual Schur domain decomposition method for linear first-order transient problems

    Full text link
    This paper addresses some numerical and theoretical aspects of dual Schur domain decomposition methods for linear first-order transient partial differential equations. In this work, we consider the trapezoidal family of schemes for integrating the ordinary differential equations (ODEs) for each subdomain and present four different coupling methods, corresponding to different algebraic constraints, for enforcing kinematic continuity on the interface between the subdomains. Method 1 (d-continuity) is based on the conventional approach using continuity of the primary variable and we show that this method is unstable for a lot of commonly used time integrators including the mid-point rule. To alleviate this difficulty, we propose a new Method 2 (Modified d-continuity) and prove its stability for coupling all time integrators in the trapezoidal family (except the forward Euler). Method 3 (v-continuity) is based on enforcing the continuity of the time derivative of the primary variable. However, this constraint introduces a drift in the primary variable on the interface. We present Method 4 (Baumgarte stabilized) which uses Baumgarte stabilization to limit this drift and we derive bounds for the stabilization parameter to ensure stability. Our stability analysis is based on the ``energy'' method, and one of the main contributions of this paper is the extension of the energy method (which was previously introduced in the context of numerical methods for ODEs) to assess the stability of numerical formulations for index-2 differential-algebraic equations (DAEs).Comment: 22 Figures, 49 pages (double spacing using amsart

    Conservative Integrators for Many-body Problems

    Full text link
    Conservative symmetric second-order one-step schemes are derived for dynamical systems describing various many-body systems using the Discrete Multiplier Method. This includes conservative schemes for the nn-species Lotka-Volterra system, the nn-body problem with radially symmetric potential and the nn-point vortex models in the plane and on the sphere. In particular, we recover Greenspan-Labudde's conservative schemes for the nn-body problem. Numerical experiments are shown verifying the conservative property of the schemes and second-order accuracy.Comment: 35 page
    • …
    corecore