751 research outputs found

    The Mouse Genome Database (MGD): from genes to mice—a community resource for mouse biology

    Get PDF
    The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics

    The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics

    Get PDF
    The Mouse Genome Database (MGD) is the community model organism database for the laboratory mouse and the authoritative source for phenotype and functional annotations of mouse genes. MGD includes a complete catalog of mouse genes and genome features with integrated access to genetic, genomic and phenotypic information, all serving to further the use of the mouse as a model system for studying human biology and disease. MGD is a major component of the Mouse Genome Informatics (MGI, http://www.informatics.jax.org/) resource. MGD contains standardized descriptions of mouse phenotypes, associations between mouse models and human genetic diseases, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information. Data are obtained and integrated via manual curation of the biomedical literature, direct contributions from individual investigators and downloads from major informatics resource centers. MGD collaborates with the bioinformatics community on the development and use of biomedical ontologies such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology. Major improvements to the Mouse Genome Database include comprehensive update of genetic maps, implementation of new classification terms for genome features, development of a recombinase (cre) portal and inclusion of all alleles generated by the International Knockout Mouse Consortium (IKMC)

    The Mouse Genome Database: enhancements and updates

    Get PDF
    The Mouse Genome Database (MGD) is a major component of the Mouse Genome Informatics (MGI, http://www.informatics.jax.org/) database resource and serves as the primary community model organism database for the laboratory mouse. MGD is the authoritative source for mouse gene, allele and strain nomenclature and for phenotype and functional annotations of mouse genes. MGD contains comprehensive data and information related to mouse genes and their functions, standardized descriptions of mouse phenotypes, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information including comparative data on mammalian genes. Data for MGD are obtained from diverse sources including manual curation of the biomedical literature and direct contributions from individual investigator’s laboratories and major informatics resource centers, such as Ensembl, UniProt and NCBI. MGD collaborates with the bioinformatics community on the development and use of biomedical ontologies such as the Gene Ontology and the Mammalian Phenotype Ontology. Recent improvements in MGD described here includes integration of mouse gene trap allele and sequence data, integration of gene targeting information from the International Knockout Mouse Consortium, deployment of an MGI Biomart, and enhancements to our batch query capability for customized data access and retrieval

    Mouse Genome Database (MGD) 2019.

    Get PDF
    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the community model organism genetic and genome resource for the laboratory mouse. MGD is the authoritative source for biological reference data sets related to mouse genes, gene functions, phenotypes, and mouse models of human disease. MGD is the primary outlet for official gene, allele and mouse strain nomenclature based on the guidelines set by the International Committee on Standardized Nomenclature for Mice. In this report we describe significant enhancements to MGD, including two new graphical user interfaces: (i) the Multi Genome Viewer for exploring the genomes of multiple mouse strains and (ii) the Phenotype-Gene Expression matrix which was developed in collaboration with the Gene Expression Database (GXD) and allows researchers to compare gene expression and phenotype annotations for mouse genes. Other recent improvements include enhanced efficiency of our literature curation processes and the incorporation of Transcriptional Start Site (TSS) annotations from RIKEN\u27s FANTOM 5 initiative

    Mouse Genome Database (MGD): Knowledgebase for mouse-human comparative biology.

    Get PDF
    The Mouse Genome Database (MGD; http://www.informatics.jax.org) is the community model organism knowledgebase for the laboratory mouse, a widely used animal model for comparative studies of the genetic and genomic basis for human health and disease. MGD is the authoritative source for biological reference data related to mouse genes, gene functions, phenotypes and mouse models of human disease. MGD is the primary source for official gene, allele, and mouse strain nomenclature based on the guidelines set by the International Committee on Standardized Nomenclature for Mice. MGD\u27s biocuration scientists curate information from the biomedical literature and from large and small datasets contributed directly by investigators. In this report we describe significant enhancements to the content and interfaces at MGD, including (i) improvements in the Multi Genome Viewer for exploring the genomes of multiple mouse strains, (ii) inclusion of many more mouse strains and new mouse strain pages with extended query options and (iii) integration of extensive data about mouse strain variants. We also describe improvements to the efficiency of literature curation processes and the implementation of an information portal focused on mouse models and genes for the study of COVID-19

    Disease Ontology: improving and unifying disease annotations across species.

    Get PDF
    Model organisms are vital to uncovering the mechanisms of human disease and developing new therapeutic tools. Researchers collecting and integrating relevant model organism and/or human data often apply disparate terminologies (vocabularies and ontologies), making comparisons and inferences difficult. A unified disease ontology is required that connects data annotated using diverse disease terminologies, and in which the terminology relationships are continuously maintained. The Mouse Genome Database (MGD, http://www.informatics.jax.org), Rat Genome Database (RGD, http://rgd.mcw.edu) and Disease Ontology (DO, http://www.disease-ontology.org) projects are collaborating to augment DO, aligning and incorporating disease terms used by MGD and RGD, and improving DO as a tool for unifying disease annotations across species. Coordinated assessment of MGD\u27s and RGD\u27s disease term annotations identified new terms that enhance DO\u27s representation of human diseases. Expansion of DO term content and cross-references to clinical vocabularies (e.g. OMIM, ORDO, MeSH) has enriched the DO\u27s domain coverage and utility for annotating many types of data generated from experimental and clinical investigations. The extension of anatomy-based DO classification structure of disease improves accessibility of terms and facilitates application of DO for computational research. A consistent representation of disease associations across data types from cellular to whole organism, generated from clinical and model organism studies, will promote the integration, mining and comparative analysis of these data. The coordinated enrichment of the DO and adoption of DO by MGD and RGD demonstrates DO\u27s usability across human data, MGD, RGD and the rest of the model organism database community. Dis Model Mech 2018 Mar 12;11(3):dmm032839

    Mouse Genome Informatics (MGI): latest news from MGD and GXD.

    Get PDF
    The Mouse Genome Informatics (MGI) database system combines multiple expertly curated community data resources into a shared knowledge management ecosystem united by common metadata annotation standards. MGI\u27s mission is to facilitate the use of the mouse as an experimental model for understanding the genetic and genomic basis of human health and disease. MGI is the authoritative source for mouse gene, allele, and strain nomenclature and is the primary source of mouse phenotype annotations, functional annotations, developmental gene expression information, and annotations of mouse models with human diseases. MGI maintains mouse anatomy and phenotype ontologies and contributes to the development of the Gene Ontology and Disease Ontology and uses these ontologies as standard terminologies for annotation. The Mouse Genome Database (MGD) and the Gene Expression Database (GXD) are MGI\u27s two major knowledgebases. Here, we highlight some of the recent changes and enhancements to MGD and GXD that have been implemented in response to changing needs of the biomedical research community and to improve the efficiency of expert curation. MGI can be accessed freely at http://www.informatics.jax.org

    The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse

    Get PDF
    The Mouse Genome Database (MGD, http://www.informatics.jax.org) is the international community resource for integrated genetic, genomic and biological data about the laboratory mouse. Data in MGD are obtained through loads from major data providers and experimental consortia, electronic submissions from laboratories and from the biomedical literature. MGD maintains a comprehensive, unified, non-redundant catalog of mouse genome features generated by distilling gene predictions from NCBI, Ensembl and VEGA. MGD serves as the authoritative source for the nomenclature of mouse genes, mutations, alleles and strains. MGD is the primary source for evidence-supported functional annotations for mouse genes and gene products using the Gene Ontology (GO). MGD provides full annotation of phenotypes and human disease associations for mouse models (genotypes) using terms from the Mammalian Phenotype Ontology and disease names from the Online Mendelian Inheritance in Man (OMIM) resource. MGD is freely accessible online through our website, where users can browse and search interactively, access data in bulk using Batch Query or BioMart, download data files or use our web services Application Programming Interface (API). Improvements to MGD include expanded genome feature classifications, inclusion of new mutant allele sets and phenotype associations and extensions of GO to include new relationships and a new stream of annotations via phylogenetic-based approaches

    The Mouse Genome Database (MGD): mouse biology and model systems

    Get PDF
    The Mouse Genome Database, (MGD, http://www.informatics.jax.org/), integrates genetic, genomic and phenotypic information about the laboratory mouse, a primary animal model for studying human biology and disease. MGD data content includes comprehensive characterization of genes and their functions, standardized descriptions of mouse phenotypes, extensive integration of DNA and protein sequence data, normalized representation of genome and genome variant information including comparative data on mammalian genes. Data within MGD are obtained from diverse sources including manual curation of the biomedical literature, direct contributions from individual investigator's laboratories and major informatics resource centers such as Ensembl, UniProt and NCBI. MGD collaborates with the bioinformatics community on the development of data and semantic standards such as the Gene Ontology (GO) and the Mammalian Phenotype (MP) Ontology. MGD provides a data-mining platform that enables the development of translational research hypotheses based on comparative genotype, phenotype and functional analyses. Both web-based querying and computational access to data are provided. Recent improvements in MGD described here include the association of gene trap data with mouse genes and a new batch query capability for customized data access and retrieval

    The Alliance of Genome Resources: Building a Modern Data Ecosystem for Model Organism Databases.

    Get PDF
    Model organisms are essential experimental platforms for discovering gene functions, defining protein and genetic networks, uncovering functional consequences of human genome variation, and for modeling human disease. For decades, researchers who use model organisms have relied on Model Organism Databases (MODs) and the Gene Ontology Consortium (GOC) for expertly curated annotations, and for access to integrated genomic and biological information obtained from the scientific literature and public data archives. Through the development and enforcement of data and semantic standards, these genome resources provide rapid access to the collected knowledge of model organisms in human readable and computation-ready formats that would otherwise require countless hours for individual researchers to assemble on their own. Since their inception, the MODs for the predominant biomedical model organisms [Mus sp (laboratory mouse), Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, Danio rerio, and Rattus norvegicus] along with the GOC have operated as a network of independent, highly collaborative genome resources. In 2016, these six MODs and the GOC joined forces as the Alliance of Genome Resources (the Alliance). By implementing shared programmatic access methods and data-specific web pages with a unified look and feel, the Alliance is tackling barriers that have limited the ability of researchers to easily compare common data types and annotations across model organisms. To adapt to the rapidly changing landscape for evaluating and funding core data resources, the Alliance is building a modern, extensible, and operationally efficient knowledge commons for model organisms using shared, modular infrastructure
    corecore