25,236 research outputs found

    Migrating Packet Dropping in Mobile Ad-hoc Network Based on Modified ACK-Based Scheme

    Get PDF
    Dynamic topology and infrastructure less behavior provide a great facility for adhoc network. Such facility generates easy connection of adhoc network and provides node mobility without loss of connection. In such ability packet dropping is a serious challenge for quality performance of adhoc network. The adhoc network suffered some serious security threats such attacks are black hole attack, malicious attack and worm hole attack that attack occurred a packet dropping problem in adhoc network. For the minimization of attack and packet dropping various authors built various method such method is node authentication, passive feedback scheme, ack-based scheme, reputation based scheme and incentive based scheme, ack-based scheme suffered a problem of massive overhead due to extra acknowledgment  packet and it also suffered decision ambiguity if the requested node refuse to send back Acknowledgment. In this dissertation we uses modified ack-based scheme using secure channel for overcoming the problem of decision ambiguity for requested node, improved node authentication and minimize packet dropping in adhoc network. Keywords mobile ad-hoc network, routing misbehaviour, AODV routing protocol, ACK based approach, network security

    “Reducing Packet Loss in MANET”

    Get PDF
    Dynamic topology and infrastructure less behaviour provide a great facility for adhoc network. Such facility generates easy connection of adhoc network and provides node mobility without loss of connection. In such ability packet dropping is a serious challenge for quality performance of adhoc network. The adhoc network suffered some serious security therats such attacks are black hole attack, malicious attack and worm hole attack that attack occurred a packet dropping problem in adhoc network. For the minimization of attack and packet dropping various authors built various method such method is node authentication, passive feedback scheme, ack-based scheme,reputation based scheme and incentive based scheme, ack-based scheme suffered a problem of massive overhead due to extra acknowledgment  packet and it also suffered decision ambiguity if the requested node refuse to send back Acknowledgment. In this dissertation we uses modified ack-based scheme using secure channel for overcoming the problem of decision ambiguity for requested node, improved node authentication and minimize packet dropping in adhoc network. Keywords- mobile ad-hoc network, routing misbehaviour, AODV routing protocol, ACK based approach, network security

    On the Routing and Location of Mobile Facilities

    Get PDF
    Mobile facilities play important roles in many applications, including health care, public services, telecommunications, and humanitarian relief logistics. While mobile facilities operate in different manners, it is generally considered important for a decision maker to be capable of efficiently deploying mobile facilities. This dissertation discusses two problems on the use of mathematical models and algorithms for determining efficient deployments of mobile facilities. First we discuss the mobile facility routing problem (MFRP), which effectively models the operations of a wide class of mobile facilities that have significant relocation times and cannot service demand during transit. Chapter 2 discusses the single MFRP (SMFRP), which is to determine a route for a single mobile facility to maximize the demand serviced during a continuous-time planning horizon. We present two exact algorithms, and supporting theoretical results, when the rate demand is generated is modeled using piecewise constant functions. The first is a dynamic program that easily extends to solve cases where the demand functions take on more general forms. The second exact algorithm has a polynomial worst-case runtime. Chapter 3 discusses the MFRP, which addresses the situation when multiple mobile facilities are operating in an area. In such a case, mobile facilities at different locations may provide service to a single event, necessitating the separation of the events generating demand from the locations mobile facilities may visit in our model. We show that the MFRP is NP-hard, present several heuristics for generating effective routes, and extensively test these heuristics on a variety of simulated data sets. Chapter 4 discusses formulations and local search heuristics for the (minisum) mobile facility location problem (MFLP). This problem is to relocate a set of existing facilities and assign clients to these facilities while minimizing the movement costs of facilities and clients. We show that in a certain sense the MFLP generalizes the uncapacitated facility location and p-median problems. We observe that given a set of facility destinations, the MFLP decomposes into two polynomially solvable subproblems. Using this decomposition observation, we propose a new, compact IP formulation and novel local search heuristics. We report results from extensive computational experiments

    Physiology-Aware Rural Ambulance Routing

    Full text link
    In emergency patient transport from rural medical facility to center tertiary hospital, real-time monitoring of the patient in the ambulance by a physician expert at the tertiary center is crucial. While telemetry healthcare services using mobile networks may enable remote real-time monitoring of transported patients, physiologic measures and tracking are at least as important and requires the existence of high-fidelity communication coverage. However, the wireless networks along the roads especially in rural areas can range from 4G to low-speed 2G, some parts with communication breakage. From a patient care perspective, transport during critical illness can make route selection patient state dependent. Prompt decisions with the relative advantage of a longer more secure bandwidth route versus a shorter, more rapid transport route but with less secure bandwidth must be made. The trade-off between route selection and the quality of wireless communication is an important optimization problem which unfortunately has remained unaddressed by prior work. In this paper, we propose a novel physiology-aware route scheduling approach for emergency ambulance transport of rural patients with acute, high risk diseases in need of continuous remote monitoring. We mathematically model the problem into an NP-hard graph theory problem, and approximate a solution based on a trade-off between communication coverage and shortest path. We profile communication along two major routes in a large rural hospital settings in Illinois, and use the traces to manifest the concept. Further, we design our algorithms and run preliminary experiments for scalability analysis. We believe that our scheduling techniques can become a compelling aid that enables an always-connected remote monitoring system in emergency patient transfer scenarios aimed to prevent morbidity and mortality with early diagnosis treatment.Comment: 6 pages, The Fifth IEEE International Conference on Healthcare Informatics (ICHI 2017), Park City, Utah, 201

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table

    On the use of biased-randomized algorithms for solving non-smooth optimization problems

    Get PDF
    Soft constraints are quite common in real-life applications. For example, in freight transportation, the fleet size can be enlarged by outsourcing part of the distribution service and some deliveries to customers can be postponed as well; in inventory management, it is possible to consider stock-outs generated by unexpected demands; and in manufacturing processes and project management, it is frequent that some deadlines cannot be met due to delays in critical steps of the supply chain. However, capacity-, size-, and time-related limitations are included in many optimization problems as hard constraints, while it would be usually more realistic to consider them as soft ones, i.e., they can be violated to some extent by incurring a penalty cost. Most of the times, this penalty cost will be nonlinear and even noncontinuous, which might transform the objective function into a non-smooth one. Despite its many practical applications, non-smooth optimization problems are quite challenging, especially when the underlying optimization problem is NP-hard in nature. In this paper, we propose the use of biased-randomized algorithms as an effective methodology to cope with NP-hard and non-smooth optimization problems in many practical applications. Biased-randomized algorithms extend constructive heuristics by introducing a nonuniform randomization pattern into them. Hence, they can be used to explore promising areas of the solution space without the limitations of gradient-based approaches, which assume the existence of smooth objective functions. Moreover, biased-randomized algorithms can be easily parallelized, thus employing short computing times while exploring a large number of promising regions. This paper discusses these concepts in detail, reviews existing work in different application areas, and highlights current trends and open research lines
    • 

    corecore