
ABSTRACT

Title of dissertation: ON THE ROUTING AND LOCATION
OF MOBILE FACILITIES

Russell David Halper
Doctor of Philosophy, 2010

Dissertation directed by: Professor Subramanian Raghavan
AMSC Program
R.H. Smith School of Business

Mobile facilities play important roles in many applications, including health

care, public services, telecommunications, and humanitarian relief logistics. While

mobile facilities operate in different manners, it is generally considered important

for a decision maker to be capable of efficiently deploying mobile facilities. This dis-

sertation discusses two problems on the use of mathematical models and algorithms

for determining efficient deployments of mobile facilities.

First we discuss the mobile facility routing problem (MFRP), which effectively

models the operations of a wide class of mobile facilities that have significant reloca-

tion times and cannot service demand during transit. Chapter 2 discusses the single

MFRP (SMFRP), which is to determine a route for a single mobile facility to max-

imize the demand serviced during a continuous-time planning horizon. We present

two exact algorithms, and supporting theoretical results, when the rate demand is

generated is modeled using piecewise constant functions. The first is a dynamic pro-

gram that easily extends to solve cases where the demand functions take on more

general forms. The second exact algorithm has a polynomial worst-case runtime.

Chapter 3 discusses the MFRP, which addresses the situation when multiple

mobile facilities are operating in an area. In such a case, mobile facilities at differ-

ent locations may provide service to a single event, necessitating the separation of

the events generating demand from the locations mobile facilities may visit in our

model. We show that the MFRP is NP-hard, present several heuristics for generat-

ing effective routes, and extensively test these heuristics on a variety of simulated

data sets.

Chapter 4 discusses formulations and local search heuristics for the (minisum)

mobile facility location problem (MFLP). This problem is to relocate a set of existing

facilities and assign clients to these facilities while minimizing the movement costs

of facilities and clients. We show that in a certain sense the MFLP generalizes the

uncapacitated facility location and p-median problems. We observe that given a

set of facility destinations, the MFLP decomposes into two polynomially solvable

subproblems. Using this decomposition observation, we propose a new, compact

IP formulation and novel local search heuristics. We report results from extensive

computational experiments.

ON THE ROUTING AND LOCATION OF MOBILE FACILITIES

by

Russell David Halper

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2010

Advisory Committee:
Professor Subramanian Raghavan, Chair/Advisor
Professor Bruce Golden
Professor Brian Hunt
Professor Elise Miller-Hooks, Dean’s Representative
Professor Konstantina Trivisa

c© Copyright by
Russell David Halper

2010

Acknowledgments

The journey that led to this dissertation would not have been possible without

the generous support and encouragement of many people.

First and foremost, I would like to thank my advisor Dr. S. “Raghu” Raghavan

for the countless hours he has spent with me over the past several years working

on this research. Although my name appears as the sole author, this dissertation

would not have been possible without his many contributions. While I doubt I can

ever find the proper words to adequately express my sincere gratitude, his insight,

guidance, and encouragement have been invaluable throughout my graduate career.

I am grateful to have benefitted throughout graduate school from working

with a number of outstanding mentors. Dr. Eric Harder, Dr. Brian Hunt, and

Dr. Jim Yorke taught me a great deal about conducting and publishing research

while working on our paper, “Stability of TCP Dynamics in Large Data Networks”.

While the process of writing my first paper was long and challenging, they pushed

me to accomplish what I never could have done on my own. Dr. Richard Wong and

the members of the UPS Operations Research Group taught me much about apply-

ing operations research (O.R.) techniques in industry during my internship at UPS.

Rich has been a tremendous resource and provided excellent guidance throughout

my graduate career. Interning with Dr. Marcelo Torres and the Load Balancing

Group at Akamai Technologies also proved to be an invaluable experience that I will

continue to benefit from for years to come. Marcelo has proven to be an outstanding

mentor, a good friend, and perhaps most importantly, a true soccer fan. Dr. Bruce

ii

Golden has taught me many valuable insights throughout my graduate career in

his courses and during numerous personal conversations. Dr. Michael Ball taught

me the “lighter” side of O.R. while working on publishing our paper, “Scramble

Teams for the Pinehurst Terrapin Classic”. As head of the AMSC program, Dr.

Konstantina Trivisa has been a constant source of encouragement. Both she and

Alverda McCoy have helped me tremendously to navigate through the AMSC Pro-

gram. Dr. Elise Miller-Hooks has my gratitude for graciously taking the time out

of her busy schedule to serve on my committee.

I am fortunate to have many close and trustworthy friends who provided en-

tertainment, encouragement, and emotional support throughout graduate school.

Matt and Caitlin Hoffman have proven to be true friends over the past several

years. Matt has been a great roommate throughout graduate school. Experiencing

Matt and Caitlin’s relationship develop has been one of the highlights of my gradu-

ate career. Jim Keiser was always there to provide inspiration and encouragement

through the more difficult phases of graduate school. Justin Draa and the Draa fam-

ily have been beyond supportive throughout my graduate career, and have helped

me to remember the community I grew up in back home in California. I would

also like to thank Lisa Greenfield, Gahl Crane, Matt Harnack, Margaret Rice, Ju-

liana Belding, Leigh Anne Scarborough, Beth McLaughlin, Kevin Wilson, Damon

Gulczynski, Carter Price, Amy Finkbiner, and the members of the Radicals soccer

team. The many memorable times we have spent together over the past several

years have made graduate school far more tolerable.

I am grateful for the love of my family. Since moving to Maryland, the Harrises

iii

have been beyond warm and welcoming. Between lunches with Andy, beer making

with Rick, and numerous (and delicious) home cooked family meals, it has been

a true pleasure getting to know them better over the past several years. I would

like to thank my grandmother, Ruth Halper, who has sent me a constant supply of

biscotti and rugula that fueled much of this dissertation. Last but in no way least,

I would like to thank my mom, Cathy Weiner, who was always there to help me

through the emotional trials and tribulations of graduate school, perhaps more than

anyone else.

iv

CONTENTS

List of Abbreviations . xiv

1. Introduction . 1
1.1 Modeling Mobile Facility Operations 4
1.2 Overview of Dissertation Research . 6

2. The Single Mobile Facility Routing Problem 10
2.1 Introduction . 10
2.2 Problem Description . 14

2.2.1 An Example of the SMFRP. 18
2.2.2 Related Work . 19

2.3 The Schedule Resolution Dynamic Program and Computing an Op-
timal Route . 20
2.3.1 An Example of Finding an Optimal Route in a Candidate

Sequence. 24
2.3.2 Description of the SRDP . 32
2.3.3 Our Implementation of the SRDP 39
2.3.4 Runtime of the SRDP . 41
2.3.5 Reducing the Runtime of the SRDP on a Master Candidate

Sequence . 47
2.4 Characteristics of Optimal Routes . 51

2.4.1 IP Formulation . 55
2.5 Finding an Optimal Route for a Mobile Facility in Polynomial Time . 56
2.6 Computational Experience . 60
2.7 Solving Variants of the SMFRP . 62

2.7.1 The Addition of a Depot . 63
2.7.2 Applying the SMFRP in a Stochastic Environment 63
2.7.3 Other Types of Moment Demand Functions 64
2.7.4 Addition of Relocation Costs 68

2.8 Conclusion . 69

3. The Mobile Facility Routing Problem . 70
3.1 Introduction . 70
3.2 The Mobile Facility Routing Problem 72

3.2.1 Formulating the MFRP as an Infinite Dimensional Mixed In-
teger Program. 76

3.2.2 Related Work . 77

3.2.3 Computational Complexity of the MFRP 80
3.3 Heuristics for the MFRP . 82

3.3.1 Demand Assignment . 85
3.3.2 Sequential Routing for the MFRP 87
3.3.3 Generating Routes with an Insertion Heuristic 88
3.3.4 Local Search for the MFRP 90

3.4 Computational Results . 98
3.4.1 The Sequential Routing Heuristic vs. the Insertion Heuristic . 103
3.4.2 Mobile Facilities vs. Fixed Facilities 104
3.4.3 Moving Mobile Facilities to Arrive or Depart only at Critical

Times . 111
3.5 Conclusion . 118

4. Minimizing Total Movement in Mobile Facility Location 120
4.1 Introduction . 120
4.2 Problem Description . 122

4.2.1 Related Work . 123
4.2.2 IP Formulations . 127
4.2.3 Decomposing the MFLP . 131

4.3 Local Search for the MFLP . 133
4.3.1 n-OptSwap Local Search . 137
4.3.2 n-SmartSwap Local Search . 143

4.4 A New Framework for the MFLP that generalizes the p-Median and
Uncapacitated Facility Location Problems 145

4.5 Computational Results . 149
4.6 Lagrangian Heuristics for the MFLP 162
4.7 Conclusion . 164

5. Concluding Remarks and Future Research 165
5.1 The SMFRP . 165
5.2 The MFRP . 167
5.3 The MFLP . 169

vi

LIST OF TABLES

2.1 Each row in this table gives the averaged results from 25 data sets
generated with the same parameters. Rows containing results from
realistic data sets are labeled with the letter ‘R’ followed by a number
identifying the data sets. Similarly, the rows containing mathemati-
cally challenging data sets are labeled with the letters ‘MC’ followed
by a number identifying the data sets. The second and third columns
give the runtime in seconds of SMFLPA and the SRDP. The average
demand serviced in each scenario is in the rightmost column. 62

3.1 Performance of the sequential routing heuristic with different sort-
ing orders. Each row displays the averaged results from either 40
mathematically challenging data sets or 25 realistic data sets. 101

3.2 Performance of the insertion heuristic with different sorting orders.
Each row displays the averaged results from either 25 realistic sce-
narios or 40 mathematically challenging scenarios. 102

3.3 Performance of the sequential routing heuristic with and without local
search on the realistic data sets. Each row displays the averaged
results from 25 data sets. The maximum, minimum, and median
improvement found by local search is given for each group of 25 data
sets. 105

3.4 Performance of the sequential routing heuristic with and without lo-
cal search on the mathematically challenging data sets. Each row
displays the averaged results from 40 data sets. The maximum, min-
imum, and median improvement found by local search is given for
each group of 40 data sets. 105

3.5 Performance of the insertion heuristic with and without local search
on the realistic data sets. Each row displays the averaged results from
25 data sets. The maximum, minimum, and median improvement
found by local search is given for each group of 25 data sets. 106

3.6 Performance of the insertion heuristic with and without local search
on the mathematically challenging data sets. Each row displays the
averaged results from 40 data sets. The maximum, minimum, and
median improvement found by local search is given for each group of
40 data sets. 106

3.7 A comparison of the total demand serviced in the optimal static solu-
tion and in the solution to the MFRP generated with the sequential
routing heuristic with local search. Each row contains the averaged
results of either 40 mathematically challenging data sets, or 25 “real-
istic” data sets. The maximum, minimum, and median improvement
for the data sets in each row is displayed, as well as the proportion
of data sets on which the heuristic solution outperforms the optimal
static solution. 110

3.8 A comparison of the demand serviced by solutions obtained with the
MIP where mobile facilities must either depart from or arrive at any
location at during a predetermined discrete set of times, and the de-
mand serviced in the solutions generated by the sequential routing
heuristic with local search for the MFRP. Each row displays the re-
sults from a single data set. When the MIP was solved to optimality,
solution gap of 0.00% is shown. 117

4.1 A comparison of IP1 and IP2. 130

4.2 The number of vertices, facilities and clients in each of our MFLP
data sets. 151

4.3 Above shows the size of each data set, and gives a comparison of the
performance of CPLEX when solving IP1 and IP2, and the LP-IP
ratio found by solving the LP relaxation of IP2 (LP2). An entry
“O.O.M.” indicates CPLEX ran out of memory when attempting to
solve the corresponding IP. An entry “D.N.L” indicates CPLEX could
not load the problem into memory. The runtimes (RT) are displayed
in seconds. 152

4.4 The optimality gap for each heuristic as well as the runtime (RT) in
seconds of each heuristic with n = 1, and of IP2 for each of our 40
MFLP instances. The entries “O.O.M” indicate that IP2 could not be
solved because CPLEX ran out of memory. An asterisk indicates the
gap was calculated using the optimal solution to the LP relaxation of
IP2 as a lower bound. 155

viii

4.5 The optimality gap and runtime in seconds of 1-SmartSwap and the
runtime in seconds of CPLEX when solving IP2 for variants 1 through
4 of the first twenty instances. The instance is listed on the left hand
side and the variant is listed on top. 157

4.6 The optimality gap and runtime in seconds of 1-SmartSwap and the
runtime in seconds of CPLEX when solving IP2 for variants 1 through
4 of the second twenty instances. The average results from all forty
instance is also presented in the last row. The instance is listed on the
left hand side and the variant is listed on top. An asterisk indicates
the gap was calculated using the optimal solution to the LP relaxation
of IP2 as a lower bound. 158

4.7 The optimality gap and runtime of 2-SmartSwap on (variant 3 of)
each data set. 2-SmartSwap was initialized with the solution found
by 1-SmartSwap. The runtime of 2-SmartSwap was limited to two
hours. If 2-SmartSwap could not terminate in two hours, the best
solution found so far in the current iteration was implemented and
the facility assignment subproblem was resolved one final time. An
asterisk indicates the gap was calculated with the solution to the LP
relaxation of IP2 as a lower bound. 160

4.8 The Performance of 2-OptSwap on (variant 3 of) the first nine data
sets. 161

ix

LIST OF FIGURES

2.1 Examples of demand profiles for two locations, 1 and 2. In this ex-
ample, the planning horizon is [0, 10]. 18

2.2 Above, Panel (a) gives examples of moment demand functions for
three locations. The corresponding remaining demand functions for
each location are given in Panel (b). The graphs are color coded by
locations. 25

2.3 Since location 3 is the last location in the candidate sequence, the
stop strategy function is r3(t) = (F3(t), 3). 27

2.4 Panel (a) shows (max2(t), argmax2(t)). Panel (b) shows the stop
strategy functions for Location 2. The function max2(t) in Panel (a)
and r12(t) in Panel (b) are represented by height, while argmax2(t) in
Panel (a) and r22(t) Panel (b) are represented by line style. 28

2.5 Panel (a) shows (max1(t), argmax1(t)). Panel (b) shows the stop
strategy function for Location 1. The functions max1(t) in Panel (a)
and r11(t) in Panel (b) are represented by height, while argmax1(t) in
Panel (a) and r21(t) Panel (b) are represented by line style. 31

2.6 An example where the mobile facility neither departs a location or
arrives at a location at a critical time. Here, the mobile facility de-
parts location ln at time τn and arrives at location ln+1 at time σn+1.
Notice that in this example, since fln(τn)− fln+1(σn+1) = 0, an equal
amount of demand is captured if the mobile facility departs location
ln at time τ̃n and arrives at location 2 at the critical time, σ̃n+1. . . . 52

2.7 The routing graph for routing a single mobile facility from the event
points and locations from Figure 2.1. Nodes vstart and vend are ex-
plicitly labeled. There is one node in the upper row for each time in
S1 and one node in the bottom row for each time in S2. A timeline is
drawn below for reference. The node for each critical time are above
that point on the timeline. Each arc with nonzero length is labeled.
Unlabeled arcs have length zero. 57

3.1 Panel (a) shows a configuration of the locations and event points.
Event points are represented with squares and locations are repre-
sented with circles. The locations are positioned in a straight line
with the travel times between neighboring locations shown below the
dashed arrows. A solid line connects each location to each event point
it can cover. Panel (b) displays the moment demand function, de(t),
for each event point in the configuration. 74

3.2 An example of an exchange in a local search algorithm. Boxes above
each timeline each represent a stop along a route. The solid black box
represents a stop moved from route r1 to route r2. The demand lost
in the exchange is shaded by horizontal and vertical crossing lines.
The demand added in the exchange is shaded with diagonal crossing
lines. 93

3.3 An example of the demand profile of a single event point from the
third types of scenarios for three different values of λ. In all three
graphs, De = 10, T = 10, and te = 4. Panel 3.3(a) displays the rate
demand is generated at the event point for λ = 0.25. Panel 3.3(b)
displays the rate demand is generated at the same event point for
λ = 0.50. Panel 3.3(c) displays the rate demand is generated at the
same event point for λ = 1. 112

3.4 Results from four scenarios of the third type. The horizontal line
displays the amount of demand serviced in the optimal solution to
the static problem, which is equal for every value of λ. The second
curve displays the demand serviced in the solution to the MFRP
generated by the sequential routing heuristic with local search for
several scenarios as λ takes on values between 0 and 1. 113

xi

4.1 An example of 2-Swap local search. Panel 4.1(a) gives the configu-
ration of the graph. Clients and facilities begin, respectively, at the
vertices labeled with their weights ui and wj. Panel 4.1(b) gives an
initial feasible solution with cost 20. Here, Facility 1 and Client 1
travel to Vertex a, Facility 2 and Client 2 travel to Vertex d, and
Facility 3 and Client 3 travel to Vertex e. Panel 4.1(c) shows an ex-
ample of a feasible solution in the neighborhood explored by 2-Swap
local search generated by the first type of operation. Here, Facility 2
which had Vertex a as its destination is instead moved to Vertex c,
and Facility 3 which had Vertex d as its destination is instead moved
to Vertex b. The cost of this solution is 16. Panel 4.1(d) shows an-
other solution in the neighborhood explored by 2-Swap resulting from
the second type of operation where the destinations of Facilities 1 and
2 are permuted. The cost of this solution is 15. 2-Swap local search
explores the neighborhood defined by all such operations and selects
the solution in the neighborhood with the lowest cost. 135

4.2 An example of an MFLP instance with an arbitrarily large locality
gap. Weights are shown for each client. Each facility has weight 1
and each edge has length 1. 136

4.3 An example of how solutions in the neighborhood explored by 2-
OptSwap are generated. Panel 4.3(a) gives an initial solution where
Z = {a, d, e} with cost 15. Unlike 2-Swap local search, 2-OptSwap
would only see the solution in Figure 4.1(b) if it is initialized with
that solution, since the facility assignment subproblem is not solved
optimally in that solution. Panel 4.3(b) shows the facility assignment
subproblem that is solved by 2-OptSwap when a and d in Z are
replaced with b and c. Panel 4.3(c) displays the solution found after
solving the facility assignment subproblem. The cost of this solution
is 12. 2-OptSwap explores all solutions in the neighborhood and
selects the one with the least cost. 139

4.4 An example of how 2-SmartSwap generates solutions in its local
search neighborhood during Step 2. Starting with the initial solu-
tion from Figure 4.1(b) where Z = {a, d, e}, the pictures here display
how the solution in the neighborhood is computed by replacing a
and d in Z with b and c. Panel 4.4(a) displays the matching prob-
lem to be solved during Step 2 of 2-SmartSwap between facilities 2
and 3 and vertices b and c. Panel 4.4(b) displays the solution found
by computing this assignment. The particular member of the search
neighborhood found has cost 14. 2-SmartSwap explores all solutions
in the neighborhood and selects the one with the least cost. 144

xii

4.5 An example of transforming the MFLP into the more general frame-
work. Panel 4.5(a) shows an instance of the MFLP on a graph
G(V,E), while Panel 4.5(b) shows the same instance in the new
framework. In this new graph, F is the lone vertex in the top row, V
contains vertices a, b, c, and d in the second row, and C contains the
two vertices in the bottom row. 146

4.6 Plots of the optimality gaps and runtimes from Table 4.3, Table 4.4,
Table 4.7, and Table 4.8. Panel 4.6(a) gives a comparison of the
optimality gap of the computational results presented for the local
search heuristics. Panel 4.6(b) gives a comparison of the runtimes on
a logscale of the computational results presented on the local search
heuristics and the runtimes of CPLEX when solving IP1 and IP2. . . 162

xiii

List of Abbreviations

AMSC Applied Math and Scientific Computation Program
COLT Cell-Site-On-Light-Trucks
COW Cell-Site-On-Wheels
D.N.L. Did Not Load
IP Integer Program
IDMIP Infinite Dimensional Mixed Integer Program
LP Linear Program
MC “Mathematically Challenging” Data Set
MCLP Maximum Covering Location Problem
MFLP Maximum Total Movement Mobile Facility
MFRP Mobile Facility Routing Problem
MIP Mixed Integer Program

Location Problem
O.O.M Out of Memory
R “Realistic” Data Set
RT Runtime
R The Set of Real Numbers
SMFLPA Single Mobile Facility Longest Path Algorithm
SMFRP Single Mobile Facility Routing Problem
SRDP Schedule Resolution Dynamic Program

xiv

1. INTRODUCTION

Mobile facilities are used to provide many different services in a diverse set

of fields, including humanitarian relief logistics, telecommunications, health care,

warehouse and distribution center location, military logistics and national security,

and public services. The term “mobile facility” has no single definition. Rather, the

term “mobile facility” can be used to refer to any number of different facilities, each

having their own operational characteristics. Typically, a mobile facility is some

type of portable facility or vehicle capable of being repositioned to provide a service

at one or more locations. The manner in which mobile facilities provide service and

may be repositioned varies substantially between different types of mobile facilities.

Accordingly, there is a growing body of work studying a number of diverse prob-

lems dealing with mobile facility location. This dissertation adds to this discourse,

presenting novel research on two problems on the efficient deployment of mobile

facilities.

One popular use of mobile facilities is in humanitarian relief logistics. In

this field, mobile facilities are often used to provide services to people afflicted by

manmade and natural disasters. For example, mobile communications facilities

can be brought in to provide communications capabilities to responders and to

individuals affected by the disaster. In addition, mobile kitchens, mobile health care

clinics, and even mobile laundry facilities are sometimes employed in such situations.

Relief organization also may model the problem of determining distribution points

of relief supplies during a disaster as a mobile facility problem. In such a context,

the facility moved in a model could represent relief supplies or equipment that are

to be relocated from a warehouse to a distribution point. Modeling problems in

humanitarian relief logistics as problems in relocating mobile facilities also gives the

flexibility to plan for the relocation of facilities as the demand for service changes

temporally and spatially.

Another area of humanitarian relief logistics where mobile facilities are used

is in providing some types of services to populations in developing countries and in

rural areas. For example, mobile medical clinics and mobile vaccination clinics are

used to provide health care to individuals who would not otherwise have easy access

to care. This lack of access may be because these individuals live in rural areas,

far from the nearest hospital. Alternatively, these individuals may be in developing

countries where access to health care is limited by the availability of care, or because

of limited transportation options.

Mobile facilities are also used in other areas of health care to provide many

types of services to individuals who might otherwise not be able to access care, or

to encourage people to seek care by making access to care more convenient. Mobile

health clinics, mobile mammograms, mobile hearing testing stations, and Red Cross

blood collection buses are all examples of mobile facilities in common use.

Mobile facilities are deployed by many governments and nonprofit organiza-

tions in more urban settings. For example, mobile post offices are used to provide

2

postal service in busy urban areas that are far from a traditional, brick-and mortar

post office. Mobile libraries are another example of mobile facilities used in urban

areas. Researchers have studied the re-deployment of ambulances [28, 39] and other

public service vehicles [34, 42] to provide sufficient levels of service when other pub-

lic service vehicles are responding to an event. In this context, each ambulance, or

other service vehicle, may be considered a mobile facility that is capable of traveling

to a location to provide a service upon request. Brotcorne et al. [9] give a survey

on past research in ambulance location and relocation models.

In private industry, a number of problems may be modeled as problems in

deploying mobile facilities. For example, a company may have warehouse or distri-

bution centers that it may want to relocate over some planning horizon to minimize

costs. Another example is given a number of factories, the problem of determining

the location of a single distribution center for each factory. In this context, the dis-

tribution center may be considered abstractly as a mobile facility that must travel

from the factory to the location of the distribution center. Cellular telephone service

providers often deploy mobile facilities called portable cellular base stations, such

as Cell-Sites-on-Wheels (COWs) and Cell-Sites-on-Light-Trucks (COLTs). Portable

cellular base stations are capable of providing cellular phone service while stationary

at a location and can also be quickly moved between locations. However, portable

cellular base stations are unable to provide cellular telephone service while in tran-

sit. Such a company may wish to determine a route for a fleet of portable cellular

base stations over the course of a day to maximize the service provided by these

portable cellular base stations.

3

1.1 Modeling Mobile Facility Operations

Many different considerations come into play when modeling the operations of

mobile facilities. This modeling should be driven by the operation of the particular

class of mobile facilities in use. These considerations include the objective function

of the model, aspects of facility relocation, the type of planning horizon and its

length, facility capacities, and methods of providing service.

Since mobile facilities can be repositioned, it is important to use a planning

horizon that appropriately reflects the realities of the operations of the particular

type of mobile facility being deployed. Three types of planning horizons can be used

to model mobile facility operations. When mobile facilities are to be simultaneously

relocated from an initial location to a destination location, a single period planning

horizon can be used. These models are sometimes referred to as relocation models

and have been used, for example, to reposition ambulances [28] and other utility

vehicles [34] to maintain coverage constraints while one or more of these vehicles

are responding to a call. Settings where mobile facilities may be relocated more

than once can be modeled with either a discrete-time (i.e., multi-period) planning

horizon, or with a continuous-time planning horizon. Discrete-time planning hori-

zons are often used to model problems where the time it takes to relocate a facility

is insignificant in relation to the length of the planning horizon. For example, the

relocation of warehouses by a large company may have a planning horizon of many

years, while warehouses (or their contents) may be relocated relatively quickly. In

such cases, the time to relocate a warehouse may be relatively small compared to

4

the length of the planning horizon. Discrete-time models may also be used when

travel times are significant but facilities can only be relocated during a common

period of time, during which no service is provided. This may be the case in appli-

cations where a mobile facility must stay at one location during the day, and are

only allowed to be relocated only at night.

Conversely, continuous-time planning horizons provide the ability to model

the effects of relocation times with a high degree of accuracy. This may make a

continuous-time planning horizon more appropriate when modeling problems where

the relocation times are significant in relation to the length of the planning horizon.

Examples of this include the routing of some types of mobile facilities, such as

mobile post offices or portable cellular base stations, around an urban area during

the course of a day, and problems where facilities must track continuously moving

clients, as in some problems in computer networking [8]. In such contexts, it must

also be considered whether a mobile facility can provide service during relocation.

Facility location problems often seek to satisfy one of two objectives: minimize

the cost of servicing all demand or maximize the demand serviced. The cost of

operation is often a function of the type of facility used, the relocation of the mobile

facilities, and the distance between customers and facilities. The appropriate choice

of the objective should be driven by the application at hand. In situations where

the demand serviced can be equated with revenue, one may also seek to maximize

the difference of the revenue generated and the cost of operation. A discrete-time

model may lend itself to applications where all demand must be covered, since this

constraint would be satisfied if all demand is covered during each period of the model.

5

Alternatively, a continuous-time planning horizon may allow the highest degree of

accuracy when maximizing the amount of demand serviced by mobile facilities.

Another important aspect of modeling mobile facility operations is the demand

model used. In some settings, demand for service may accumulate while a mobile

facility is not providing service. In other settings, such as in cellular communications,

demand for service may be lost when service is not available. In a discrete-time

model, the demand for service during each time period can be expressed as a quantity

and the capacity of each mobile facility can be modeled as the quantity of demand

the mobile facility can service during that period. Alternatively, in a continuous-

time model, demand for service can be modeled as a function describing the rate

demand is generated at each time in the planning horizon, and the capacity of a

mobile facility, if it exists, may be a limit on the maximum rate that it can service

demand.

1.2 Overview of Dissertation Research

This dissertation presents novel results on two operational problems dealing

with mobile facilities. In Chapters 2 and 3, the mobile facility routing problem

(MFRP) is presented. This problem considers a large class of mobile facilities that

service demand while at a location and can be relocated over the course of a planning

horizon to attempt to service as much demand as possible. Examples of such mobile

facilities are portable cellular base stations and mobile food service stations. In

Chapter 2, we consider the single MFRP (SMFRP). The SMFRP is to determine a

6

route for a single such mobile facility to maximize the total demand serviced. This

problem is set in a continuous-time planning horizon, where the travel times are

significant in relation to the length of the planning horizon. There is a set of locations

where each mobile facility may be positioned. For each location, there is a demand

profile specifying the rate each mobile facility can service demand at each time t in

the planning horizon. Two exact algorithms for solving the SMFRP are presented for

the case when the demand profile is represented by a piecewise constant function.

The first algorithm is named the schedule resolution dynamic program (SRDP).

Given a sequence of locations, the SRDP computes an optimal route visiting a

subsequence of those locations in order. We show how to choose a sequence of

locations that guarantees the SRDP always finds the optimal route, and prove results

that enable the execution of the SRDP to be significantly sped up. The second

algorithm is named the single mobile facility longest path algorithm (SMFLPA).

We show that there exists a polynomial set of times when each mobile facility may

either depart from or arrive at each location. The route of a mobile facility can

then be viewed as a path through a directed, acyclic graph. The SMFLPA finds

the optimal route by computing the longest path through this graph. While both

algorithms execute quickly, the SMFLPA has a worst case runtime that is polynomial

in the inputs of the problem. In addition, we discuss how these two algorithms may

be adapted to situations when the demand profile is represented by more general

functions. While both algorithms may be extended, the SRDP may be more easily

extended than the SMFLPA.

Chapter 3 considers the MFRP in the case of routing multiple mobile facilities.

7

In the MFRP, the locations where each mobile facility may be positioned are sepa-

rated from the events that generate demand. This allows the modeling of scenarios

where mobile facilities at different locations can provide service to a single event.

This occurs in many application, such as when positioning portable cellular base

stations or mobile medical facilities. Each event has a demand profile specifying the

rate it is generating demand for service at each time t in the planning horizon. A

mobile facility at a location is able to service events nearby. We show the MFRP

is NP-complete and present heuristics for computing efficient routes. Each of these

heuristics use the SMFLPA as a building block in their design. The performance

of these heuristics is evaluated through extensive computational testing on a vari-

ety of simulated data sets. Some of these data sets are intended to model realistic

scenarios, while others are intended to be mathematically challenging.

Chapter 4 discusses the (minisum) mobile facility location problem (MFLP).

This problem is one of a class of movement problems proposed by Demaine et al.

[20]. It is set in a graph where facilities and clients are located at subsets of the

vertices. The MFLP seeks to find destination vertices for each client and each

facility such that the destination of each client is also the destination of at least one

facility while minimizing the total weighted movement of all clients and facilities.

We present an improved integer programming (IP) formulation [51] for the MFLP

that allows a commercial solver like CPLEX to solve larger instances. We then show

that given the set of vertices to be occupied by facilities, the MFLP decomposes into

two polynomially solvable subproblems. Using this decomposition, we describe two

novel classes of local search heuristics. Next, we introduce a new framework for

8

the MFLP that allows the MFLP to model more general cost structures, where the

relocation costs of facilities and clients are not necessarily proportional to distance

traveled. In this more general framework, the MFLP generalizes both the p-median

and uncapacitated facility location problem. Finally, we report on a variety of

computational experiments comparing the performance of the IP formulations and

local search heuristics presented in this chapter.

Chapter 5 presents some concluding remarks and possible directions of future

research.

9

2. THE SINGLE MOBILE FACILITY ROUTING PROBLEM

2.1 Introduction

Mobile facilities are used in many application domains, ranging from cellular

telephone coverage to humanitarian relief logistics. For example, cellular telephone

service providers deploy portable cellular base stations, such as Cell-Site-on-Light-

Trucks (COLTs) and Cell-Site-on-Wheels (COWs), to provide cellular telephone

coverage to events generating demand for service at a higher rate than an existing

network of fixed base stations can provide for, or when an existing network of fixed

base stations is not operational. These portable cellular base stations can be posi-

tioned at a location and provide service from there to cellular customers without any

need for existing infrastructure nearby. To provide service, portable cellular base

stations must be stationary at a location. They cannot service cellular phone calls

while in transit. Over 100 COLTs and COWs were deployed to the Gulf Coast of the

United States after Hurricane Katrina disabled the cellular networks in the region

[30]. COLTs and COWs have also been deployed to provide additional coverage

for large events such as Superbowl XL [48] and the 2009 Presidential Inauguration

of Barack Obama [37]. These mobile facilities may be quickly relocated to provide

service where it is most needed. Consequently in settings where the demand for

service changes over time, these mobile facilities can potentially be used to provide

service to a large region more effectively than an equal number of fixed facilities

with an equivalent capacity. The challenge this creates is how to effectively deploy

such mobile facilities.

Similar mobile facilities are also used in other application domains. In some

contexts, mobile facilities are used to provide services to dense urban areas where

the cost of establishing a permanent fixed facility is prohibitive, or the demand for

services is sporadic. For example, the U.S. Postal Service, Royal Mail [46], and

the Hong Kong Post [29] deploy mobile post offices in some urban areas to provide

services for customers beyond the delivery and pick-up of mail. A mobile post office

may be sent to a location, allowing customers to purchase services without having

to travel to a more distant, traditional post office. Similar to portable cellular base

stations, mobile post offices may only provide these services while stationary at a

location. No services may be provided while in transit. Mobile post offices follow a

fixed schedule, allowing customers to plan for their arrival. The demand for these

services also varies over time. For example, demand may be higher in commercial

areas during the morning and late afternoon, while demand in residential areas

may be relatively low during the work-day. A decision maker wishing to schedule

such mobile facilities faces the challenge of determining a schedule that will provide

as much service as possible. Another similar type of mobile facility are the U.S.

Postal Inspection Service Mobile Mail Screening Stations ([43], [47]), which are

truck based facilities that screen mail for security threats. These mobile facilities

screen mail while at a location, but may be moved from one location to another

11

as threat levels change. A third type of mobile facility deployed in urban areas are

trailer mounted radar speed monitors, which are placed by the side of the road to

inform passing motorists of their speed. Law enforcement agencies use these mobile

facilities to encourage motorists to obey speed limits. Over a planning horizon,

an operator could wish to deploy such mobile facilities to maximize the number of

drivers observed, the number of drivers observed exceeding the speed limit, or to

areas where pedestrian interaction with traffic is high.

Mobile facilities are also used to provide humanitarian relief. These mobile

facilities give a relief organization the ability to provide aid to populations dispersed

in large, remote regions and in dense urban areas. For example, the Red Cross has

mobile blood collection vehicles that are deployed to collect blood donations. Mobile

medical clinics are used to provide care to rural areas [1] and in developing countries.

Mobile vaccination clinics are also used in developing countries. In the U.S., mobile

kitchens are used by the Salvation Army to serve meals to individuals in need. In

each of these settings, operators of these mobile facilities would like ideally to service

all demand. However in practice, limited budgets and resources can force operators

instead to maximize the amount of services provided.

The advantages of using mobile facilities are three-fold. Mobile facilities can

be used to augment the capacity of established fixed facilities, to provide additional

service when demand levels vary significantly over time. Mobile facilities can be

employed to provide service over large regions, such as rural areas, where demand

may be sparse and the implementation of fixed facilities may be cost prohibitive.

Mobile facilities may also be employed to provide services when existing infrastruc-

12

ture has been disabled, such as after a manmade or natural disaster. Operators of

these mobile facilities face the difficult decision of how to utilize them to maximize

the service provided.

In all the above applications, the operational settings in which these mobile

facilities are used are quite similar. The rate that service is demanded at a location

changes over time. The mobile facility provides a service while stationary, but can

also be quickly transported between locations. No service can be provided while

the mobile facility is in transit between locations. Furthermore, in each of these

settings, the operational objective is to maximize the service provided.

This chapter introduces the Single Mobile Facility Routing Problem (SMFRP)

of determining a route for a single mobile facility to maximize the amount of demand

serviced. The next chapter considers the situation with multiple mobile facilities.

In the SMFRP, there is a discrete set of locations where a mobile facility may be

positioned to provide service. (These could be, for example, where appropriate

permits have been obtained to place the facilities.) Each location has a demand

profile that specifies the rate at which the mobile facility can service demand at that

location at each time in the planning horizon. The SMFRP assumes the locations

where a mobile facility may be located, the demand profiles of each location, and

the travel times between locations are known ahead of time and nonstochastic. In

this chapter, we introduce two exact algorithms for finding the optimal solution to

an instance of the SMFRP.

The remainder of this chapter will proceed as follows. We will give a formal

introduction to the SMFRP in Section 2.2. In Section 2.3, we introduce the Schedule

13

Resolution Dynamic Program, which given a sequence of locations, finds the best

route that visits a subsequence of the sequence of locations in order. We show that

by using an appropriate choice of a sequence, this algorithm produces an optimal

route for the SMFRP. However, although this algorithm typically executes quickly,

it appears to have an exponential worst case runtime. In Section 2.4, we give theo-

retical results characterizing properties of optimal routes in the SMFRP. In Section

2.5, using the charactization of optimal routes from Section 2.4, we present a second

exact algorithm for computing an optimal route for an instance of the SMFRP that

runs in polynomial time. The second algorithm has a natural interpretation as a

longest path problem on an acyclic graph, leading to a much simplier implementa-

tion. A computational comparison of these two algorithms is presented in Section

2.6. In Section 2.7, we show how the methodologies in this chapter may be easily

extended to solve several variants of the SMFRP. Section 2.8 contains concluding

remarks for the chapter.

2.2 Problem Description

The objective of the SMFRP is to find a route for a single mobile facility that

services the maximum amount of demand. The SMFRP takes as inputs a set of

predetermined locations, L, where the mobile facility may be stationed to provide

service, the travel times, TTll′ between each pair of locations l, l′ ∈ L, and a known,

non-stochastic demand profile for each location l ∈ L over a planning horizon [0, T].

We assume that the travel times satisfy the triangle inequality and include any

14

time necessary to prepare the mobile facility for transport and to set up the mobile

facility at a new location, in addition to the time the mobile facility is in transit

between locations. The demand profile for location l consists of a non-stochastic

moment demand function, fl(t), which describes the rate demand is being generated

at location l at time t.1 Since fl(t) is the rate demand is being generated at location

l at time t, if a mobile facility is at location l from time σ to time τ , the total amount

of demand serviced by that mobile facility is

∫ τ

σ

fl(s)ds.

The objective of the SMFRP is to create a route for a single mobile facility that

allows the mobile facility to service the maximum possible amount of demand during

the planning horizon. A route consists of a sequence of stops (ln, σn, τn)
N
n=0, where

ln is the location visited during stop n, σn is the arrival time at stop n, and τn is the

departure time from stop n. When the mobile facility departs stop n of the route at

time τn, we specify that it must arrive at location ln+1 at time σn+1 = τn + TTlnln+1

and immediately begin providing service. We assume the mobile facility arrives at

location l0 at time 0 and departs location lN at time T . (We describe in Section

2.7.1 how the model may be easily modified if the mobile facility must begin and

end the planning horizon at a specific depot.) Consequently, the demand serviced

1 More generally, demand may be considered to be generated at a discrete set of event points.

A mobile facility at a location is able to service demand from nearby event points. Such is the

case when we discuss the routing of multiple mobile facilities in Chapter 3. Given a single mobile

facility, it is easy to compute the rate demand can be serviced at each location l by the mobile

facility at each time t (i.e., fl(t)).

15

by the mobile facility on the route may be written as,

∫ τ0

0

fl0(s)ds+
N−1∑
n=1

∫ τn

σn

fln(s)ds+

∫ T

σN

flN (s)ds. (2.2.1)

This formulation of the SMFRP technically permits routes containing a stop

(ln, σn, τn) where the mobile facility departs the location the moment it arrives (i.e.,

σn = τn). The following lemma demonstrates how to remove such a stop n and create

a new route that services no less demand and has either σn+1 = τn−1 + TTln−1ln+1 ,

σn+1 = 0, or τn−1 = T . This allows us to restrict our attention to sequences of stops

where a mobile facility stays at each stop for a strictly positive amount of time.

Lemma 2.2.1. Suppose (ln, σn, τn)
N
n=0 is a route and σn0 = τn0. Then a new route

servicing no less demand can be created by applying one of the following three mod-

ification:

1. If n0 = 0, then remove Stop 0 from the route and set σ1 = 0.

2. If n0 = N , then remove Stop N from the route and set τN−1 = T .

3. Otherwise, remove Stop n0 from the route and set σn0+1 = τn0−1+TTln0−1ln0+1.

Furthermore, an optimal route (ln, σn, τn)
N ′
n=0 exists where σn < τn for each n =

0, . . . , N ′.

Proof. Since σn0 = τn0 , zero demand is serviced by the mobile facility at Stop n0.

Thus removing Stop n0 from each route in any of the three modifications does not

reduce the amount of demand serviced. Applying modification 1 causes the mobile

facility to arrive earlier at Stop 1. The departure time for Stop 1, and the arrival and

16

departure times for Stops 2 through N remain the same. Thus, an equal or greater

amount of demand is serviced along this updated route. Similarly, modification 2

causes the mobile facility to depart Stop N−1 later, thus an equal or greater amount

of demand is serviced. Suppose modification 3 is implemented. Let σ be the arrival

time at Stop n0+1 before the modification and σ̃ be the arrival time at Stop n0+1

after the modification. Then,

σ̃ = τn0−1 + TTln0−1ln0+1

<= τn0−1 + TTln0−1ln0
+ TTln0 ln0+1 = σn0 + TTln0 ln0+1 = τn0 + TTln0 ln0+1 = σ.

Thus, modification 3 causes the mobile facility to arrive at Stop n0 + 1 earlier than

before the modification, meaning an equal or greater amount of demand is serviced

at Stop n0. Consequently, no less demand is serviced along the route. Finally, given

an optimal route of length N , a sequence of at most N − 1 of these operations will

produce a new route (ln, σn, τn)
Ñ
n=0 servicing an equal or greater amount of demand.

Thus, this new route is also optimal.

The mobile facility does not service any demand while in transit between

locations. Thus, an efficient route must balance the desire to provide service to

locations while they are generating demand for service at a high rate with the

amount of time the mobile facility must spend in transit.

We will assume each moment demand function, fl(t), is piecewise constant.

We make this assumption to allow us to analyze the runtime of the two proposed

algorithms. Since many types of functions can be approximated arbitrarily closely

by piecewise constant functions (such as continuous functions), this assumption is

17

0 2 4 6 8 10
0

1

2

3

4

5

6

Time (t)

f 1(t
)

Demand Profile for Location 1

(a)

0 2 4 6 8 10
0

1

2

3

4

5

6

Time (t)

f 2(t
)

Demand Profile for Location 2

(b)

Fig. 2.1: Examples of demand profiles for two locations, 1 and 2. In this example, the

planning horizon is [0, 10].

not very restrictive. (In Section 2.7.3, we discuss how the SMFRP can be solved

when the moment demand functions take on more general forms.) Formally, fl(t)

is a nonnegative, piecewise constant function that may assume nonzero values only

during the planning horizon [0, T]. For each location l, let Ml be the number of

discontinuities of the moment demand function fl(t). Let ql1 = 0, qlMl
= T , and

for 2 ≤ j ≤ Ml − 1, let qlj be the j-th discontinuity of the function fl(t). (We

will consider 0 and T “discontinuities”, regardless of nearby values of fl(t).) For a

location l, we refer to qlj as critical time j of location l and we refer to the interval

of time [qlj, q
l
j+1) as step j of location l. Finally let glj be the value of fl(t) during

step j of location l.

2.2.1 An Example of the SMFRP.

Examples of the demand profiles for two locations are given in Figures 2.1(a)

and 2.1(b). Suppose the travel time between the two locations is two (i.e., TT12 =

18

TT21 = 2). One possible route for the mobile facility could start at Location 1 at

time 0 and remain there until time 2. The mobile facility would service demand

at rate 3 during these 2 units of time, servicing a total of 6 units of demand. The

mobile facility could then depart Location 1 at time 2 to travel to Location 2. It

would arrive at Location 2 at time 4 and begin servicing demand at rate 5. The

mobile facility could continue to service demand at rate 5 until time 7, servicing a

total of 15 units of demand. The mobile facility could then depart Location 2 and

return to Location 1 at time 9 and service demand at rate 4 until time 10, the end of

the planning horizon. This services an additional 4 units of demand from Location

1. A total of 25 units of demand are serviced along this route. As we will see, this

is the optimal route for this example.

2.2.2 Related Work

The goal of the SMFRP is to find a path for a single mobile facility to maximize

the demand covered in a limited period of time. In this sense, the SMFRP bears a

resemblance to the orienteering problem. The orienteering problem was introduced

by Tsiligride in [45]. Given a collection of locations, each with a prize of a known

value, the orienteering problem is to find a path that allows the maximum value of

prizes to be collected during a given period of time.

However, there are several distinct differences between the SMFRP and the

orienteering problem. Firstly, the amount of demand serviced during a stop in a

solution to the SMFRP is dependent on the arrival and departure time of the mobile

facility. Thus it differs from the orienteering problem in that value of the prize

19

collected at a stop in the orienteering problem is independent of the time the vehicle

arrives. Kantor and Rosenwein [32] studied the orienteering problem with time

windows, where the prize at each location may only be collected during a specific

time window. However, this still differs from our model as the value of the prizes

collected in the orienteering problem with time windows is not dependent on the

duration of time spent at each stop. In general, a solution to the orienteering problem

should seek to minimize the amount of time spent at each location. Conversely, a

solution to the SMFRP may possibly service more demand from staying longer at

some stops, depending on the rate demand is being generated.

Bespamyatnikh et al. [8] also studied a problem in locating a single mobile

facility in a continuous time planning horizon. Given a set of customers following

continuous trajectories through space, Bespamyatnikh et al. studied how to compute

a trajectory for a facility that minimizes a number of different objectives. Unlike

the SMFRP where facilities must be at a location to service demand, facilities in

this problem service demand while moving continuously.

2.3 The Schedule Resolution Dynamic Program and Computing an

Optimal Route

A natural first question to ask when considering how to route a single mobile

facility is, given a sequence of locations (l1, l2, . . . , lN ′), what is the best route for a

mobile facility that may only visit these locations in order? To answer this question,

an arrival time and departure time must be determined for every stop the mobile

20

facility makes. Furthermore, while it is tempting to determine the route visiting

every location in the sequence (l1, l2, . . . , lN ′), it might be possible to service more

demand by visiting only a subsequence (ln1 , . . . , lnN
), where 1 ≤ n1 < · · · < nN ≤

N ′. Indeed, the mobile facility may be able to service more demand by skipping

a location in the sequence generating low levels of demand, or a location in the

sequence located far from the other locations. With this in mind, we have developed

the schedule resolution dynamic program (SRDP) that, given a sequence of locations

(l1, l2, . . . , lN ′), finds the best route where the locations visited along the route are

a subsequence (ln1 , . . . , lnN
), with 1 ≤ n1 < · · · < nN ≤ N ′. (See [7] background on

dynamic programming.) The SRDP does so by computing a stop strategy function

for each sequence member ln that describes what the mobile facility should do if it

is at location ln of the sequence at time t, as well as the amount of demand that

can be serviced by executing this decision.

Define a candidate sequence to be a sequence of locations (l1, l2, . . . , lN ′). A

candidate sequence is allowed to contain multiple copies of the same location al-

though we prohibit a location to be repeated consecutively in a sequence, which is

nonrestrictive. For example, given three locations 1, 2 and 3, the sequence (1, 2,

1, 3) is a valid candidate sequence, while the sequence (1, 2, 2, 3) is not a valid

candidate sequence. A mobile facility following the candidate sequence (1, 2, 1, 3)

would be allowed to visit locations, 1, 2, and 3 in order, or locations 2, 1, and 3 in

order, but it could not ever follow a route that travels from location 3 to location 2.

(It may be conceptually easier to imagine that each member candidate sequence is a

distinct location for the remainder of this section. However, the results below hold

21

when locations are allowed to be repeated nonconsecutively in a sequence) A route is

said to be in a candidate sequence if the order locations are visited along that route

is a subsequence of the candidate sequence. We will show how, given a candidate

sequence, to find a route in the candidate sequence servicing the maximum possible

amount of demand.

For each location l, define the remaining demand function Fl(t) by the formula

Fl(t) =

∫ T

t

fl(s)ds.

Thus, Fl(t) gives the total amount of demand that will be serviced by the mobile

facility if it is stationed at location l from time t to time T , the end of the planning

horizon. Notice that Fl(t) is a continuous, piecewise linear, decreasing function with

slope −glj on the step [qlj, q
l
j+1). Consequently, critical times of fl(t) are also critical

times of Fl(t).

The schedule resolution dynamic program (SRDP) determines an optimal route

in a candidate sequence. Given a candidate sequence (l1, . . . , lN ′), the SRDP com-

putes for each n = 1, . . . , N ′ a stop strategy function rn(t). The stop strategy

function for location ln, rn(t), dictates the optimal routing decision that should be

made to capture the maximum possible demand, given that the mobile facility is at

location ln at time t and must follow a route in the candidate sequence. More specif-

ically, at time t the stop strategy function either tells the mobile facility to remain

at location ln, or to leave immediately and travel to a specific location in the set

{ln+1, . . . , lN ′}, and how much demand can be captured by following this strategy.

In order to describe this routing decision for a mobile facility at location ln at time

22

t, the stop strategy function rn(t) is composed of two coordinate functions, r1n(t)

and r2n(t) (i.e., rn(t) = (r1n(t), r
2
n(t))). The function r1n(t) describes the maximum

amount of demand the mobile facility can capture if it is at location ln at time t and

follows the strategy prescribed by the SRDP for the candidate sequence. It will be a

piecewise linear, decreasing function that takes on values in R+∪{0}. The function

r2n(t) takes on values in {n, . . . , N ′} and indicates which location the mobile facility

at location ln at time t should travel to in order to service the amount of demand

specified by r1n(t). If r
2
n(t) = n, then the mobile facility is to remain servicing loca-

tion ln at time t. Otherwise, r2n(t) = n′ for some n′ > n, which indicates the mobile

facility is to immediately depart location ln for location ln′ .

Choose an n < N ′ and assume we know rn′(t) for n′ = n + 1, . . . , N ′. The

stop strategy function for location ln will be computed from Fln(t) and the stop

strategy functions rn′(t) for n′ = n + 1, . . . , N ′. If a mobile facility following the

candidate sequence is at location ln at time t and is immediately to leave location

ln for a subsequent location in the candidate sequence, ln′ , it will arrive at time

t + TTlnln′ . Naturally, given the option, the mobile facility should choose to travel

to the location ln′ for which r1n′(t+ TTlnln′) is the largest when it arrives. We define

maxn(t) = max
n′>n

{r1n′(t+ TTlnln′)}. (2.3.1)

argmaxn(t) = argmaxn′>n{r1n′(t+ TTlnln′)}. (2.3.2)

In the case of ties in 2.3.1 and 2.3.2, we choose the location later in the sequence.

If the mobile facility is at location ln at time t and must immediately leave to

begin servicing a location later in the candidate sequence, then maxn(t) specifies

23

the most demand the mobile facility can capture after time t following a route in the

candidate sequence, and argmaxn(t) specifies the index of location in the candidate

sequence the mobile facility should travel to in order to capture this much demand.

Since these two functions describe what the mobile facility should do if it must leave

location ln at time t, we refer to the pair (maxn(t), argmaxn(t)) collectively as the

departure strategy function for location ln.

Notice both the stop strategy functions and the departure strategy functions

take on values in (R+ ∪ {0}) × {1, 2, . . . , N ′}. We define a critical time of a stop

strategy function rn(t) as a time t when either r1n(t) or r2n(t) is non-differentiable.

Similarly, we define a critical time of a departure strategy function as a time t

when either maxn(t) or argmaxn(t) is non-differentiable. We adopt the further

convention that 0 and T are always critical times of every stop strategy function

and departure strategy function. While the critical times of the remaining demand

function Fln(t) are the times when Fln(t) changes slope, the critical times of rn(t)

or (maxn(t), argmaxn(t)) are when either r1n(t) or maxn(t) changes slope, or when

r2n(t) or argmaxn(t) changes value.

2.3.1 An Example of Finding an Optimal Route in a Candidate Sequence.

Before giving a formal description of the SRDP, it is conceptually useful to

see an example of computing the stop strategy functions for a candidate sequence.

Doing so will provide a better understanding of the decisions the SRDP makes during

execution. The following example computes the stop strategy functions exactly as

would the SRDP.

24

0 1 2 3 4
0

5
Demand Profile for Location 1

f 1(t
)

0 2 2 3 4
0

5
Demand Profile for Location 2

f 2(t
)

0 1 2 3 4
0

5
Demand Profile for Location 3

f 3(t
)

(a)

0 1 2 3 4
0

10
Remaining Demand Function for Location 1

F
1(t

)

0 1 2 3 4
0

10
Remaining Demand Function for Location 2

F
2(t

)

0 1 2 3 4
0

10
Remaining Demand Function for Location 3

F
3(t

)

(b)

Fig. 2.2: Above, Panel (a) gives examples of moment demand functions for three locations.

The corresponding remaining demand functions for each location are given in

Panel (b). The graphs are color coded by locations.

Suppose we have three locations, 1, 2, and 3, a planning horizon of length

four (T = 4), and it takes one unit of time to travel between any pair of locations.

Let Location 1 generate demand at rate 4 during time interval [0, 1) and generate

demand at rate 1 during [1, 4). Let Location 2 generate demand at rate 2 during

[0, 4). Finally, let Location 3 generate demand at rate 0 during [0, 2) and generate

demand at rate 4 during [2, 4). The moment demand functions for each location

are given in Figure 2.2(a) and the corresponding remaining demand functions for

each location are given in Figure 2.2(b). We have assigned a different line style to

each location that are used in these graphs. Location 1 is plotted using a solid line,

Location 2 is plotted using a dotted line, and Location 3 is plotted using a line of

alternating dashes and dots. These line styles will be used to distinguish these three

locations in all plots in this subsection.

Suppose the candidate sequence is (l1 = 1, l2 = 2, l3 = 3). We will work

25

backwards through the sequence, first determining the stop strategy function for

Location 3. Since Location 3 is the last location in the candidate sequence, a mobile

facility at Location 3 and following the candidate sequence cannot leave for any

other location. Doing so would violate the order of the locations in the candidate

sequence. Thus, this mobile facility must remain servicing Location 3 until the end

of the planning horizon. Consequently, the amount of demand this mobile facility

could service after time t is simply the amount of demand generated at Location

3 between time t and time T , which is precisely F3(t). Thus, the stop strategy

function for Location 3 is given by r13(t) = F3(t) and r23(t) = 3 for every time t in

the planning horizon. Figure 2.3 shows the stop strategy function for Location 3.

Once the stop strategy function for Location 3, the last stop in the candidate

sequence, has been determined, the next step is to compute a strategy for the next

(previous) location in the candidate sequence, Location 2. To do so, we first compute

the departure strategy function for Location 2, (max2(t), argmax2(t)). Recall if the

mobile facility is at Location 2 at time t and must immediately depart for a location

later in the candidate sequence, then max2(t) will specify the maximum amount

of demand the mobile facility can capture after time t, and argmax2(t) specifies

the location the mobile facility should travel to in order to service this amount

of demand. In this example, there is only one location after Location 2 in the

candidate sequence, namely Location 3. Thus, if the mobile facility following the

candidate sequence is at Location 2 at time t and is to leave, it must travel to

Location 3. Since it takes one unit of time to travel from Location 2 to Location 3,

the mobile facility would arrive at Location 3 at time t + 1. Consequently, we can

26

0 1 2 3 4
0

2

4

6

8

10

12

Time (t)

r 3(t
)

Location Strategy Function for Location 3

Fig. 2.3: Since location 3 is the last location in the candidate sequence, the stop strategy

function is r3(t) = (F3(t), 3).

define max2(t) = r13(t+ 1) and argmax2(t) = 3 for all t. Figure 2.4(a) displays the

departure strategy function for Location 2.

Once the departure strategy function for Location 2 has been computed, we

must compute r2(t), the stop strategy function for Location 2. In essence, we will

determine for each time t if the mobile facility should stay servicing demand at

Location 2, or if it should follow the departure strategy function for Location 2

and leave. We compute r2(t) by working backwards through time, starting at the

end of the planning horizon (T = 4), and making a computation for each critical

time of F2(t) and (max2(t), argmax2(t)). Between two consecutive critical times of

these two functions, both F2(t) and max2(t) have constant slope. This allows the

stop strategy function to be computed during the interval of time between the two

consecutive critical times in one computation.

Firstly, since the mobile facility cannot depart Location 2 after time 3 and

arrive at Location 3 at before time 4, the SRDP defines r12(t) = F2(t) and r22(t) = 2

for 3 ≤ t ≤ 4. Next, the latest critical time of either F2(t) or (max2(t), argmax2(t))

27

0 1 2 3 4
0

2

4

6

8

10

12

Time (t)

(m
ax

2(t
),

 a
rg

m
ax

2(t
))

Departure Strategy Function for Location 2

(a)

0 1 2 3 4
0

2

4

6

8

10

12

Time (t)

r 2(t
)

Location Strategy Function for Location 2

(b)

Fig. 2.4: Panel (a) shows (max2(t), argmax2(t)). Panel (b) shows the stop strategy func-

tions for Location 2. The function max2(t) in Panel (a) and r12(t) in Panel (b)

are represented by height, while argmax2(t) in Panel (a) and r22(t) Panel (b) are

represented by line style.

before time 3 is considered. This is the critical time of the departure strategy

function (max2(t), argmax2(t)) at time t = 2. We compute F2(t) for 2 ≤ t < 3.

Notice that between time 2 and 3, both F2(t) and max2(t) have constant slope.

The remaining demand function for Location 3, F3(t), intersects max2(t) at time 3,

and is greater than or equal to max2(t) for t ∈ [2, 3). Thus, more demand will be

serviced by remaining at Location 2 between time 2 and time 3. Consequently, we

define r2(t) = (F2(t), 2) for t ∈ [2, 3).

Now that F2(t) has been computed for 2 ≤ t ≤ 4, we choose the latest critical

time of either F2(t) or (max2(t), argmax2(t)) before time 2, and then compute F2(t)

from that critical time until time 2. In this example, the next the critical time to

consider is the critical time of (max2(t), argmax2(t)) at time 1. During the time

interval [1, 2), max2(t) is greater than F2(t). However, we must consider the rate

28

the mobile facility may service demand at Location 2 during [1, 2) compared to

the rate the mobile facility would service demand upon arrival at Location 3, if

it were to leave Location 2 during [1, 2). When this rate is higher at Location 2,

the mobile facility should choose to remain at Location 2 since the option exists to

depart for Location 3 at a later time. In this case, during the time interval [1, 2),

the slope of max2(t) is steeper than (i.e., less than) the slope of F2(t). In other

words, the rate demand can be serviced at Location 2 during [1, 2) is less than the

rate demand could be serviced upon arrival at Location 3 if the mobile facility were

to immediately depart Location 2 for Location 3. Thus, the mobile facility should

immediately depart Location 2 for Location 3. Consequently, the SRDP will define

r2(t) = (max2(t), argmax2(t)) for t ∈ [1, 2).

The next and final critical time to consider when computing F2(t) is at t = 0.

Although max2(t) is greater than the remaining demand function for Location 2,

F2(t), during [0, 1), demand may be serviced at a faster rate by staying at Location

2 at any time t in [0, 1), than at Location 3 at time t+1 (the time the mobile facility

would arrive if it departed Location 2 at time t). Since the option to depart later from

Location 2 for Location 3 always exists, more demand will be serviced by staying

at Location 2 during [0, 1). However, we cannot simply define r2(t) = (F2(t), 2)

for t ∈ [0, 1). Doing so would result in r12(t) having a discontinuity at time 1 and

describing less demand than would be serviced when following the actual route. In

fact, doing so would make r12(.9) < r12(1). Logically, since the stop strategy functions

define what the mobile facility should do if it is at a location at any given time, they

should be non-increasing over time. To appropriately define r2(t) during [0, 1) let

29

offset = r12(1)−F2(1). Then, we may define r12(t) = F 1
2 (t)+offset. This prevents

a discontinuity of r12(t), and accurately describes the amount of demand the mobile

facility may service if it were at Location 2 at a time t in [0, 1).

Figure 2.4(b) displays the stop strategy function for Location 2. The height

of the graph is r12(t). The location indicated by r22(t) is represented on the graph by

the corresponding line style. In particular, the graph is dotted where r22(t) = 2, and

the graph alternates between dashes and dots where r22(t) = 3.

Finally, the SRDP computes the strategy for Location 1. This is done in much

the same way as for Location 2. The key difference comes in the computation of the

departure strategy function. Specifically, the option exists when departing Location

1 to travel to either Location 2 or Location 3. It takes one unit of time to travel

from Location 1 to either Location 2 or Location 3. Since the option exists, the

mobile facility departing Location 1 at time t should always travel to the location n,

with n = 2, 3, where r1n(t+ 1) is greatest. Consequently, at a given time t, max1(t)

must be the maximum of r2(t+1) and r3(t+1). In this example, r13(t+1) is always

greater than r12(t + 1). Thus max1(t) = r3(t + 1) and argmax2(t) = 3 for all t.

Figure 2.5(a) shows the departure strategy function for Location 1.

To compute the stop strategy function for Location 1, r1(t), we begin again at

time 4 and again work backwards through the critical times of the functions F1(t)

and (max1(t), argmax1(t)). Since the mobile facility cannot depart Location 1 at

or after time 3 and arrive at another location before time 4, r1(t) = (F1(t), 1) for

t in [3, 4]. The next critical time considered is at time 1, and is a critical time

of both F1(t) and max1(t). During the interval of time [1, 3), F1(t) has a greater

30

0 1 2 3 4
0

2

4

6

8

10

12

Time (t)

(m
ax

1(t
),

 a
rg

m
ax

1(t
))

Departure Strategy Function for Location 1

(a)

0 1 2 3 4
0

2

4

6

8

10

12

Time (t)

r 1(t
)

Location Strategy Function for Location 1

(b)

Fig. 2.5: Panel (a) shows (max1(t), argmax1(t)). Panel (b) shows the stop strategy func-

tion for Location 1. The functions max1(t) in Panel (a) and r11(t) in Panel (b)

are represented by height, while argmax1(t) in Panel (a) and r21(t) Panel (b) are

represented by line style.

slope (i.e., is less steep) than max1(t). Thus, at a time t in [1, 3), the strategy of

the mobile facility should determined by the greater of these two functions. In this

case, F1(t) and max1(t) intersect at time 2.67. Thus, we define r1(t) = (F1(t), 1)

during [2.67, 3), when F1(t) is greater than or equal to max1(t), and define r1(t) =

(max1(t), argmax1(t)) during [1, 2.67). The final step is to compute r1(t) during

[0, 1). Just as in the computation of r2(t), F1(t) is steeper than max1(t) during

[0, 1), indicating the mobile facility should stay at Location 1 during [0, 1). Thus,

set offset = max1(1)− F1(1) and define r1(t) = (F1(t) + offset, 1) for 0 ≤ t < 1.

Figure 2.5(b) shows the stop strategy function for Location 1.

The optimal route the mobile facility may take while following the candidate

sequence can now be determined. Since at time t = 0, r11(0) is greater than r12(0)

and r13(0), the mobile facility can service the most demand if it begins at Location

31

1. It will stay at Location 1 while r21(t) = 1. In this case, this occurs at time t = 1,

when r21(1) = 3. Consequently, at time 1 the mobile facility will leave Location

1 and travel to Location 3, arriving there at time 2. Following r3(t), the mobile

facility will then provide service at Location 3 until time 4, the end of the planning

horizon. A total of twelve units of demand will be serviced, four units from Location

1 and eight units from Location 3. In other words, the amount of demand serviced

along the route is r11(0) = 12. Notice Location 2 is never visited, despite being in

the candidate sequence. As the reader may observe, any route in the candidate

sequence that visits Location 2 will result in less than twelve units of demand being

serviced.

2.3.2 Description of the SRDP

The SRDP computes departure strategy functions for each location in the

sequence using the same basic method as in the example above. Given a candidate

sequence (l1, . . . , lN ′), the SRDP begins by first creating the stop strategy function

for last location in the candidate sequence, lN ′ . The SRDP then works backwards

through the candidate sequence, location by location, first generating the departure

strategy function (maxn(t), argmaxn(t)), and then computing the stop strategy

function rn(t) from Fln(t) and (maxn(t), argmaxn(t)). The stop strategy function

rn(t), for n = 1, . . . , N ′ − 1, is computed by working backwards through the critical

times of Fn(t) and (maxn(t), argmaxn(t)).

It is conceptually helpful to make a few observations about the route of a

mobile facility following a candidate sequence (l1, . . . , lN ′).

32

1. If the mobile facility is at location lN ′ , the last location in the candidate

sequence, then the mobile facility must stay at that location until the end

of the planning horizon. Consequently, we must have r1N ′(t) = FlN′ (t) and

r2N ′(t) = N ′ for all t ∈ [0, T]

2. Assuming the travel time between a pair of locations l and l′ is nonzero, there

is a point in time when the mobile facility will not be able to leave location

l and arrive at location l′ before the end of the planning horizon. Thus, for

each n ∈ {1, . . . , N ′}, it may be assumed that r1n(t) = Fln(t) and r2n(T) = n

for all t ≥ maxn′=n+1,...,N ′ T − TTlnl′n .

3. Given that a mobile facility is leaving location ln at time t for a location

later in the candidate sequence, argmaxn(t) is the index of the location in the

candidate sequence the mobile facility should travel to in order to service the

most demand.

4. If at time t, fln(t) > fln′ (t+TTlnln′), then the mobile facility should not travel

to location ln′ at time t, since the mobile facility may continue to service

demand at a higher rate at its current location than at the time it will arrive

at location ln′ , and because the mobile facility always has the option of leaving

for location ln′ at a later time. In particular, the mobile facility should only

depart location ln if the slope of Fn(t) is greater than (less steep than) the

slope of maxn(t).

Noting these observations, the steps of the SRDP can be described as follows:

33

Step 0: (Initialization) Define rN ′(t) := (FlN′ (t), N
′) for all t ∈ [0, T], and set n :=

N ′ − 1.

Step 1: (Departure Strategy Step) Compute the departure strategy function for lo-

cation ln, (maxn(t), argmaxn(t)), in the candidate sequence from the stop

strategy functions rn′(t), for n′ = n + 1, . . . , N ′ from Equations 2.3.1 and

2.3.2.

Step 2: (Location Strategy Step) From (maxn(t), argmaxn(t)) and Fln(t), compute

the stop strategy function for location ln, rn(t), as described below. If n = 1,

terminate. Otherwise set n := n− 1 and return to Step 1.

For a fixed n, Step 2 begins by defining the function r1n(t) = Fln(t) and r2n(T) =

n for t > maxn′=n+1,...,N T −TTln,l′n , which may be done by Observation 2. As in our

example we will need to define an additional variable offset, which is initialized to

0. Then the SRDP works backwards through through the critical times of Fln(t) and

(maxn(t), argmaxn(t)) to determine the stop strategy function. Since both Fln(t)

and maxn(t) have constant slope during the interval between each consecutive pair

of critical times considered, the SRDP may compute the stop strategy function for

this entire interval of time in one computation. At each time t ∈ [0, T], either r1n(t)

will assume the value maxn(t) and r2n(t) = argmaxn(t), or r1n(t) will assume the

value of Fln(t) + offset and r2n(t) = n. Suppose the stop strategy function rn(t)

has been computed between critical time t1 and T . Let t0 be the latest critical time

of either Fln(t) and (maxn(t), argmaxn(t)) before time t1. One of two decisions is

made for this critical time:

34

Case 1 (r2n(t1) = n): Check to see if there is a time τ ∈ [t0, t1) when maxn(t) in-

tersects Fln(t) + offset. If τ exists, define rn(t) = (Fln(t) + offset, n) for

t ∈ [τ, t1) and rn(t) = (maxn(t), argmaxn(t)) for t ∈ [t0, τ). Otherwise, define

rn(t) = (Fln(t) + offset, n) for t ∈ [t0, t1)

Case 2 (r2n(t1) > n): Compare the slopes of Fln(t) and maxn(t) during the time

interval (t0, t1). (Note that the slope of both functions is constant on this

interval by the choice of t0 and t1.) If the slope of maxn(t) is less than

(steeper than) the slope of Fln(t), then define rn(t) = (maxn(t), argmaxn(t))

for t ∈ [t0, t1). Otherwise, first set offset = maxn(t1) − Fln(t1) and then

define rn(t) = (Fln(t) + offset, n) for t ∈ [t0, t1).

Step 2 continues to work backwards through the critical times of both Fln(t) and

(maxn(t), argmaxn(t)) until the stop strategy function rn(t) has been defined for

the entire planning horizon, [0, T].

At the end of the SRDP, locations strategy functions have been defined for

each location in the candidate sequence. An optimal route may now be determined

from these stop strategy functions. To determine the route, the mobile facility must

begin at the location ln for which rn(0) is greatest. The mobile facility stays at

that location until the stop strategy function rn(t) dictates that the mobile facility

should leave for some later location ln′ in the candidate sequence. When the mobile

facility arrives at location ln′ , it will then follow the instructions of r2n′(t) and service

demand from that location until this stop strategy function dictates that the mobile

facility should depart to a location later in the candidate sequence. The route then

35

continues in this manner until the end of the planning horizon.

Theorem 2.3.1. Let (l1, . . . , lN ′) be a candidate sequence. Suppose that a mo-

bile facility is at location ln in the sequence at time t and has the option to ei-

ther remain servicing location ln, or depart to a location of its choosing in the set

{ln+1, ln+2, . . . , lN ′}. Then a strategy for capturing the maximum possible amount of

demand during [t, T] is given by rn(t).

Proof. Since a mobile facility at location lN ′ in the candidate sequence cannot leave

location lN ′ to travel to any other location, the optimal strategy is given by rN ′(t) =

(FlN′ (t), N
′) for all t ∈ [0, T]. The SRDP defines this in Step 0.

The remainder of the proof follows by backwards induction. Fix n < N ′ and

suppose the stop strategy functions rn+1(t), . . . , rN ′(t) define an optimal strategy.

The SRDP begins calculating the stop strategy function rn(t) by defining the func-

tion r1n(t) = Fln(t) and r2n(T) = n for t > maxn′=n+1,...,N T − TTln,l′n , which may be

done by Observation 2. Now let B be the collection of critical times of Fln(t) and

(maxn(t), argmaxn(t)). Then B is the set of critical times considered by the SRDP.

Fix a time tcur ∈ [0, T] and assume that for t ∈ [tcur, T], rn(t) is the best strategy for

the mobile facility at location ln of the candidate sequence at time t. Let tnext be the

next critical time the SRDP considers from B after tcur. Then tnext < tcur and tnext

is the first critical time before time tcur of either Fln(t) or (maxn(t), argmaxn(t)).

Between time tnext and time tcur, both Fln(t) and maxn(t) have no critical times and

thus have constant slopes. Furthermore, argmaxn(t) is constant over the interval

[tnext, tcur). If the mobile facility is to leave the n-th location in the candidate se-

36

quence at time t for a subsequent location in the candidate sequence, it should leave

for the location indicated by argmaxn(t).

Suppose r2n(tcur) = n′ for some n′ ≥ n + 1. While the mobile facility has the

option to leave stop n at any time t ∈ (tnext, tcur], once it leaves it may never return.

Consequently, at time t it is more advantageous to stay at location ln while location

ln is generating demand at a faster rate at time t than the rate location largmaxn(t)

will be generating demand when the mobile facility arrives at time t+TTln,ln′ . This

is true regardless of the height of maxn(t). Thus, the decision of the SRDP to stay

at location ln during [tnext, tcur) when the slope of Fln(t) is less than (i.e., steeper

than) the slope of maxn(t) is optimal. Conversely, when this is not the case, the

decision of the SRDP to leave immediately for location of the candidate sequence

indicated by argmaxn(t) is optimal.

Similarly, if rn(tcur) = n, then for any time t ∈ [tnext, tcur), Fn(t)+offset is the

amount of demand the mobile facility will pick up if it stays at location n during

[t, tcur) and then follows the computed optimal strategy during [tcur, T]. (Recall,

offset is the difference in the height between Fn(t) and maxn(t) at the earliest

critical time t∗ ≥ tcur when Fn(t) is less than, and has a greater (less steep) slope

than maxn(t) for some interval of time (t∗, t∗+ ε), and the slope of Fn(t) is less than

(steeper than) maxn(t) for some interval of time (t∗ − ε, t∗).) This is optimal for

t ∈ [tnext, tcur) so long as Fn(t) + offset ≥ maxn(t). When this inequality does not

hold, the mobile facility should leave for the location indicated by largmaxn(t). This is

precisely the decision made by the SRDP. Consequently, the stop strategy function

rn(t) gives the decision the mobile facility should make to service the maximum

37

possible demand if it is at location ln of the candidate sequence at time t. It follows

that the maximum possible amount of demand may be serviced by the mobile facility

following the candidate sequence (l1, . . . , lN ′) by starting at location ln at time 0 for

which r1n(0) is largest.

The SRDP creates strategy functions for a particular candidate sequence that

allow the mobile facility to service the most possible demand while following a route

in that candidate sequence. However, there may exist routes not in the candidate

sequence. Consequently given a particular candidate sequence, a route following

the stop strategy functions produced by the SRDP does not necessarily service the

maximum possible (globally optimal) amount of demand over all routes. Conse-

quently, careful consideration must be given when choosing a candidate sequence

for the SRDP.

It is possible to choose a candidate sequence that guarantees the SRDP will

produce an optimal route, servicing the maximum possible demand over all routes.

Suppose there exists an upper boundK on the maximum number of stops the mobile

facility can make during the planning horizon [0, T]. Choose a permutation of all

the locations and create candidate sequence by repeating this permutation K times.

We call this special type of candidate sequence a master candidate sequence. Since

the mobile facility may visit at most K locations during the planning horizon, any

feasible route is in this master candidate sequence. Consequently, an optimal route

may be found by running the SRDP on this master candidate sequence.

For example, suppose there are three locations, 1, 2, and 3, and that K =

38

3. Choosing the permutation [3, 1, 2] generates the master candidate sequence

(3, 1, 2, 3, 1, 2, 3, 1, 2). The sequence of locations visited in any route of length K = 3

or less is a subsequence of this master candidate sequence. This master candidate

sequence is not unique since it depends on the chosen permutation. If the permu-

tation [1, 2, 3] was chosen instead, the master candidate sequence would have been

(1, 2, 3, 1, 2, 3, 1, 2, 3).

Such an upper bound K is easy to find. For example, K may be chosen to

be the greatest integer less than the length of the planning horizon divided by the

minimum travel time between two locations (i.e., K = b T
minl,l′∈L TTll′

c). When two

locations are close to each other, this may lead to a unnecessarily long candidate

sequence. In Subsection 2.3.5, we will discuss methods for reducing the runtime of

the SRDP on a master candidate sequence.

2.3.3 Our Implementation of the SRDP

The implementation of the SRDP is important to ensure the creation of a

unique route servicing the maximum amount of demand for a candidate sequence.

For example, two functions may have the same height at time t when calculating

(maxn(t), argmaxn(t)) giving a choice of which location to visit next. Similarly,

there may be points in time when equal amounts of demand can be serviced by

either staying at a location or departing for a subsequent location. We have adopted

a couple of tie breaking rules to handle such situations. Suppose a mobile facility

is at location ln in the candidate route (l1, . . . , lN ′). Our tie breaking rules are the

following:

39

1. Suppose, for some interval of time, the mobile facility will service the same

amount of demand by either staying at location ln, or departing for some

subsequent location in the sequence. Then we assume the mobile facility will

stay at location ln for that interval of time.

2. Suppose when calculating the departure strategy function for location ln in a

candidate sequence, for some interval of time, two or more of the functions

rn′(t+TTln,ln′), for n
′ > n, have the same height. Then we define argmaxn(t)

to be the greatest of all such n′. (i.e., argmaxn(t) indicates the location among

the tied locations appearing latest in the sequence.)

These are appropriate tie breaking rules to adopt in an operational setting. The

first convention says the mobile facility is not going to travel unless strictly more

demand can be captured by visiting the new location. In a practical setting, this

reduces wear and tear on the mobile facility. The second convention helps to reduce

the runtime of the SRDP by potentially reducing the number of critical times in

each stop strategy function and departure strategy function.

To compute maxn(t) in Step 2, the SRDP must compute the maximum of

n piecewise linear functions. In our implementation, this is done using recursion.

Given two piecewise linear functions f1(t) and f2(t) with V1 and V2 pieces, we com-

pute fmax(t) = max{f1(t), f2(t)} in O(V1 + V2) time. To do this we start at time T

and work backwards through the critical times of f1(t) and f2(t) as follows:

Step 0: Set tcur := T . Let t1next and t2next be, respectively, the greatest critical times

of f1(t) and f2(t) less than time T . Set fmax(T) := max{f1(T), f2(T)}

40

Step 1: Set fmax(t) := max{f1(t), f2(t)} for max{t1next, t2next} ≤ t < tcur.

Step 2: Set tcur := max{t1next, t2next}. If tcur = 0, terminate. Otherwise for each

i = 1, 2, if tinext = tcur, set tinext to be the next greatest critical time of fi(t).

Return to Step 1.

During each iteration of Step 1, both functions f1(t) and f2(t) are constant on

max{t1next, t2next} ≤ t < tcur. Thus Step 1 is executed in constant time. Similarly, by

storing the critical times of f1(t) in a sorted array or linked list, the new values t1

and t2 may be found in constant time.

Given n > 2 functions f1(t), f2(t), . . . , fn(t), to find the maximum our im-

plementation recursively computes F1(t) = max{f1(t), . . . , fbn
2
c(t)} and F2(t) =

max{fbn
2
c+1

(t), . . . , fn(t)}. After that we compute max{F1(t), F2(t)}.

2.3.4 Runtime of the SRDP

Given a candidate sequence, the stop strategy function for a location is derived

not only from the demand profile of that location and the stop strategy function

of the next location in the candidate sequence, but also from the stop strategy

functions of every subsequent location in the route. Consequently, the worst case

runtime of the SRDP is likely exponential. That being noted, in practice the SRDP

executes quickly. Additionally, we have not been able to produce any example where

the SRDP achieves a worst case runtime that is not polynomial. Furthermore, there

are several practical reasons why we believe that an exponential runtime shouldn’t

be expected to occur in practice.

41

Suppose the SRDP is run using a candidate sequence (l1, . . . , lN ′) . Recall, the

number of critical times of the remaining demand function, Fln(t), of location ln is

denoted as Mln . For each n = 1, 2, . . . N ′, let Kn be the number of critical times of

the departure strategy function (maxn(t), argmaxn(t)), and let Pn be the number

of critical times of the stop strategy function rn(t). Since during execution of the

SRDP, each computation made compares critical times from the remaining demand

function and the departure strategy function, or critical times of the stop strategy

functions of two or more locations, the runtime of the SRDP is dependent on how

the number of critical times grows. At present, we do not have a polynomial bound

on the number of critical times during execution of the SRDP.

First, we present a bound on the number of critical times in the maximum of

I piecewise linear functions.

Proposition 2.3.2. Given I piecewise linear functions, fk(t) : [0, T] → R+∪{0} for

each i = 1, . . . , I let Vi be the number of pieces of fi(t). Let F (t) = max1≤i≤I fi(t).

Then F (t) has at most I
∑I

i=1 Vi critical times.

Proof. Define the ordered set of critical times,

P = {0 = p0 < p1 < · · · < pJ = T | pj is a critical time of some fi(t), i = 1, . . . I}.

Since 0 and T are a critical times of each function fi(t), we have |P | ≤ ∑I
i=1 Vi.

Let B be the set of critical times of F (t). Then B can be partitioned into

two disjoint subsets, B1 = B ∩ P and B2 = B\P . Since B1 ⊂ P , we may write

|B1| ≤ ∑I
i=1 Vi. The critical times of F (t) in the set B2 must result from the

intersection of two or more piecewise linear functions at a time that is not in P .

42

For each i, no critical times of fi(t) lie in any interval of the form (pj, pj+1).

Thus, each fi(t) is a line segment during (pj, pj+1). Consequently, for any fixed i,

F (t) = fi(t) for at most one continuous subinterval of (pj, pj+1). Thus at most I−1

critical times of F (t) may lie in the interval (pj, pj+1). As the number of intervals

of the form (pj, pj+1) is one less than |P |, it follows that |B2| ≤ (I − 1)
∑I

i=1 Vi.

Consequently, |B| ≤ I
∑I

i=1 Vi.

Since each departure strategy function is computed as a maximum of stop

strategy functions shifted to the left by a travel time TTln,ln′ , an immediate con-

sequence of Proposition 2.3.2 is a bound on the number of critical times of the

departure strategy function computed in Step 1 of the SRDP. This bound is in

terms of the number of critical times of the stop strategy functions. In particular,

for each n = 1, . . . , N , the departure strategy function (maxn(t), argmaxn(t)) has

at most (N − n)
∑N

i=n+1 Pi critical times.

Conversely, for a given n, the maximum number of critical times in the stop

strategy function rn(t) can be expressed in terms of the number of critical times of

Fln(t) and the departure strategy function (maxn(t), argmaxn(t)). During Step 2

of the SRDP, each critical time of rn(t) is produced from one of three methods:

1. A critical time of rn(t) may be a critical time of Fln(t). We define B1
n to be

the set of such critical times in rn(t).

2. A critical time of rn(t) may be a critical time of the departure strategy function

(maxn(t), argmaxn(t)). We define B2
n to be the set of such critical times in

rn(t) that are not also in B1
n.

43

3. A critical time of rn(t) may be produced by the intersection of Fln(t)+offset

and maxn(t). We define B3
n to be the set of such critical times that are not

also in B1
n or B2

n.

The following proposition relates the number of critical times of rn(t) to the number

of critical times of Fln(t) and (maxn(t), argmaxn(t)).

Proposition 2.3.3. For each n = 1, . . . N , the stop strategy function rn(t) has at

most Mln +Kn − 1 critical times.

Proof. Fix an n. Recall the variable offset from the SRDP. The SRDP may

only generate a critical time of rn(t) that is neither a critical time of the remain-

ing demand function Fln(t) nor a critical time of the departure strategy function

(maxn(t), argmaxn(t)) when, for some time t0,

maxn(t0) = Fln(t0) + offset0

maxn(t) < Fln(t0) + offset0 for t ∈ (t0 − ε, t0) and,

maxn(t) > Fln(t0) + offset0 for t ∈ (t0, t0 + ε),

where offset0 is the value of the variable offset that would be used by the SRDP

when computing rn(t) at time t0. Define t1 to be the first time after t0 (t1 > t0)

when maxn(t1) = Fln(t1) + offset1, where offset1 is some possibly different value

the variable offset took during the computation of rn(t) for time t1. Then the slope

of Fln(t) is less than (steeper than) the slope of maxn(t) for each t ∈ (t1 − δ, t1),

for δ > 0 sufficiently small. The variable offset does not change when computing

rn(t) for the interval (t0, t1). Consequently, there must be a time t∗ ∈ (t0, t1) where

44

the slope of maxn(t) at t
∗ is greater than (less steep) the slope of rln(t) at t

∗. Thus,

there must be a critical time of maxn(t) in the interval (t0, t1).

Consequently, for each critical time in B3
n, there is a critical time of the de-

parture strategy function (maxn(t), argmaxn(t)) that is not a critical time of rn(t).

Furthermore, 0 may be counted as a critical time at most once. Consequently, rn(t)

can have at most Mln +Kn − 1 critical times.

Since rN ′(t) = (FN ′(t), N ′), it follows that PN ′ = MlN′ . Furthermore, since

lN ′ is the last location in the candidate sequence, (maxN ′−1(t), argmaxN ′−1(t)) =

rN ′(t + TTlN′−1lN′). Thus, KN ′−1 ≤ PN ′ . From Proposition 2.3.2 we have that for

each n = 1, . . . , N ′,

Kn ≤ (N − n)
N ′∑

n′=n+1

Pn′ (2.3.3)

Furthermore more, Proposition 2.3.3 states that

Pn ≤ Mln +Kn − 1. (2.3.4)

Combining Equations 2.4.3 and 2.4.3, we get that,

Pn ≤ Mln + (N ′ − n)
N ′∑

n′=n+1

Pn′ . (2.3.5)

Substituting Equation 2.3.5 for Pn+1 into Equation 2.3.5 for Pn and substituting

(N ′ − n) for (N ′ − (n+ 1)), we get

Pn ≤ Mln + (N ′ − n)Mln+1 + (N ′ − n)2
N ′∑

n′=n+2

Pn′ + (N ′ − n)
N ′∑

n′=n+2

Pn′ .

45

Continuing this expansion, we get,

Pn ≤ Mln + (N ′ − n)Mln+1 + (N ′ − n)2Mln+2 + (N ′ − n)Mln+2

+ (N ′ − n)3
N ′∑

n′=n+3

Pn′ + 2(N ′ − n)2
N ′∑

n′=n+3

Pn′ + (N ′ − n)
N ′∑

n′=n+3

Pn′ ,

. . .

≤ Mln +
N ′−1∑

n′=n+1

[
n′−n−1∑

k=0

(
n′ − n− 1

k

)
(N ′ − n)n

′−n−k

]
Mln′ +

N ′−n∑

k=1

(N − n)kMlN′ .

(2.3.6)

Equation 2.3.6 provides an upper bound on the number of critical times in the stop

strategy function rn(t) that is exponential in the length of the candidate sequence.

In particular, the number of critical times in the stop strategy function for location

ln is O(
∑N ′−n

k=0 (N ′ − n)kMln+k
). Since every critical time must be considered during

execution of the SRDP, this suggest that it is possible that the worst case runtime

of the SRDP is exponential.

Despite the upper bound for the number of critical times in a stop strategy

function given by 2.3.6, there are several reasons why the SRDP seems to execute

quickly. Firstly, in all of our computational experiments, the number of critical times

in the location strategy does not appear to grow exponentially. Furthermore, critical

times of the departure strategy functions are critical times of later departure strategy

functions translated forward in time by the travel time between two locations. Each

time a departure strategy function is created, it often occurs that critical times

of later stop strategy functions are too early in the planning horizon to cause the

creation of a critical time of a departure strategy function. As a consequence,

46

the number of critical times in the stop strategy functions and departure strategy

functions do not appear to grow exponentially in practice.

2.3.5 Reducing the Runtime of the SRDP on a Master Candidate Sequence

Given an upper bound K on the number of locations the mobile facility can

visit during the planning horizon, we may create a master candidate sequence by

taking any permutation of the locations in L and repeating it K times. Since

the order of locations visited in any possible route is a subsequence of this master

candidate sequence, the SRDP will produce the globally optimal route from this

master candidate sequence. One example of such a K is the length of the planning

horizon divided by the minimum travel distance between two locations. However,

when two locations are very close together, this can produce a very long master

candidate sequence. Since the running time of the SRDP depends on the length of

this sequence, we would like to ensureK is as small as possible. The next proposition

demonstrates that it is possible to always choose a candidate sequence with a length

that is polynomial in the inputs of the SMFRP.

Proposition 2.3.4. Let K =
∑

l∈L Ml. Then an optimal route exists where the

mobile facility makes no more than K stops.

Proof. Suppose not and we can produce a feasible route, (ln, σn, τn)
N
n=0, with more

than K stops. By Lemma 2.2.1, we may also assume that for each stop n in the

route, σn < τn. Then there must exist an n < N such that τn is not a critical time

of fln(t) and σn+1 is not a critical time of fln+1(t). Since the route is optimal, it

47

must be that fln(τn) = fln+1(σn). (If not, then a small perterbation of τn and σn

would produce a route servicing more demand.) Let p be the first critical time of

fln(t) after time τn, and let q be the first critical time of fln+1(t) after time σn+1.

Set τn = min{p, q−TTlnln+1 , τn+1−TTlnln+1} and σn+1 = min{p+TTlnln+1 , q, τn+1}.

Then the mobile facility either departs stop n at the critical time p, arrives at stop

n + 1 at critical time q, or arrives at stop n + 1 at the departure time τn+1. In

the later case, stop n + 1 can then be removed from the route while maintaining

optimality by Lemma 2.2.1. Apply this modification to all stops n such that τn is

not a critical time of fln(t) and σn+1 is not a critical time of fln+1(t). This produces

an optimal route where each time the mobile facility travels, it either departs at a

critical time or arrives at a critial time. Thus, the number of stops in the route can

be no more than K.

Proposition 2.3.4 provides a method for determining a K that is polynomial in

the size of the problem. While choosing such a master candidate sequence guarantees

the SRDP will produce an optimal route, there is an obvious problem with choosing

K =
∑

l L Ml. Specifically, K can still be quite large and yield a long master

candidate sequence. Without being careful, running the SRDP on such a master

candidate sequence can take an unreasonably long amount of time. However, it is

possible to significantly reduce the amount of time that the SRDP takes to run on

a master candidate sequence.

A master candidate sequence repeats a permutation of all locations K times.

48

The master candidate sequence may be written as

(l1, . . . , l|L|, l|L|+1, . . . , l2|L|, . . . , l(K−1)|L|, . . . , lK|L|).

Notice that the sequence members li, li+|L|, . . . , li+(K−1)|L| refer to the same location

for each i ∈ {1, 2, . . . , |L|}. As a result, when determining the departure strategy

function for location ln, it is not always necessary to consider every subsequent loca-

tion in the master candidate sequence. Proposition 2.3.5 describes which locations

it is necessary to consider.

Proposition 2.3.5. When running the SRDP on a master candidate sequence of

length K|L|, it suffices to define maxn(t) = maxn′=n+1,...,n+|L|−1{rn′(t + TTln,ln′)}

and argmaxn(t) ∈ {n+ 1, . . . , n+ |L| − 1} for each n = 1, . . . , (K − 1)|L| in Step 1

of the SRDP.

Proof. We proceed by reverse induction. Choose an n ∈ {1, 2, . . . , (K − 1)|L|} and

assume the proposition is true for all n′ > n. Furthermore, assume that r1n′(t) ≥

r1n′+|L|(t) for all t ∈ [0, T] and for n′ > n. (Intuitively, this may be seen as true

since as location ln′ = ln′+|L| for each n′ ∈ {n + 1, n + 2, . . . , (K − 1)|L|}, the

mobile facility at location ln′ of the candidate sequence at time t may always make

the same decision as if the mobile facility was at location ln′+|L| of the candidate

sequence at time t.) For each time t ∈ [0, T], given the choice between departing for

location ln′ and location ln′+|L| in the master candidate sequence, the SRDP could

specify that the mobile facility would depart for location ln′ without servicing less

demand. Therefore, computing maxn(t) as described in this proposition does not

result in stop strategy functions that would allow less demand to be serviced than

49

the stop strategy functions that would be created by defining maxn(t) as before,

provided we show that r1n(t) ≥ r1n+|L|(t). However, by assumption rn′(t) ≥ rn′+|L|(t)

for every t. Thus, maxn(t) ≥ maxn+|L|(t). Therefore, the SRDP would compute

r1n(t) ≥ r1n+|L|(t).

Proposition 2.3.5 allows the SRDP to determine the stop strategy functions for

a master candidate sequence by reducing the number of functions being compared

each time Step 1 of the SRDP is executed. The strategy functions produced by the

SRDP may still be used to produce an optimal route. While it can be assumed

that K is an upper bound on the number of locations visited in an optimal route,

typically that bound is not tight and the route may be expected to make significantly

less than K stops. The following proposition shows that the SRDP is often able

to terminate early knowing that the optimal solution may be derived from stop

strategy functions computed so far.

Proposition 2.3.6. When running the SRDP on the master candidate sequence,

if for some n it is found that rn+i(t) = rn+|L|+i(t) for i = 0, . . . , |L| − 1, then an

optimal route exists starting at a location ln′ in the candidate sequence for some

n′ ≥ n. Thus, the SRDP may be terminated early.

Proof. By the previous proposition, rn(t) may be derived from only Fln(t) and rn′(t)

for n′ = 1, . . . , |L| − 1. Suppose the SRDP is in the process of computing rn(t)

and rn+i(t) = rn+i+|L| for i = 0, 2, . . . , |L| − 1. Then the inputs the SRDP used to

compute rn(t) are the same as the inputs the SRDP used to compute rn+|L|(t). Since

the SRDP is deterministic it would find r1n(t) = r1n+|L|(t) for all t ∈ [0, T]. Thus no

50

improved solution has can be found and the SRDP can terminate early.

2.4 Characteristics of Optimal Routes

The SRDP is a method for finding an optimal route for a single mobile facility.

However, the SMFRP has a special property that we may exploit to more efficiently

compute an optimal route. While, multiple optimal routes may exist for an instance

of the SMFRP, there exists at least one optimal route with this special property.

Theorem 2.4.1 establishes that for a given instance of the SMFRP there exists an

optimal route where each time the mobile facility travels from one location for

another, it either departs or arrives at a time that is a critical time of the moment

demand function of the two locations.

Theorem 2.4.1. There exists an optimal route (ln, σn, τn)
N
n=0 where at least either

the departure time τn is a critical time of fln(t), or the arrival time σn+1 is a critical

time of fln+1(t), for each n = 0, 1, . . . , N − 1.

Proof. By Lemma 2.2.1, we may assume that σn < τn for n = 0, 1, . . . , N . The

amount of demand serviced as a function of the departure times may be written as,

∆(τ0, . . . , τN) =

∫ τ0

0

fl0(t)dt+ · · ·+
∫ τn

τn−1+TTln−1ln

fln(t)dt (2.4.1)

+

∫ τn+1

τn+TTlnln+1

fln+1(t)dt+ · · ·+
∫ τN

τN−1+TTlN−1lN

flN (t)dt.

Suppose the sequence (ln, σn, τn)
N
n=0 defines an optimal route and there exists an n

such that τn is not a critical time of fln(t) and σn+1 is not a critical time of fln+1(t).

To prove the theorem it suffices to show that this route may be modified to create

51

0 10

1

2

3

4

5

Time (t)

f l n+
1(t

)

0 10

1

2

3

4

5

Time (t)

f l n(t
)

τ̃n
τn σ̃n+1 σn+1

Fig. 2.6: An example where the mobile facility neither departs a location or arrives at a

location at a critical time. Here, the mobile facility departs location ln at time

τn and arrives at location ln+1 at time σn+1. Notice that in this example, since

fln(τn)− fln+1(σn+1) = 0, an equal amount of demand is captured if the mobile

facility departs location ln at time τ̃n and arrives at location 2 at the critical

time, σ̃n+1.

a new route servicing an equal amount of demand that either leaves location ln at

a critical time of fln(t), arrives at location ln+1 at a critical time of fln+1(t), or skips

stop n entirely. With this in hand, the repeated application of such modifications

will produce an optimal route that satisfies the theorem.

Because neither τn nor σn+1 are a critical times of fln(t) and fln+1(t) respec-

tively, it follows that the piecewise constant function fln(t) is constant in a neigh-

borhood of τn and fln+1(t) is constant in a neighborhood of σn+1. Consequently,

∆(τ0, . . . , τN) is differentiable in a neighborhood of τn and,

∂

∂τn
∆(τ0, . . . , τN) = fln(τn)− fln+1(τn + TTlnln+1) (2.4.2)

= fln(τn)− fln+1(σn+1) (2.4.3)

52

Because the route is assumed optimal, it follows that

fln(τn)− fln+1(σn+1) = 0. (2.4.4)

Since fln(t) and fln+1(t) are piecewise constant functions, Equation (2.4.4) holds

true for the interval of time around τn where both fln(t) and fln(t+TTlnln+1) remain

constant. Figure 2.6 shows an example of such a route. If Equation (2.4.4) were

not true, some small perturbation of τn would yield a route that services more

demand. (For example, if fln(τn) − fln+1(σn+1) > 0, then changing the departure

time from τn to τn + ε, for some sufficiently small ε > 0, will increase the amount

of demand serviced along the route.) Thus by Equation (2.4.4), the rate demand

may be serviced at location ln when the mobile facility departs at time τn is equal

to the rate demand may be serviced at location ln+1 when the mobile facility arrives

at time σn+1.

Let p̃ be the latest critical time of fln(t) before time τn and let q̃ be the latest

critical time of fln+1(t) before time σn. Since both fln(t) and fln+1(t+ TTlnln+1) are

piecewise functions, it follows from Equation 2.4.4 that fln(t) = fln+1(t + TTlnln+1)

for all t in the interval max{p̃, q̃ − TTlnln+1} ≤ t ≤ τn. Thus, if the mobile facility

departs from stop n at time τ̃n = max{p̃, q̃ − TTlnln+1 , σn} instead of time τn and

otherwise follows the original route as specified, the mobile facility will service an

equal amount of demand. Consequently, this modified route remains optimal.

If τ̃n = p̃ or τ̃n = q̃ − TTlnln+1 , then either the mobile facility departs Stop n

or arrives at Stop n + 1 at a critical time and we are done. If n ≥ 1 and τ̃n = σn,

then the mobile facility may instantaneously depart Stop n the moment it arrives

53

and capture an equal amount of demand. By Lemma 2.2.1, we may modify the

route, creating an optimal route without stops where the mobile facility departs the

instant it arrives. Finally, if τ̃n = 0, then the mobile facility must be at the first stop

in the route, so n = 0. In this case, a new optimal route may be defined by starting

at location l1 at time 0 and following the remainder of the route. In either case, a

new optimal route may be defined that skips stop n, proving the Theorem.

Consider the example in Figure 2.1 consisting of two locations separated by

two units of travel time. Suppose an optimal route satisfying Theorem 2.4.1 exists

and somewhere in the route the mobile facility travels from Location 1 to Location 2.

Then the mobile facility must either depart Location 1 at a critical time of Location

1 that allows it to arrive at Location 2 by time 10 (i.e., it must leave at a time

in the set {0, 2, 8}), or it must depart Location 1 so that it arrives at Location 2

at a critical time of Location 2 before time 10 (i.e., it must leave at a time in the

set {1, 5, 8}). Furthermore, the proof of Theorem 2.4.1 shows that a mobile facility

may be assumed never to depart a stop the instant it arrives. Therefore, the mobile

facility will never leave Location 1 for Location 2 at time 0. Similarly, it may be

assumed that the mobile facility will not leave Location 1 for Location 2 at time 8,

since that would cause the mobile facility to arrive at Location 2 at time 10, the

end of the planning horizon. Thus, the mobile facility can be assumed to depart

Location 1 for Location 2 at a time in the set {1, 2, 5} and arrive at Location 2 at

a time in the set {3, 4, 7} in an optimal route.

Similarly, if the mobile facility travels from Location 2 to Location 1 in the

54

route, then it may be assumed to depart Location 2 at a time in the set {3, 6, 7}

and arrive at Location 1 at a time in the set {5, 8, 9}. Note that the optimal route

described in Section 2.2.1 satisfies the results of Theorem 2.4.1.

An immediate consequence of Theorem 2.4.1 is that there exists a discrete set

of times when the mobile facility can be expected to depart from or arrive at each

location. Furthermore, the size of this set is polynomial in the number of critical

times of each location. In particular, the set of times Sl when the mobile facility

can be assumed to depart from or arrive at location l in an optimal solution is,

Sl = (∪l′ 6=l{ql′j + TTl′l|j = 0, 1, . . .Ml′ , ql
′
j + TTl′l < T}) (2.4.5)

∪ (∪l′ 6=l{ql′j − TTll′|j = 0, 1, . . .Ml′ , ql
′
j + TTll′ > 0}) (2.4.6)

∪ {qlj|j = 0, 1, . . . ,Ml}. (2.4.7)

The set Sl contains the Ml + 1 critical times of fl(t). Since 0 and T are common

critical times of all moment demand functions, and since Sl only contains times in

[0, T], each other moment demand function fl′(t) can contribute at most Ml′ times

to Sl. Thus,

|Sl| ≤ 2
∑

l′ 6=l

Ml′ +Ml + 1. (2.4.8)

2.4.1 IP Formulation

The results from Theorem 2.4.1 the allow SMFRP to be modeled as a compact

integer program (IP). Let Sl = {sl0 < sl1 < · · · < sl|Sl|} denote the ordered set of

times a mobile facility can either depart from or arrive at location l. For each

location l ∈ L and each k ∈ {0, 1, . . . , |Sl| − 1}, define the binary variable xl
k to be

55

1 if the mobile facility is at location l during [slk, s
l
k+1) and zero otherwise. Let dlk

be the demand captured by a mobile facility at location l during [slk, s
l
k+1). (i.e.,

dlk = fl(s
l
k)(s

l
k+1 − slk).) The IP can then be formulated as follows,

maximize
∑

l∈L

|Sl|−1∑

k=0

dlkx
l
k (2.4.9)

xl
k + xl′

k′ ≤ 1 for all l, l′ ∈ L, k, k′ ∈ {0, . . . , |Sl| − 1} (2.4.10)

such that slk+1 + TTll′ ≥ sl
′
k′ and sl

′
k′+1 + TTl′l ≥ slk

xl
k ∈ {0, 1} for all l ∈ L, k = 0, 1, . . . , |Sl| − 1 (2.4.11)

Above, the objective function is given by 2.4.9 and records the amount of

demand captured by the mobile facility if it follows the route prescribed by the

binary variables xl
k. Constraint 2.4.10 ensures the mobile facility does not visit two

locations during two time periods if it is not possible to leave one location at the

end of one time period and arrive and the other location at or before the start of

the other time period. Constraint 2.4.11 species the variable as binary.

2.5 Finding an Optimal Route for a Mobile Facility in Polynomial

Time

Theorem 2.4.1 gives a discrete set of times when a mobile facility may be

assumed to depart from a location or arrive at a location each time the mobile

facility travels in an optimal route. Using this result, it is possible to find the optimal

solution for a single mobile facility in polynomial time. To do so, we define a directed

acyclic graph, which we call the routing graph, and find the longest path between

56

v

3 3 3 3 4 4

051050

0 21 3 4 5 6 7 8 9 10
Time

vendstart

Fig. 2.7: The routing graph for routing a single mobile facility from the event points and

locations from Figure 2.1. Nodes vstart and vend are explicitly labeled. There is

one node in the upper row for each time in S1 and one node in the bottom row

for each time in S2. A timeline is drawn below for reference. The node for each

critical time are above that point on the timeline. Each arc with nonzero length

is labeled. Unlabeled arcs have length zero.

a designated source and sink node in the graph. Again let Sl = {sl0 < sl1 < . . . }

denote the ordered set times a mobile facility can either depart from or arrive at

location l. For each location l and each time slk ∈ Sl, we create a vertex vlk in the

graph. If slk < T , an arc is created from vertex vlk to vertex vlk+1 and given a weight

equal to the amount of demand that the mobile facility could service if it was at

that location l during the time period [slk, s
l
k+1]. For each pair of times slk and sl

′
k′ , if

the mobile facility could leave location l at time slk and arrive at location l′ at time

sl
′
k′ , and either time slk or sl

′
k′ are critical times of fl(t) and fl′(t) respectively, then

an arc with weight 0 is created from vertex vlk to vertex vl
′
k′ . A source vertex vstart

is added along with arcs with weight 0 from vstart to each vl0 for each l ∈ L . Finally

a sink node vend is added along with arcs with weight 0 from each node vl|Sl| to vend

for each l ∈ L.

57

Since each arc originates from a vertex representing an earlier time than the

time represented by the vertex at which the arc terminates, no cycles exist in the

graph. Thus, a path through this network from vstart to vend can be thought of as

representing a route for the mobile facility. Each arc on the path from a vertex vlk to

vertex vlk+1 represents the mobile facility providing service at location l from time

slk to time slk+1. The remaining arcs on the path from a vertex vlk to a vertex vl
′
k′ ,

with l 6= l′, represent periods when the mobile facility is traveling between locations

l and l′. The length of the path equals the amount of demand the mobile facility

can capture along this route. Figure 2.7 gives the routing graph for the example

SMFRP scenario presented in Figure 2.1, where the two locations are two units of

travel time apart.

The optimal route can be computed by finding the longest path through the

network from vstart to vend. We do this using a dynamic program that we call the

single mobile facility longest path algorithm (SMFLPA). For each vertex v in the

graph, we compute the length of the longest path from that vertex to vend, denoted

as length(v), and the first arc that should be traversed on that path, denoted as

next(v).

The Single Mobile Facility Longest Path Algorithm:

Step 0: Set length(vend) := 0. Create a sorted list of the remaining vertices in the

network in decreasing order of the time associated with each vertex and with

vstart at the end of the list.

58

Step 1: Remove the vertex v at the top of the list. Set

length(v) := max
(v,v′)

{weight(v, v′) + length(v′)}

and set next(v) to equal the vertex v′ for which this maximum is achieved.

Ties can be broken arbitrarily.

Step 2: If the list is empty, terminate. Otherwise, repeat Step 1.

The routing graph is a directed acyclic graph containing 2+
∑

l∈L |Sl| vertices.

Vertex vend has no outgoing arcs and each other vertex has at most |L| outgoing arcs.

Therefore the routing graph has at most |L|+ |L|∑l∈L |Sl| arcs. Since the routing

graph is a directed acyclic graph, the sorted list of vertices in Step 0 can be computed

using a topological sort, which has a running time that is linear in the number of

vertices of the graph plus the number of edges of the graph. Therefore, the running

time of Step 0 is O(|L|∑l∈L |Sl|) = O(|L|2 ∑l∈L Ml). Each time each time the

maximum is computed in Step 1, the above algorithm makes at most |L| calculations,

one for each arc exiting vertex v. Step 1 is executed 1 +
∑

l∈L |Sl| times. Thus,

executing the remaining parts of the SMFLPA takes running time O(|L|∑l∈L |Sl|) =

O(|L|2∑l∈LMl). Thus the single mobile facility dynamic program has running time

O(|L|2∑l∈LMl), which may be viewed as either linear in the number of arcs in the

routing graph, or polynomial in the number of locations and critical times of the

functions fl(t).

59

2.6 Computational Experience

In the previous two sections, we presented two algorithms for computing the

optimal solution to the SMFRP. The SRDP executes quickly but does not have a

guaranteed polynomial runtime, while the SMFLPA will always execute in polyno-

mial time. Since both of these algorithms compute the optimal solution, in this

section we evaluate the runtimes of the two algorithms when solving a variety of

simulated data sets. In all data sets, locations are chosen as points in the plane and

the travel time between two locations is the Euclidean distance between them

The first type of scenario simulates, at a high level, demand profiles that we

might expect to occur in practice, such as in routing a portable cellular base stations

for a given day. We refer to these scenarios as realistic scenarios. Each realistic

scenario simulates part of a single day, beginning at 7AM and ending at midnight.

The demand profile of each location in the scenario simulates the forecasted demand

from a single event that might occur in practice, such as a sporting event, rush hour

traffic, a county fair, a convention, etc. Next, we define a time window during which

demand from that type of event is generated. For each event of a type, we choose

at random a time tstart when demand generation begins and a later time tend when

demand generation ends inside that time window, although, we specify that each

location must generate demand for service for at least 1 hour. (i.e., tend− tstart ≥ 1.)

During that time period, fl(t) gradually increases to a maximum level of between

4 and 10, remains at that maximum level for a period of time, and then gradually

decreases to zero. The rate of increase and decrease are also chosen at random.

60

Outside of the time period between tstart and tend, demand for service at location l

is generated at rate zero.

The demand profiles at the locations in a realistic scenarios share a specific

structure. Namely, the demand is generated during a single interval of time and

during that interval demand gradually increases to, remains at, and then decreases

from a maximum rate of demand generation back down to zero. To see how these

two algorithms preform in a less structured data set, we created a second type of

scenario where the demand profile of each location displays less structure. We refer

to these scenarios as mathematically challenging scenarios. The planning horizon

of each of these scenarios begins at time 0 and ends at time 100. The demand

profile for a location a mathematically challenging scenario is generated as follows.

The number of pieces in the piecewise constant moment demand function fl(t) for a

location l was chosen at random from a specified range. To generate a wide range of

demand profiles, we specified that each location would have at least 5 and no more

than 40 pieces. To find the length of each step of the piecewise constant function

fl(t), we assign each step a random number between 0 and 1. These numbers are

then normalized so that their sum equals the length of the planning horizon. Each

normalized number is taken to be the length of the corresponding step. The rate

demand is generated by that location (i.e., the height of fl(t)) during that time is

0 with probability p, and otherwise chosen randomly between 0 and 10. We chose

p = 0.5 to provide a reasonably large amount of time when each location does not

require demand for service.

Table 2.1 gives runtime results for the two algorithms for finding the optimal

61

Number of SMFLPA SRDP Ave. Demand
Data Set Locations Runtime Runtime Serviced

MC0 5 0.0006 0.0019 368.098
MC1 10 0.0281 0.0808 433.671
MC2 20 0.4612 3.5862 500.879
MC3 40 4.4695 26.5724 553.538
R0 5 0.0001 0.0001 45.784
R1 10 0.0001 0.0001 62.832
R2 20 0.0001 0.3300 74.767
R3 40 0.0219 3.8556 87.808

Tab. 2.1: Each row in this table gives the averaged results from 25 data sets generated
with the same parameters. Rows containing results from realistic data sets
are labeled with the letter ‘R’ followed by a number identifying the data sets.
Similarly, the rows containing mathematically challenging data sets are labeled
with the letters ‘MC’ followed by a number identifying the data sets. The second
and third columns give the runtime in seconds of SMFLPA and the SRDP. The
average demand serviced in each scenario is in the rightmost column.

solution to the SMFRP. In our computational experiments, the SMFLPA found the

optimal solution for almost every data set in less time that the SRDP. The only

exceptions were data sets where both algorithms were reported to execute in under

0.0001 seconds. These results confirm our analysis, and show that the SMFLPA is

the quicker algorithm to solve the SMFRP. However, as we will discuss in Section 2.7,

the SRDP does have value in that it may more easily be extended than the SMFLPA

to more general cases when the demand functions are not piecewise constant.

2.7 Solving Variants of the SMFRP

The methodologies developed in this chapter can be extended to solve several

variants of the SMFRP. Below we describe several such extensions.

62

2.7.1 The Addition of a Depot

We have created the SMFRP with the assumption that the mobile facility

may start at any location at time 0 and end at any location at time T . Under this

assumption if it is also the case that the mobile facility must start and end the day

at a specific location or depot, the mobile must depart early enough to arrive at

the first location in the route at time 0 and will not return to the depot until after

leaving the last location in the route at time T . However, the model can be easily

modified if the mobile facilities may not depart the depot until time 0 and return

to the depot by time T . Let TTDl be the travel time from the depot D to location l

and let TTlD be the travel time from location l to the depot D. In this variant, the

mobile facility would not be able to provide service to location l before time TTDl or

after time T − TTlD. To modify the instance of the SMFRP, replace each moment

demand function fl(t) with,

f̃l(t) =





fl(t), TTDl ≤ t ≤ T − TTlD;

0, otherwise.

Solving the SMFRP using these modified demand profiles will create the best route

when the mobile facility may only be at a location l between time TTDl and T−TTlD.

Consequently, this route is also an optimal route if the mobile facility must start at

the depot D at time 0 and return by time T .

2.7.2 Applying the SMFRP in a Stochastic Environment

We considered the moment demand function for location l, fl(t), to represent

the deterministic rate at which demand can be serviced by a mobile facility at

63

location l at time t. However, this model may also be applied in a somewhat

stochastic scenario. Specifically, we may assume each step j of fl(t) represents

a Poisson arrival process with average arrival rate hl
j during the period of time

[plj, p
l
j+1). The expected number of arrivals that a mobile facility at location l during

step j would see is hl
j(p

l
j+1 − plj). Consequently, if a mobile facility is at location l

from time σ to time τ , the expected number of arrivals that mobile facility will see

is also
∫ τ

σ

fl(s)ds.

In other words, the expected number of arrivals seen by the mobile facility in this

stochastic interpretation of the SMFRP is equal to the amount of demand serviced in

the SMFRP as initially described. Thus, the problem can be interpreted stochasti-

cally as maximizing the expected number of arrivals the mobile facility could service

along a route.

2.7.3 Other Types of Moment Demand Functions

In this chapter, we have described two heuristics for generating routes for mo-

bile facilities when the moment demand functions are piecewise constant. However,

under certain conditions these heuristics may be extended to more general types of

moment demand functions. Below we describe how to extend both heuristics when

the moment demand functions are continuous. We first describe how to extend the

SMFLPA when we know all times t such that fl(t) = fl′(t + TTll′) for each pair of

location l and l′. We then describe how to extend the SRDP without knowing this

collection of times t.

64

Suppose the mobile facility follows a route (ln, σn, τn)
N
n=0. The amount of

demand serviced can be written as a function of the departure times (τn)
N
n=0 by

Equation 2.4.1. Consequently, when a mobile facility departures location ln in an

optimal solution, τn must satisfy the equation,

∂

∂τn
∆(τ0, τ1, . . . , τN) = 0.

Since,

∂

∂τn
∆(τ0, τ1, . . . , τN) = fln(τn)− fln+1(τn + TTlnln+1),

we have that,

fln(τn) = fln+1(τn + TTlnln+1).

In other words, if the mobile facility departs location ln for location ln+1, then the

rate demand is being generated at the moment the mobile facility departs location

ln must be equal to the rate demand is being generated the moment it arrives at

location ln+1.

If for each pair of location l and l′ all times t when fln(τn) = fln+1(τn+TTlnln+1)

were known, the SMFLPA could be adapted to compute the optimal route. To do so,

for each location l define the set Sl containing all times t such that fl(t) = fl′(t+TTll′)

or fl(t) = fl′(t − TTl′l). Construct the routing graph using the times in Sl as

described in Section 2.5. Running the SMFLPA on this routing graph will find the

optimal route.

The ability to extend the SMFLPA to find the optimal route when moment

demand functions are continuous, and thus the runtime of the algorithm, depends on

the ability to compute ahead of time all intersection points of fl1(t) and fl2(t+TTl1l2)

65

for each pair of locations l1 and l2. In a practical setting, this may not be possible.

However, the SRDP may be extended without knowing these intersection points

beforehand. To extend the SRDP, given two continuous functions g(t) and h(t) and

a time t1 we need to be able to compute the latest time t0 when g(t) ≥ h(t) for

t0 ≤ t ≤ t1 and h(t) > g(t) for t0 − ε < t < t0 for sufficiently small ε > 0. The time

t0 has one of two meanings:

1. t0 is the time when h(t) crosses g(t), and graph of h(t) is higher than the

graph of g(t) to the left of t0, and the graph of g(t) lower than the graph of

h(t) between time t0 and time t1.

2. If h(t) = g(t) for some period of time t0 < t < t0 + ε, the t0 is the time when

the two graphs diverge, with g(t) < h(t) for some period of time the left of t0.

Most often, this can be computed numerically by finding the first intersection of g(t)

and h(t) before time t1. Consequently, it may be more appropriate to extend the

SRDP to solve the SMFRP when moment demand functions take on more general

forms.

Suppose the SRDP is given a candidate sequence (l1, . . . , lN ′) and each moment

demand function fl(t) is continuous instead of piecewise constant. To extend the

SRDP, again define the remaining demand function for each location l by Fl(t) =

∫ T

t
fl(s)ds. In this case, we do not have the predetermined set of critical times for

the moment demand function of each location. Computing (maxl(t), argmaxl(t))

may still be accomplished by beginning at time T and selecting the location ln′ after

ln in the candidate sequence that would allow the mobile facility to leave location

66

ln at the latest time t and arrive at location ln′ by time T (i.e., the location ln′

that maximizes T − TTlnln′ with n′ > n). Ties between two distinct locations ln′

and ln′′ (i.e., ln′ 6= ln′′) may be broken by computing the first time t0 < T where

Fln′ (t+TTlnln′) = Fln′′ (t+TTlnln′′) for t ≥ t0, and Fln′ (t+TTlnln′) 6= Fln′′ (t+TTlnln′′)

for t0 − ε < t < t0 for some sufficiently small ε > 0. Ties between two entries in

the candidate sequence, ln′ and ln′′ , referring to the same physical location (i.e.,

ln′ = ln′′) may be resolved arbitrarily.

Suppose (maxn(t), argmaxn(t)) have been determined from time t1 through

time T , and that Fln′ (t − TTlnln′) ≥ Fln′′ (t − TTlnln′′) for all n′′ = n + 1, . . . , N .

Compute the latest time t0 before time t1 where for some n′′ > n, the graph of

Fln′′ (t−TTlnln′′) crosses the graph of Fln′ (t−TTlnln′) from above on the left, to below

or equal to on the right. Then set (maxn(t), argmaxn(t)) = (Fln′ (t − TTlnln′), n
′)

for t0 ≤ t < t1. Iterating this process will produce (maxn(t), argmaxn(t)).

Just as before, the SRDP should initialize the stop strategy function for loca-

tion ln as r1n(t) = Fln(t) and r2n(t) = n for t > maxn′=n+1,...,N T − TTln,l′n . Again,

initialize the variable offset to equal zero. Suppose the rn(t) has been determined

from time t1 through time T . Then the SRDP will make one of two decisions.

Case 1 (r2n(t1) = n): Compute the latest time t0 before time t1 whenmaxn(t) crosses

Fln(t)+offset from above of the left to below on the right. If t0 exists, define

rn(t) = (Fln(t) + offset, n) for t ∈ (t0, t1) and define for time t0, rn(t0) =

(maxn(t0), argmaxn(t0)). Otherwise, define rn(t) = (Fln(t) + offset, n) for

t ∈ [0, t1)

67

Case 2 (r2n(t1) > n): Find the latest time t0 after time t1 when the graph of slope

of Fln(t), (i.e., fln(t)) crosses the graph of slope of maxn(t) (i.e., flargmaxn(t)
(t))

from above on the left, to below on the right. (Note that the slope of both

functions is constant on this interval by the choice of t0 and t1.) If such a

time t0 exists, define rn(t) = (maxn(t), argmaxn(t)) for t ∈ (t0, t1), assign

offset = maxn(t0) − Fln(t0), and define rn(t0) = (Fln(t0) + offset, n). If

such a time t0 does not exist, then define rn(t) = (maxn(t), argmaxn(t)) for

t ∈ [0, t1).

Iterating this decision process during Step 2 of the SRDP will produce the stop strat-

egy functions that yield the optimal solution when the moment demand functions

are continuous.

2.7.4 Addition of Relocation Costs

In some applications, the services provided by a mobile facility can be equated

with revenue, such as when operating mobile post offices. The operators of the

mobile facility in this context might wish to maximize the service provided or the

revenue brought in by mobile facilities minus the cost of operating the mobile fa-

cilities, which can include relocation costs. The SMFLPA presented in Section 2.5

can be adapted to accommodate these relocation costs. To do so, for each arc from

a node representing location l at some time to a node representing location l′ at

another time, set the weight of the arc to be the negative of the cost of relocating

the mobile facility from location l to location l′. Each time the mobile facility re-

locates, the path representing the route of the mobile facility in the routing graph

68

must traverse an arc with weight equal to the negative cost of relocating. Thus, the

length of a path in this modified routing graph will equal the service provided (or

revenue generated) minus the relocation costs of moving the mobile facility. The

longest path through this modified routing graph will produce the optimal route for

this variant.

2.8 Conclusion

In this chapter we have introduce the SMFRP. The goal of the SMFRP is to

maximize the amount of demand serviced by a single mobile facility over a planning

horizon. We have shown that despite the seemingly complex nature of the SMFRP,

the optimal route for the single mobile facility may be found in polynomial time when

the demand functions are piecewise linear using the SMFLPA. This is a direct result

of the fact that it may be assumed that the mobile facility either departs a location or

arrives at a location at a critical time, each time the mobile facility travels between

two locations. We have also presented a second method for solving the SMFRP

by using the SRDP with a master candidate sequence that is not dependent on

this result. Our theoretical results allow the SRDP to be modified to significantly

reduce runtime. Our computational results demonstrate the SMFLPA executes more

quickly than the SRDP when moment demand functions are piecewise constant.

However, the SRDP may be more easily extended to situations where the moment

demand functions take on more general forms. We have also shown that the SMFRP

may be extended to several additional variants that may arise in applications.

69

3. THE MOBILE FACILITY ROUTING PROBLEM

3.1 Introduction

Mobile facilities are used to provide many types of services. In the previous

chapter, we discussed different types of mobile facilities that share common opera-

tional characteristics, including portable cellular base stations, mobile post offices,

trailer mounted radar speed monitors, mobile medical facilities, mobile kitchens,

and mobile medical clinics. These mobile facilities only provide services while at a

location, and can be rapidly transported between locations; however, no service may

be provided by a mobile facility in transit. We discussed the situation when routing

a single mobile facility (i.e., the SMFRP) and developed exact algorithms for it.

While these algorithms find the optimal solution for routing a single mobile facility,

additional factors must be considered when dealing with multiple mobile facilities

operating in a region. Specifically, it is important to model interactions between the

mobile facilities. For example, two portable cellular base stations positioned close

to each other may both be capable of providing cellular phone coverage to the same

customer. Consequently, when routing multiple mobile facilities it is important to

separate the events generating demand for service from the locations where a mobile

facility may be positioned to provide that service. Furthermore, by separating the

events generating demand from the locations where a mobile facility may be posi-

tioned to provide service, one must give consideration to the rate capacity of each

mobile facility (i.e., the maximum rate a mobile facility may provide service). It is

possible that a subset of events nearby a mobile facility may generate demand at a

higher rate than the rate capacity of the mobile facility.

In this chapter we study the problem of effectively deploying a limited fleet of

mobile facilities when demand for service changes over time. We call this problem

the mobile facility routing problem (MFRP). The MFRP seeks to determine routes

for a fleet of mobile facilities to maximize the amount of demand serviced in a

continuous-time planning horizon. In the MFRP, there is a discrete set of locations

where a mobile facility may be positioned to provide service and a discrete set of

event points generating demand. These event points could be towns, events or

individuals generating demand for service. While at a location, a mobile facility

may service demand from a given subset of event points nearby. Mobile facilities

may depart one location for another location at any time, although a mobile facility

cannot service demand while in transit. In the MFRP, we assume the locations

where a mobile facility may visit, the travel times between locations, the set of

event points generating demand, and the demand for service at each event point over

the entire planning horizon are known ahead of time. We show that the problem

is NP-hard, and then describe several heuristics for generating effective routes for

mobile facilities. We also provide some insight into the types of demand profiles

for which mobile facilities are most effective when compared to the use of static (or

non-movable) facilities.

71

The remainder of this chapter is organized as follows. We will give a formal

introduction to the MFRP in Section 3.2 and show the problem is NP-hard. We then

describe several heuristics for the MFRP in Section 3.3 which utilize the SMFLPA

from Section 2.5 as a building block. Next we provide a large set of computational

experiments in Section 3.4. Section 3.5 provides concluding remarks.

3.2 The Mobile Facility Routing Problem

The MFRP is set in a continuous-time planning horizon, which starts at time

0 and ends at time T . The objective is to determine a set of routes, one for each

mobile facility in a set M , that together maximize the amount of demand serviced.

There is a discrete set of predetermined locations L, and a mobile facility may only

provide service while at one of these locations. At any time during the planning

horizon, a mobile facility may depart from its current location and travel to any

other location in L. The time a mobile facility takes to travel from a location l to a

location l′ is denoted TTll′ . Without loss of generality, we assume these travel times

to satisfy the triangle inequality.

Demand for service is generated by a set of discrete event points E. For each

event point e ∈ E, there is a nonnegative, real-valued moment demand function

de(t) that describes the rate demand is being generated by event point e at time t.

As de(t) describes the rate at which demand is being generated, the total demand

generated by event e between times σ and τ is given by
∫ τ

σ
de(s)ds.

A mobile facility at a location l ∈ L is capable of servicing demand from

72

a specified subset of events El. The subset El may consist of all events within a

specified distance of location l, or possibly some other subset of events defined by

service constraints particular to an application. However, each mobile facility has

a rate capacity C, which is the maximum rate at which the mobile facility can

service demand. For each location l ∈ L, we define fl(t) to be the cumulative rate

of demand for service is being generated at time t by all events that can be covered

from location l (i.e., fl(t) =
∑

e∈El
de(t)). Thus, from time σ to time τ a mobile

facility at location l will service at most
∫ τ

σ
min{C, fl(s)}ds units of demand. A

mobile facility could service less than this amount if demand from one or more of

the events in El is also being serviced by another mobile facility during that time

period.

A route for a mobile facility is a sequence of stops, (ln, σn, τn)
N
n=0, where ln is the

location visited during stop n, σn is the arrival time at stop n, and τn is the departure

time from stop n. In other words, service is provided at location ln during [σn, τn].

We specify that a mobile facility leaving stop n − 1 travels directly to stop n and

immediately begins service upon arrival. Thus in any route, σn = τn−1+TTln−1ln for

n = 1, . . . N . We do not assume that the mobile facility must begin and end its route

at a depot, but rather that each mobile facility always begins at stop 0 of its route

at time 0 and ends at stop N at time T . The requirement that each mobile facility

start and end at a depot is equivalent to adding the constraint that no demand

may be serviced at a location l during [0, TTDl) and (T − TTlD, T] where TTDl and

TTlD are the travel times between the depot D and location l. This constraint

may be enforced by modifying the definition of fl(t) so that fl(t) =
∑

e∈El
de(t) for

73

3

b

1 0.5 1

a 21 c4

(a)

0 2 4 6 8 10
0

2

4

6

8

10

Time (t)

d a(t
)

Rate of Demand Generation at Event a

0 2 4 6 8 10
0

2

4

6

8

10

Time (t)

d b(t
)

Rate of Demand Generation at Event b

0 2 4 6 8 10
0

2

4

6

8

10

Time (t)

d c(t
)

Rate of Demand Generation at Event c

(b)

Fig. 3.1: Panel (a) shows a configuration of the locations and event points. Event points

are represented with squares and locations are represented with circles. The loca-

tions are positioned in a straight line with the travel times between neighboring

locations shown below the dashed arrows. A solid line connects each location to

each event point it can cover. Panel (b) displays the moment demand function,

de(t), for each event point in the configuration.

t ∈ [TTDl, T − TTlD] and fl(t) = 0 otherwise.

We will assume de(t) is a piecewise constant function that may only assume

nonnegative values during the planning horizon [0, T]. Since any reasonable function

for modeling de(t), such as continuous functions, may be approximated arbitrarily

closely by a piecewise constant function, this assumption is not very restrictive.

Figure 3.1 displays the locations and event points for an instance of the MFRP

problem. This example contains four locations, L = {1, 2, 3, 4}, and three event

points, E = {a, b, c}. Suppose each mobile facility in this example has a rate

capacity of 10. A route for a single mobile facility, for example, could start at

74

location 1 and service demand from event point a from time 0 until time 1.5. At

this moment the mobile facility could depart location 1 for location 3. It would

arrive at location 3 at time 3 and could provide service from there for event point

b until time 7. The mobile facility could then immediately depart location 3 and

travel to location 4, servicing demand from event point c from time 8 until the end of

the planning horizon. In this route, 40.5 units of demand are serviced. The mobile

facility services demand from event point a at rate 3 during [0, 1.5], servicing 4.5

(= 3× 1.5) units of demand. It services demand from event point b at rate 4 during

[3, 7], servicing 16 units of demand. Finally, the mobile facility services demand at

rate 10 from event point c during [8, 10], servicing 20 units of demand. Note that

this is an optimal route for a single mobile facility with a rate capacity of 10.

A second mobile facility with a rate capacity of 10 could then be sent on a

route starting at location 1, providing service for event point a during [1.5, 6]. At

time 6, it could travel to location 2, arriving at time 7 and servicing demand from

event point b during [7, 8]. The mobile facility could then be sent back to location 1

to provide service to event point a during [9, 10]. In total, this second route services

22.5 units of demand.

Together, these two routes together define an optimal solution to this instance

of the MFRP with two mobile facilities, each with a rate capacity of 10. However,

this solution is not unique. An equal amount of demand would be serviced if the

first mobile facility departs location 1 for location 3 at any time t ∈ [0, 1.5] and the

second mobile facility arrives at location 1 at time t instead of time 1.5.

In this example, the optimal route for a single mobile facility was also one of

75

the two routes in an optimal solution for two mobile facilities. However, in general

this need not be the case.

3.2.1 Formulating the MFRP as an Infinite Dimensional Mixed Integer Program.

The MFRP may be formulated as an infinite dimensional mixed integer pro-

gram (IDMIP). The program seeks to find functions h̃mle(t) that describe the rate

demand from event point e is serviced by mobile facility m at location l at time t.

Let x̃ml(t) be 1 if mobile facility m is at location l at time t, and 0 otherwise. Let

Le = {l : e ∈ El} be the set of locations from where service may be provided to

event point e. The MFRP can be formulated as follows:

Maximize
∑
m∈M

∑

l∈L

∑
e∈El

∫ T

0

h̃mle(s)ds (3.2.1)

subject to:
∑
e∈El

h̃mle(t) ≤ Cx̃ml(t) for each m ∈ M, l ∈ L, t ∈ [0, T] (3.2.2)

∑
m∈M

∑

l∈Le

h̃mle(t) ≤ de(t) for each e ∈ E, t ∈ [0, T] (3.2.3)

x̃ml(t) + x̃ml′(t
′) ≤ 1 for each m ∈ M, l ∈ L, t, t′ ∈ [0, T],

and t− TTl′l < t′ < t+ TTll′ (3.2.4)

h̃mle(t) ≥ 0 for each m ∈ M, l ∈ L, e ∈ El

and t ∈ [0, T] (3.2.5)

x̃ml(t) ∈ {0, 1} for each m ∈ M, l ∈ L, t ∈ [0, T] (3.2.6)

The objective function maximizes the amount of demand serviced. If mobile

facility m is at location l at time t, Constraint (3.2.2) ensures that the rate capacity

of mobile facility m is not violated. If mobile facility m is not at location l at time

76

t, then x̃ml(t) = 0, which in turn forces h̃mle(t) = 0 for each event point e ∈ El.

Constraint (3.2.3) ensures that for each time t, the rate demand is serviced from

event point e is no greater than the rate demand is generated by event point e.

Constraint (3.2.4) enforces the travel times. If mobile facility m is at location l at

time t, then this constraint says mobile facility m may not service demand from

any other location l′ at time t′ if either mobile facility m could not leave location l′

at time t′ for location l and arrive by time t, or mobile facility m could not leave

location l at time t and arrive at location l′ by time t′. There are an infinite number

of such constraints, since these constraints are defined for a continuum of times.

While there has been considerable work on infinite dimensional linear pro-

grams, to our knowledge, not much is known in terms of solution methods for ID-

MIPs. Consequently, the focus of this chapter is on discussing heuristics for solving

the MFRP. We note however, that to compare the solution quality of our heuris-

tics, we consider a particular discretization of the IDMIP for the MFRP that limits

arrival and departure times to a finite set of times.

3.2.2 Related Work

Facility location is a well studied field within operations research. For back-

ground on facility location theory, see the excellent monographs by [19] and [36]. To

the best of our knowledge, the MFRP has not been studied before. However, there

has been considerable work in the literature on mobile facilities (i.e., a facility that

can be relocated in the solution to a problem). We review some of the most closely

related problems below.

77

One well studied problem is the dynamic facility location problem that seeks

to locate facilities to service all demand during a multi-period planning horizon at

minimum cost. (For references, see [3], [10], [23], [41], [49], and [50].) The multi-

period planning horizon consists of a discrete set of periods. Facilities with sufficient

capacity must be sited to service all demand during each of these periods. Typically,

a cost is incurred to relocate, remove, or add a facility however, the problem does not

give specific consideration to the time it takes to relocate a facility. This may be well

suited for long planning horizons when the facilities are infrequently moved, or for

scenarios where the time it takes to relocate a facility is relatively short compared to

the planning horizon. The continuous-time planning horizon in the MFRP provides

an ability to consider problems when the time to relocate a mobile facility may

constitute a significant portion of the planning horizon, as is the case, for example,

in the telecommunications setting.

Mobile facilities can be expensive to own and deploy. Consequently, fleets of

mobile facilities can be of limited size. In such cases, the limited fleet of mobile

facilities may lack the sufficient capacity to cover all demand. Furthermore, some

demand may be unduely difficult to cover. For example, to cover an event point

generating a small amount of demand for a short period of time that is far from all

other demand points, a mobile facility would need to spend significant time traveling

to cover that small amount of demand. In other applications, such as routing mobile

post offices, demand not covered can be serviced by fixed facilities, even though this

is less convenient to the customer. In this sense the MFRP resembles a dynamic

version of the maximum covering location problem (MCLP). Given a set of demand

78

points, and a set of potential facility sites, the MCLP seeks to site a fixed number

of facilities to cover the maximum possible amount of demand. Typically, demand

is considered to be covered if it is within a given service radius of a facility. [19],

chap. 4 is a good survey for background on the MCLP. Other work on the MCLP

includes [11], [13], [33], and [40]. Below we show that the MCLP may be considered

as a special case of the MFRP.

A number of publications have studied covering path problems. These prob-

lems can be separated into two classes. The first class contains those problems

where all demand must be covered, such as [14], [15], and [17]. The second class

contains those problems that seek to maximize coverage, sometimes as one objective

in a multiobjective optimization problem, such as [16] and [18]. The problems in

this second class resemble the MFRP in that they seek to determine a collection

of paths that maximize demand coverage. However, unlike the MFRP, demand in

these problems only need be covered at some point along the path. In the MFRP,

the demand covered is dependent on the period of time the mobile facility spends

at each location.

[8] and [21] studied a problem related to mobile facility location. Similar to the

MFRP, this problem is set in a continuous-time planning horizon. Given a collection

of continuously-moving points in the plane, the objective is to find paths for each of

k continuously moving facilities so that at any time t, the distances from the points

to the closest facility minimizes a given metric. Since facilities move continuously

and are always providing service, the facilities in this problem differ from those used

in the MFRP, where mobile facilities may only provide service while stationary.

79

Additionally, demand in the MFRP does not originate from moving customers and

varies over time.

Furthermore, unlike the problem studied by [8] and [21] and the dynamic

facility location problem, the value of the demand serviced by a mobile facility at a

location l from an event point e in the MFRP is always independent of the location

l (provided e ∈ El). In other words, if that demand was instead serviced by a

different mobile facility and a second location l′, the contribution of that demand

to the objective function would remain unchanged. This is a result of the objective

of the MFRP, which is to maximize the total demand serviced. The other problems

referenced here in mobile facility location generally seek to minimize costs that may

be dependent on both the location l from which the facility and the demand point

e being serviced.

3.2.3 Computational Complexity of the MFRP

The maximum covering location problem (MCLP) can be viewed as a special

case of the MFRP, thereby proving that the MFRP is NP-hard. Given a set of

demand points J , each with demand dj, a set of potential facility sites I, and the

distances between each facility site and each demand point, the MCLP seeks to site

a given number of facilities to cover the maximum possible amount of demand. A

facility at a site is capable of providing coverage to all demand points within a given

radius r of that site. The MCLP is well known to be NP-hard.

Theorem 3.2.1. The MFRP is NP-hard.

80

Proof. We give a polynomial reduction of the decision version of the MCLP (named

Decision-MCLP) to the decision version of the MFRP (Decision-MFRP), which is

to determine if the given facilities can be sited to cover at least X units of demand.

Similarly, Decision-MFRP is to determine if the given mobile facilities can be routed

to service at least X units of demand. Note, that it is easy to see that Decision-

MFRP is in NP.

Given an instance of Decision-MCLP, we transform each facility site i ∈ I into

a location l(i). The length of the planning horizon, T , is defined to be half the

minimum travel time between two locations. As a result, each mobile facility will be

able to visit at most one location during the planning horizon. Each demand point

j ∈ J is transformed into an event point e(j). The event point e(j) will generate

demand at the constant rate of
dj
T
for the entire length of the planning horizon. Thus,

over the planning horizon, event point e(j) generates an equal amount of demand as

demand point j. Event point e(j) will be in the set El(i) in Decision-MFRP if and

only if demand point j could be covered by a facility at site i in Decision-MCLP. A

mobile facility is created in Decision-MFRP for each facility in Decision-MCLP. The

rate capacity of each mobile facility is defined to be
∑

j∈J
dj
T
. With this rate capacity,

each mobile facility would be capable of servicing all demand in the scenario, if it

were serviceable from one location.

Any solution to the instance of Decision-MCLP can be realized as a solution to

Decision-MFRP with an equal objective value. To create this solution, for each site

i where a facility is placed in a given solution to Decision-MCLP, we place a mobile

facility for the entire planning horizon at each location l(i). Whenever demand from

81

a demand point j is being covered, we assign all demand from event point e(j) for

the entire planning horizon to the closest mobile facility.

Note that a mobile facility may visit at most one location in any solution to

this instance of the MFRP. To transform a solution of this MFRP instance into

a solution to the MCLP that covers at least as much demand, a facility is placed

at site i if location l(i) is visited by a mobile facility. If this places less than the

total number of facilities, then position the remaining facilities at arbitrary, unused

sites. If demand point j is covered in this solution, then by optimality event point

e(j) is being serviced by one or more mobile facilities during the planning horizon

[0, T]. Thus the demand covered in this solution to the MCLP is no less than the

demand serviced in the solution of the MFRP instance. Therefore this is a solution

to the MCLP that covers at least as much demand. Consequently, Decision-MFRP

is NP-complete and thus, the MFRP is NP-hard.

3.3 Heuristics for the MFRP

In this section, we discuss heuristics for the MFRP with multiple mobile fa-

cilities, which is NP-hard. The SMFLPA introduced in Section 2.5 gives a method

for calculating an optimal route for a single mobile facility in polynomial time. This

algorithm was derived using Theorem 2.4.1, which says that each time a mobile fa-

cility relocates, it may be assumed to either depart from or arrive at a location at a

critical time. Unfortunately, Theorem 2.4.1 does not extend to the general case with

multiple mobile facilities. Recall the example problem in Figure 3.1 and the optimal

82

routes for two mobile facilities. In any optimal solution, without loss of generality,

the second mobile facility leaves location 1 at time 6 and arrives at location 2 at

time 7; however, neither is time 6 a critical time of location 1 nor is time 7 a critical

time of location 2. This occurs because the first mobile facility departs location

3 at time 7. If one were to create a function representing the amount of demand

generated by event b that is not serviced by the first mobile facility, then it may

be observed there is a discontinuity at time 7 caused by the departure of the first

mobile facility from location 3 at time 7. This discontinuity, which is not a critical

time of f2(t), causes the route of the second mobile facility to depart location 1 at

time 6 and arrive at location 2 at time 7. One may view time 6 as the critical time 8

of location 4 translated backward in time by TTl3l4 and TTl1l2 . It is possible to con-

struct an example where given |M | mobile facilities, a facility leaves from or arrives

at a location at a time that is a critical time of some location translated forward or

backward (or a combination of both) of a critical time by the travel times between

|M | pairs of locations.

In general, the potential departure times for a mobile facility from a location

l are dependent on the critical times of the locations in L and on the demand from

the events in El serviced by the other mobile facilities. Each time a mobile facility

relocates from one location to another in an optimal solution, it may be assumed

that the mobile facility either departs or arrives either at a critical time or at a time

when another mobile facility is arriving or departing from some, possibly different

location. If not, by a similar argument to the proof of Theorem 2.4.1, the mobile

facility could either leave earlier or later and service more demand. For the MFRP,

83

there seems to be no obvious way to generate a polynomially bounded set of discrete

times when a mobile facility may depart from or arrive at a location.

It remains an open question whether an optimal solution to the MFRP always

exists in which each time a mobile facility travels, it departs a location at a time

that is a translation of a critical time forward and backward by a sequence of at

most |M | travel times. Even if this were true, the number of potential departure

times would still be exponential in |M |, since the number of different sequences

(TTlnk
lmk

)
|M |
k=0 is exponential in |M |. Furthermore, even if there was a method to

reduce this set of potential departure times so that its size is polynomially bounded,

the problem of determining the optimal routes for a fleet of mobile facilities is still

extremely difficult. For example, in perhaps the simplest case where each mobile

facility could arrive at each location only at time 0 and depart only at time T , the

end of the planning horizon, we have observed that solving the MFRP is no easier

than solving the MCLP.

Consequently, our strategy has been to develop several heuristics for generating

routes for the MFRP, which we describe below. We then apply a local search method

to improve the routes. As each heuristic executes, a record is kept of the demand

not being serviced in the instance of the MFRP. We define the variable d̃e(t), for

each e ∈ E, to be the rate at which demand that is not serviced is being generated

at event point e at time t. Similarly, for each location l ∈ L, we define the variable

f̃l(t) to be the cumulative rate demand that is not serviced is generated by the event

points in El. Thus, f̃l(t) =
∑

e∈El
d̃e(t) for each t ∈ [0, T]. Furthermore, we define

d̃me(t) to be the rate demand is being serviced by mobile facility m from event point

84

e at time t and f̃ml(t) to be the rate that mobile facility m is servicing demand from

location l at time t.

We use the SMFLPA when generating routes. Given the subset of locations

Lm that mobile facility m may visit, the SMFLPA can be used to generate a route

that services the maximum possible amount of demand currently not serviced from

these locations. In other words, the SMFLPA can be seen as a function that takes in

the remaining serviceable demand at each location in Lm, the travel times between

those locations, and the rate capacity of a mobile facility, and returns a sequence

of locations for the mobile facility to visit, the arrival and departure times at each

location in the sequence, and functions f̃ml(t) describing the amount of demand

serviced by mobile facility m from location l at each time t.

3.3.1 Demand Assignment

After a route is created for a mobile facility using the SMFLPA, we still must

specify which event points are being serviced while the mobile facility is at each

stop on its route, and the rate demand is being serviced at each time t from each of

these event points. The phase of our heuristics that determines the demand from

each event point serviced by each mobile facility is called demand assignment. For

stop n of the route, the demand assignment phase of each of our heuristics initially

set d̃me(t) = 0 for all e ∈ Eln and all times t between the arrival time σn and the

departure time τn. The event points in Eln are sorted according to one of four

criteria, which we specify below. Taking the first event point e in the list, we define

d̃me(t) at each time t ∈ [σn, τn] to be the minimum of the rate demand currently

85

not serviced is being generated at event point e (i.e., d̃e(t)), and the unused rate

capacity of the mobile facility. Accordingly, we then subtract d̃me(t) from d̃e(t).

This process is repeated for each event point in the sorted list until either the list

has been exhausted or the rate capacity of the mobile facility has been reached for

the entire duration of the stop. The four sorting criteria we consider are:

Sort 1: Sort the event points in increasing order of the number of locations from

which a mobile facility could provide service to the event point (i.e., |Le|). For

event points serviced by the same number of locations, sort them in increasing

order of the amount of demand not serviced during Stop n.

Sort 2: Sort the event points in increasing order of the number of locations from

which a mobile facility could provide service to the event point (i.e., |Le|). For

event points Serviced by the same number of locations, sort them in decreasing

order of the amount of demand not serviced during Stop n.

Sort 3: Sort the event points in increasing order of the amount of demand not

serviced during Stop n.

Sort 4: Sort the event points in decreasing order of the amount of demand not

serviced during Stop n.

Intuitively, Sort 1 and Sort 2 first assign demand from those event points that can be

serviced from fewer locations, making it less likely that the route of another mobile

facility will be able to service demand from those event points. Sort 1 and Sort 3

attempt to first assign demand from those event points with small amounts of not

86

serviced demand by sorting the event points by increasing order of the amount of

demand not serviced. This would leave more event points with large amounts of

demand that is not serviced, which would hopefully allow other routes to be created

having stops where larger amounts of demand is serviced. Alternatively, sorting the

event points in decreasing order of the amount of demand not serviced in Sort 2 and

Sort 4 would leave more event points with demand that is not serviced, hopefully

allowing any route created to minimize travel time, during which a mobile facility

services no demand.

3.3.2 Sequential Routing for the MFRP

The sequential routing heuristic generates a route for one mobile facility at

a time. Upon initialization, this heuristic sets d̃e(t) = de(t) for each e ∈ E and

f̃l(t) = fl(t) for each l ∈ L. Each subsequent stage of the heuristic generates a route

for a single mobile facility considering all locations (i.e., Lm = L) using the SMFLPA.

Thus, each time a route is generated, it will service the maximum possible amount

of demand that was previously not serviced. Since the SMFLPA only determines

locations for the mobile facility to visit and an arrival and departure time for each

stop in the route, after each time a route is created using the SMFLPA the demand

assignment phase is used to determine how demand will be assigned from event

points to the stops in the route. Finally, the variables d̃e(t) and f̃l(t) are updated to

reflect the demand serviced by the new route. The steps of the sequential routing

heuristic are outlined below.

Step 0 (Initialization): For each e ∈ E, initialize d̃e(t) := de(t). For each l ∈ L,

87

initialize f̃l(t) := fl(t).

Step 1 (Route Determination): Choose the next mobile facility to be routed.

Run the SMFLPA, using the capacitated remaining serviceable demand func-

tions f̃C
l (t) = min{C, f̃l(t)} for each location l, to determine the location

visited, and the arrival and departure times for each stop in the route.

Step 2 (Demand Assignment): Compute the demand serviced from each event

point for each stop in the route following the method for demand assignment

described in Subsection 3.3.1.

Step 4 (Demand Update): Update d̃e(t) for each e ∈ E and f̃l(t) for each l ∈ L

to reflect the demand that is covered by this route.

Step 5: If all mobile facilities have been assigned a route or all demand is serviced,

terminate. Otherwise return to Step 1.

3.3.3 Generating Routes with an Insertion Heuristic

The second heuristic we present is an insertion heuristic. This heuristic as-

sociates a set of locations Lm with each mobile facility m. Each mobile facility m

will only visit locations in Lm on its route. Each set Lm is initially empty. At

each stage of the heuristic, a location l̃ is considered for insertion into each set Lm.

When location l̃ is being considered for insertion into Lm, the SMFLPA is used to

calculate the demand serviced along the best route for mobile facility m, assuming

it may only visit the locations in Lm and location l̃ and assuming mobile facility

m may only service demand it is already servicing, or demand that is currently not

88

serviced at these locations. If the route followed by at least one mobile facility may

be improved by allowing it to visit location l̃, then location l̃ is then added to the

set Lm for the mobile facility m whose route shows the greatest improvement by the

addition of location l̃. The routes of the other mobile facilities remain unchanged

during this iteration. The process is repeated until no more improvements may be

found. The details of the insertion heuristic are outlined below.

Step 0 (Initialization): For each e ∈ E, l ∈ L, and m ∈ M , initialize d̃e(t) :=

de(t), initialize f̃l(t) := fl(t), initialize the set Lm to be empty, initialize

d̃me(t) := 0, and initialize f̃ml(t) := 0. Furthermore, initialize the set L̃ := L.

Step 1 (Insertion Selection): Select the location l̃ ∈ L̃ with the largest total

amount of demand not serviced during the planning horizon. For each mobile

facility m with l̃ /∈ Lm, we do the following. For each location l ∈ Lm ∪ {l̃},

define the function δl(t) = min{C, f̃l(t)+f̃ml(t)}. Calculate how much demand

could be serviced by mobile facility m by executing the SMFLPA using the

functions δl(t) as the amount of demand that can be serviced from location l

by this mobile facility and the travel times between the locations in Lm ∪ {l̃}.

Step 2 (Route Selection): If it was found in Step 1 that the route of no mobile

facility can be improved by allowing it to visit location l̃, then remove location

l̃ from the set L̃ and goto Step 5. Otherwise, the route that may be most

improved by visiting location l̃ is changed to follow the new route calculated

in Step 1. In the case where this maximum improvement may be realized

by inserting location l into several routes, we choose the route that was first

89

considered. Location l̃ is added to Lm.

Step 3 (Demand Assignment): Demand from event points is assigned to each

stop in the route following the method for demand assignment described in

Subsection 3.3.1. If no demand remains that may be serviced from location l̃

or l̃ ∈ Lm for every mobile facility m, then location l̃ is removed from L̃.

Step 4 (Demand Update): Update d̃e(t) for each e ∈ E and f̃l(t) for each l ∈

Lm to reflect the demand that is now covered or no longer covered by this new

route.

Step 5: If L̃ is empty, terminate. Otherwise, return to Step 1.

3.3.4 Local Search for the MFRP

We now describe a local search algorithm that looks for improvements to routes

generated by the above heuristics. A naive method for looking for improvements

could examine solutions in a local search neighborhood defined by the following two

types of exchanges:

• For a stop n in a route r, try changing the location visited in stop n to a

different location, maintaining either the arrival and departure times for stop

n, or the departure time from stop n− 1 and the arrival time at stop n+ 1.

• Let r1 and r2 be a pair of routes. Delete stop nr1 from route r1, so that

route r1 travels from stop nr1 − 1 to stop nr1 +1. (Thus, the demand that was

serviced during stop nr1 is not longer serviced.) Next, delete all of route r2, and

90

recalculate route r2 using the single mobile facility dynamic program. (This

could improve route r2 by allowing it to service some of the demand previously

serviced during stop nr1 on route r1.) Finally, delete the remaining stops

in route r1 and recalculate route r1 using the single mobile facility dynamic

program.

Implementing such a local search procedure produces two distinct problems. The

first type of exchange will never improve the routes generated by either heuristic.

The insertion heuristic associates with each route a set of locations that may be

visited, and then uses the SMFLPA to calculate a route that services the maximum

amount of demand that is not serviced while visiting only the stops in that set. It

terminates when for each route, no improvement may be found by allowing that

route to visit another location. Consequently, each route generated by the insertion

heuristic cannot be improved by changing the location visited in a stop to any other

location. In the sequential heuristic, when each route was created, it serviced the

maximum amount of demand that was not serviced at that time. Since demand

being serviced at some stage of the sequential routing heuristic will remain serviced

during the execution of the remaining steps of the sequential routing heuristic, the

demand not serviced immediately prior to the generation of any route includes all

demand that is not serviced by the final routes produced by the sequential heuristic.

Consequently, after the sequential heuristic, if a stop in a route is replaced with a

stop at a different location, the mobile facility will service no more demand after

this exchange than it does on its route before the exchange.

91

Secondly the running time of a local search algorithm that considers every

exchange of the second type blows up wildly. This is because the SMFLPA is

executed each time the second type of exchange is considered. In our experience,

searching over every exchange of the second type could take an unreasonably long

time as most exchanges in the neighborhood are fruitless. Motivated by identifying

types of neighborhoods that can yield improvements, we look at a similar special

type of local search neighborhood where a lower bound on the improvement may be

computed rapidly.

Suppose we have two distinct routes, route r1, (l
1
n, σ

1
n, τ

1
n)

N1
n=0, and route r2,

(l2n, σ
2
n, τ

2
n)

N2
n=0, and that route r1 was generated prior to route r2 in the sequential

routing heuristic. All demand serviced in route r2 was not being serviced when route

r1 was generated. Consequently, route r1 cannot be improved by servicing demand

that is serviced along route r2. However, it may be possible to improve route r2

if the mobile facility following route r2 was allowed to service some of the demand

serviced in route r1.

For each pair of routes in a solution to the MFRP generated by one of our

heuristics, our local search algorithm looks for opportunities to improve the solution

by removing a stop from route r1, inserting it into route r2, and filling in the gap

in route r1 with demand that is not serviced. Specifically, if stop (l1n0
, σ1

n0
, τ 1n0

) is

removed from route r1 and inserted into route r2, we temporarily assume the arrival

time and departure time of stop (l1n0
, σ1

n0
, τ 1n0

) are preserved. Since travel times are

assumed to obey the triangle inequality, this produces a unique time t0 when the

mobile facility following route r2 must deviate from route r2 to arrive at location l1n0

92

r

Before Exchange

T0

0 T
2

Route 1

Route r

(a)

T0

0 T

After Exchange

2Route

1

r

Route r

(b)

Fig. 3.2: An example of an exchange in a local search algorithm. Boxes above each time-

line each represent a stop along a route. The solid black box represents a stop

moved from route r1 to route r2. The demand lost in the exchange is shaded

by horizontal and vertical crossing lines. The demand added in the exchange is

shaded with diagonal crossing lines.

at time σ1
n0

and a unique time t1 when the mobile facility returns to route r2 after

departing location l1n0
at time τ 1n0

. The demand previously serviced along route r2

between time t1 and time t2 is no longer serviced by this mobile facility.

Route r1 no longer contains stop n0, which allows the mobile facility following

this route to stay longer at stops n0−1 and n0+1, possibly servicing more demand.

To calculate the amount of additional demand serviced, we define the set S of poten-

tial departure times from stop n0−1. By a similar argument to the proof of Theorem

2.4.1, we can assume the mobile facility will either depart stop n0 − 1 at a disconti-

nuity of fln0−1(t) or τ
1
n0−1, or arrive at stop n0 + 1 at a discontinuity of fln0+1(t) or

σn0+1. Specifically, S will contain the discontinuities of f̃ln0−1(t) during the interval

of time between (τ 1n0−1, σ
1
n0+1 − TTln0−1ln0+1), the discontinuities of f̃ln0+1(t) during

(τ 1n0+1 + TTln0−1ln0+1 , σ
1
n0
), and the times τ 1n0−1 and σ1

n0+1 − TTln0−1ln0+1 . Sort S and

denote the sorted order as S = {s0 < s1 < · · · < sK}. To efficiently compute the

best time to leave stop n0 − 1 for stop n0 + 1 after time τn0 , we initially assume the

93

mobile facility departs stop n0 − 1 at time τn0−1. We then work forward through

the times sk in S, computing the amount of demand that can be serviced if the

mobile facility departs stop n0 − 1 at time sk and arrives at stop n0 + 1 at time

sk + TTln0−1ln0+1 . To make this computation for time sk, it suffices to compute the

additional demand serviced from stop n0 − 1 between times sk−1 and sk, and the

amount of demand no longer serviced during stop n0+1. (i.e., the demand serviced

from stop n0 +1 between times sk−1 + TTln0−1ln0+1 and sk + TTln0−1ln0+1 .) This pro-

cedure gives an efficient method for computing the locally optimal time the mobile

facility should depart stop n0 − 1 for stop n0 +1. The steps of the procedure are as

follows:

Step 0: Initialize k := 1, D− := 0, D+ :=
∫ σ1

n0+1

s0+TTln0−1ln0+1
f̃ln0+1(s)ds. Then initial-

ize kmax := 0 and Dmax := D+.

Step 1: Update the variable D+ := D+− ∫ sk+TTln0−1ln0+1

sk−1+TTln0−1ln0+1
f̃ln0+1(s)ds. Update the

variable D− = D− +
∫ sk
sk−1

f̃ln0−1(s)ds.

Step 2: If D− +D+ > Dmax, set Dmax := D− +D+ and kmax := k.

Step 3: If k = K, terminate. Otherwise, set k := k + 1.

At the end of this procedure, skmax gives the locally optimal time that the mobile

facility following should depart stop n0 − 1 for stop n0 + 1.

To see if this exchange produced an improvement, one may wish to look if the

demand serviced along route r1 and route r2 after the exchange is greater than the

demand serviced along the two routes before the exchange. This is equivalent to

94

computing the difference in the amount of demand serviced after the exchange that

was not serviced before the exchange, and the amount of demand serviced before the

exchange that is not serviced after the exchange. The additional amount of demand

serviced after the exchange is the amount demand serviced in route r1 between

times τ 1n0−1 and σ1
n0+1. The amount of demand that is no longer serviced after

the exchange is the amount of demand previously serviced along route r2 between

times t0 and t1. (We note this may count the demand from an event point twice

if it was covered by route 2 before the exchange and route r1 after the exchange.

However, this demand will cancel out in the final calculation.) The difference in

these two is the net change in the amount of demand serviced. If this net change is

positive, this is an improvement in the route. If an improvement is found, we delete

route r2 and stop n0 from route r1, leaving the remainder of route r1 intact, and

recompute route r2 using the SMFLPA to service the maximum amount of remaining

demand. After demand assignment to this new route, we delete the remaining stops

in route r1 and recompute route r1 using the SMFLPA. However, this operation

is computationally expensive. Thus, we only will perform such an operation after

considering all possible exchanges and selecting the one that potentially yields the

most improvement.

Notice since the arrival time and departure time of stop n0 of route r1 are

preserved when it is inserted into route r2, even if the difference in the demand

serviced after the exchange is negative, an overall increase in the amount of demand

service could be found by recomputing route r1 and route r2 using the SMFLPA

in the same manner as if an improvement was found. For this reason, we define a

95

negative threshold value ∆ and consider all exchanges where the change in the total

demand serviced along the two routes after the exchange is greater than ∆.

To start the local search procedure, we define an empty tabu list T that will

keep track of exchanges of a stop between routes that are not to be considered again.

Each iteration of the local search algorithm searches over all such exchanges not in

the tabu list of a stop between two routes and selects the exchange yielding the

greatest improvement. If the greatest difference in the amount of demand serviced

is less than ∆, we terminate. Otherwise, the two routes are recalculated as follows.

We first delete the stop n0 that was moved from route r1 to route r2 and delete all

stops originally in route r2 (i.e., (ln, σ
2
n, τ

2
n)

N1
n=0), temporarily leaving the remainder

or route r1 intact. Next, we recompute route r2 using the SMFLPA to generate

a new route r2 servicing the maximum amount of currently not serviced demand.

Demand assignment is performed for the new route r2 using the procedure described

in Section 3.3.1. Now, to recalculate route r1 we delete the remaining stops in route

r1 and then recompute route r1 using the SMFLPA to service the maximum amount

of demand currently not serviced. Demand assignment is performed for the new

route r1 using the procedure described in Section 3.3.1. If the total demand serviced

along the new route r1 and route r2 is not more than before the exchange, we revert

to the two routes before the exchange and add that exchange to T . Otherwise, the

new routes are kept. The local search algorithm continues to iterate until no further

improvement can be found. The details of the local search procedure are outlined

below.

96

Step 0: Initialize r1 := −1, r2 := −1, n0 := 0, δ := ∆. Initialize T to be empty.

Step 1: For each pair of routes, a and b, and for each stop n in route a, do the

following. Consider moving the stop from route a to route b, preserving its

arrival and departure time. Compute the demand that may no longer be

serviced along route b if stop n must be visited and store it as δ1. Compute

the locally optimal time the mobile facility following route a must leave stop

n − 1 for stop n + 1. Store the additional demand serviced along route a at

stops n − 1 and n + 1 as δ2. If δ < δ2 − δ1, set r1 := a, r2 := b, n0 := n, and

δ := δ2 − δ1.

Step 2: If δ ≤ ∆, terminate. Otherwise, delete stop n0 from route r1, leaving the

remainder of route r1 intact, and delete route r2. Recalculate route r2 using the

SMFLPA and allowing the mobile facility to visit any location. Run demand

assignment for each stop in the new route r2. Next, delete the remaining

stops in route r1 and recalculate route r1 using the SMFLPA and allowing the

mobile facility to visit any location. Run demand assignment for each stop in

the new route r1. If this does not produce an improvement, add the exchange

of stop (ln0 , σ
a
n0
, τan0

) from route r1 to route r2 to T and revert to the previous

routes. Return to Step 1.

Given two routes generated by the sequential algorithm, route r1 and route r2,

if route r1 was generated after route r2, no improvement will be found by trying to

remove a stop from route r1 and insert it into route r2. This is because both route

r1 and route r2 were generated to service the maximum amount of demand that

97

was not serviced at the time of their generation. Thus route r2 will not improve by

the addition of a stop from route r1, and route r1 will not improve by the addition

of demand currently not serviced. Thus, when running the local search algorithm

on routes generated from the sequential routing heuristic, we only consider pairs of

routes where route r1 was generated before route r2.

3.4 Computational Results

In the previous section, we described two heuristics to generate solutions for

the MFRP, and a local search procedure that attempts to improve a given solution.

During execution, both these heuristics employ one of four sorting orders, which

are defined in Section 3.3, to assign demand coverage. We have developed a variety

of simulated data sets to test these heuristics. These data sets are generated with

varying parameter values and demand profiles to represent a wide range of data.

The one parameter we keep fixed is the rate capacity of each mobile facility, which

we fix at 10. Fixing this parameter value does not restrict the scope of the data

sets. Given some other data set with a different rate capacity C, the routes in the

optimal solution and our heuristic solutions will not change if rate capacity of each

mobile is changed to 10, and the rate demand is generated at each event point at

time t is scaled by 10
C
. In every data set, all locations and events are positioned in

a rectangular region of the plane. The travel time between each pair of locations is

given by the Euclidean distance between them. A mobile facility at a location may

provide service to events within a given distance of that location.

98

It is important to note the scope of demand profiles for the MFRP when sim-

ulating the demand in data sets. In particular, we are interested in studying the

use of mobile facilities to provide service over a large geographic region with a dy-

namic demand profile. When demand is generated at a relatively constant rate for

a large portion of the planning horizon, it is unlikely that mobile facilities could

be used more efficiently than fixed facilities. In such a case, a static model may

be more appropriate for determining fixed locations for the facilities. One of the

greatest uses of mobile facilities is to provide service when demand levels are chang-

ing significantly over time. Thus, we do not wish to study scenarios where many

event points generate demand at a relatively constant rate for a large percentage of

the planning horizon. Similarly, we also do not wish to study scenarios with many

locations where demand could be serviced at a relatively constant rate for the en-

tire planning horizon. Keeping this in mind, we have created two distinct types of

simulated scenarios for the MFRP.

The first type of scenario simulates, at a high level, demand profiles we might

expect to occur in practice, such as in routing a fleet of portable base stations over

a day. We refer to these scenarios as “realistic” scenarios. Each realistic scenario

simulates part of a single day, beginning at 7 AM and ending at midnight. The

demand profile of each event point in the scenario simulates the forecasted demand

from a single event that might occur in practice, such as a sporting event, rush hour

traffic, a county fair, a convention, etc. For each type of event point, we define

a time window during which that type of event point may generate demand. For

each event point e of that type, we choose at random a time tstart when demand

99

generation begins and a later time tend when demand generation ends inside that

window, although, we specify that each event point must generated demand for at

least 1 hour (i.e., tend−tstart > 1). During this time period, de(t) gradually increases

to a maximum level, remains at that maximum level for a period of time, and then

gradually decreases to zero. The rate of increase and decrease are also chosen at

random. Outside of the time period between tstart and tend, no demand will be

generated by event point e.

The demand profiles at the event points in a realistic scenarios share a specific

structure. Namely, the demand is generated during a single interval of time, and

during that interval demand gradually increases to, remains at, and then decreases

from a maximum rate of demand generation. To see how our heuristics performs in

a less structured data set, we created a second type of scenario where the demand

profile of each event point displays less structure. We refer to these scenarios as

mathematically challenging scenarios. The planning horizon of each of these scenar-

ios begins at time 0 and ends at time 100. The demand profile for an event point

is generated as follows. The number of pieces in the piecewise constant moment

demand function de(t) for an event point e was chosen at random from a specified

range. To generate a wide range of demand profiles, we specified that each event

point would have at least 5 and no more than 40 pieces. To find the length of each

piece, we assign each piece a random number between 0 and 1. These numbers are

then normalized so that their sum equals the length of the planning horizon. Each

normalized number is taken to be the length of the corresponding step. The rate

demand is generated by that event point (i.e., the height of de(t)) during that time is

100

Sequential Routing Heuristic

Data Set Type Sort 1 Sort 2 Sort 3 Sort 4

R0M3L25E75 134.55 134.55 134.46 134.55
R1M5L25E75 197.39 197.57 197.22 197.52
R2M7L25E75 260.67 260.77 260.33 260.71
R3M10L25E75 316.49 316.77 316.29 315.22
R4M3L25E35 87.12 87.12 87.11 87.12
R5M5L25E35 133.25 133.34 133.19 133.04
R6M7L25E35 150.51 150.55 150.56 150.51
R7M10L25E35 169.80 169.77 169.78 169.77
R8M3L15E35 91.64 91.64 91.48 91.37
R9M5L15E35 134.19 134.21 134.11 134.17
R10M7L15E35 156.57 156.50 156.51 156.33
R11M10L15E35 170.55 170.55 170.23 170.42
R12M3L15E20 65.61 65.61 65.59 65.61
R13M5L15E20 88.10 88.10 88.10 88.00

R Average 154.03 154.07 153.93 153.88

MC0M3L25E75 2494.71 2494.96 2492.52 2492.00
MC1M5L25E75 4042.53 4040.43 4031.52 4024.26
MC2M7L25E75 5390.01 5394.17 5369.33 5374.52
MC3M10L25E75 7117.66 7122.76 7079.51 7086.65
MC4M5L10E20 2360.31 2360.58 2357.73 2357.74
MC5M10L25E50 6014.99 6019.46 5993.12 5996.95
MC6M5L15E20 2248.01 2247.33 2244.27 2243.67
MC7M10L15E20 3471.89 3469.71 3470.63 3466.91
MC8M5L10E20 2430.20 2430.29 2425.40 2426.83
MC9M5L10E15 1947.57 1947.70 1946.06 1946.75

MC Average 3751.79 3752.74 3741.01 3741.63

Tab. 3.1: Performance of the sequential routing heuristic with different sorting orders.
Each row displays the averaged results from either 40 mathematically challenging
data sets or 25 realistic data sets.

0 with probability p, and otherwise chosen randomly from a lognormal distribution.

In our results, the names of realistic scenarios will begin with the letter ’R’ and

the names of the mathematically challenging scenarios will begin with the letters

’MC’, followed by a unique index for the scenario. The name then contains the

letter ‘M’ and the number of mobile facilities, the letter ‘L’ and the number of

locations, and finally the letter ‘E’ and the number of event points. For example,

R0M5L25E75 refers to a realistic data set with 75 event points, 25 locations, and 5

101

Insertion Heuristic

Data Set Type Sort 1 Sort 2 Sort 3 Sort 4

R0M3L25E75 130.17 130.17 130.18 129.96
R1M5L25E75 193.70 193.65 193.44 193.56
R2M7L25E75 254.71 254.71 255.04 254.89
R3M10L25E75 311.42 311.92 310.12 310.55
R4M3L25E35 83.28 83.61 83.28 83.61
R5M5L25E35 129.45 129.57 129.22 130.11
R6M7L25E35 148.44 148.34 148.46 148.70
R7M10L25E35 169.49 169.38 169.61 169.06
R8M3L15E35 90.46 90.46 90.01 90.19
R9M5L15E35 131.88 131.81 131.40 131.80
R10M7L15E35 155.10 155.18 154.80 154.98
R11M10L15E35 170.13 170.20 169.87 170.36
R12M3L15E20 63.68 63.68 63.68 63.68
R13M5L15E20 86.44 86.49 86.69 86.92

R Average 151.31 151.37 151.13 151.27

MC0M3L25E75 2436.39 2436.55 2433.20 2427.83
MC1M5L25E75 3936.63 3934.95 3921.62 3907.47
MC2M7L25E75 5236.50 5234.01 5218.15 5217.11
MC3M10L25E75 6853.98 6855.66 6826.91 6832.50
MC4M5L10E20 2322.06 2322.04 2322.19 2319.02
MC5M10L25E50 5806.29 5804.62 5791.46 5792.32
MC6M5L15E20 2205.04 2204.13 2201.72 2198.37
MC7M10L15E20 3414.45 3415.97 3408.82 3410.38
MC8M5L10E20 2405.90 2405.41 2402.18 2397.19
MC9M5L10E15 1929.34 1933.73 1928.95 1932.74

MC Average 3654.66 3654.71 3645.52 3643.49

Tab. 3.2: Performance of the insertion heuristic with different sorting orders. Each row
displays the averaged results from either 25 realistic scenarios or 40 mathemat-
ically challenging scenarios.

mobile facilities. The coverage radii for a mobile facility was (momentarily dropping

the number of mobile facilities, locations, and events from the scenario names) 3.5

for data sets MC0-MC3, 4.5 for MC4-MC7 and MC9, 1 for MC8 and R0 through R7,

and 1.5 for R8-R13. Computational results were compiled on a Dell Optiplex 740

with a AMD Athlon 64 X2 5000+ dual core processor with 3GB of RAM running

Microsoft Windows XP. The heuristics were coded and compiled in Microsoft Visual

C++ 2005.

102

3.4.1 The Sequential Routing Heuristic vs. the Insertion Heuristic

Tables 3.1 and 3.2 display the performance of the two route generation heuris-

tics when different sorting orders are used with each heuristic on a variety of data

sets. Each row displays the averaged results from 25 data sets generated with varying

demand parameters. We make two key observations. First notice that regardless

of the sorting order used in the demand assignment step, the sequential routing

heuristic typically outperforms the insertion heuristic. The only data set where

the insertion heuristic was consistently superior was MC7M10L15E20. Second, it

appears that in both heuristics, using Sort 2 produces routes that on average ser-

vice the most total demand. Consequently, we used Sort 2, which sorts events first

in decreasing order of |Le| and secondly by the total demand not serviced that is

generated by the event, in the demand assignment step for the remainder of our

experiments.

Implementing the local search procedure with the routes generated from either

the sequential routing heuristic or the insertion heuristic provided some improve-

ment. Tables 3.3-3.6 display the demand serviced in solutions generated by the two

route generation heuristics before and after the local search procedure, as well as

the runtimes of the algorithms in seconds. The sequential routing heuristic typically

finds higher quality solutions than the insertion heuristic, but has a longer runtime.

While the insertion heuristic runs the SMFLPA more frequently than the sequential

routing heuristic, the insertion heuristic found no improvement the vast majority of

the time when trying to add a location to the collection of locations visited on a

103

route. In fact, routes generated by the insertion heuristic typically contained just

one or two stops. Thus, each time the SMFLPA was run in the insertion heuristic,

it was run on a substantially smaller network, providing an overall improvement in

performance.

In some instances, the local search procedure found no improvement. Even

after the local search procedure, the sequential routing heuristic outperforms the

insertion heuristic. In addition, the runtimes of the two route generation heuristics

with local search were comparable. The local search procedure also seems to provide

proportionally more improvement for realistic data sets than it does for mathemati-

cally challenging data sets. This may be because the demand at each event point in

a realistic data set is generated during a distinct interval of time, while the demand

at an event point in a mathematically challenging data set could be generated at

many different points in the planning horizon. This could produce more opportu-

nities to find improvements by moving stops between routes for realistic data sets

than between routes for mathematically challenging data sets.

3.4.2 Mobile Facilities vs. Fixed Facilities

When evaluating the quality of solutions produced by our heuristic, it is nat-

ural to ask the following question: how much more demand could be serviced by

using mobile facilities than by placing an equivalent number of fixed facilities with

equal rate capacity? To answer this question, we compare the demand serviced

in our heuristic solutions to the demand serviced in an optimal placement of the

same number of fixed facilities with equal rate capacity. We refer to the problem of

104

Sequential Routing Heuristic

Data Sequential Heuristic With Local Search Improvement
Set Demand Demand
Type Serviced Runtime (s) Serviced Runtime (s) Max. Min. Median

R0M3L25E75 134.55 50.18 135.30 199.24 3.41% 0.00% 0.00%
R1M5L25E75 197.57 18.85 199.11 135.60 4.43% 0.00% 0.31%
R2M7L25E75 260.77 38.03 264.37 369.58 5.15% 0.00% 1.16%
R3M10L25E75 316.77 116.88 320.88 1144.15 4.29% 0.00% 1.35%
R4M3L25E35 87.12 5.61 87.57 39.18 3.93% 0.00% 0.00%
R5M5L25E35 133.34 3.64 134.62 27.35 5.37% 0.00% 0.68%
R6M7L25E35 150.55 12.49 152.56 87.25 4.80% 0.00% 0.81%
R7M10L25E35 169.77 33.84 171.85 105.23 2.96% 0.00% 1.12%
R8M3L15E35 91.64 4.68 92.22 32.08 4.39% 0.00% 0.00%
R9M5L15E35 134.21 0.91 135.71 6.27 4.86% 0.00% 0.46%
R10M7L15E35 156.50 2.36 158.44 14.03 6.67% 0.00% 0.98%
R11M10L15E35 170.55 6.42 171.98 21.68 3.50% 0.00% 0.47%
R12M3L15E20 65.61 0.10 66.21 0.61 13.10% 0.00% 0.00%
R13M5L15E20 88.10 0.20 89.03 1.25 3.71% 0.00% 0.41%

Average 154.07 21.01 155.70 155.96 5.04% 0.00% 0.55%

Tab. 3.3: Performance of the sequential routing heuristic with and without local search
on the realistic data sets. Each row displays the averaged results from 25 data
sets. The maximum, minimum, and median improvement found by local search
is given for each group of 25 data sets.

Sequential Routing Heuristic

Data Sequential Heuristic With Local Search Improvement
Set Demand Demand
Type Serviced Runtime (s) Serviced Runtime (s) Max. Min. Median

MC0M3L25E75 2494.96 142.61 2495.18 164.06 0.93% 0.00% 0.00%
MC1M5L25E75 4040.43 24.13 4046.92 27.93 1.53% 0.00% 0.00%
MC2M7L25E75 5394.17 166.73 5409.85 229.41 2.42% 0.00% 0.01%
MC3M10L25E75 7122.76 116.72 7140.36 191.80 2.18% 0.00% 0.12%
MC4M5L10E20 2360.58 3.51 2377.57 5.48 3.70% 0.00% 0.59%
MC5M10L25E50 6019.46 128.57 6042.36 304.20 2.62% 0.00% 0.21%
MC6M5L15E20 2247.33 8.48 2259.29 20.11 3.77% 0.00% 0.36%
MC7M10L15E20 3469.71 8.14 3493.89 39.36 3.13% 0.00% 0.73%
MC8M5L10E20 2430.29 6.06 2450.00 11.58 5.12% 0.00% 0.53%
MC9M5L10E15 1947.70 3.33 1962.74 9.51 5.94% 0.00% 0.39%

Average 3752.74 60.83 3767.82 100.34 5.04% 0.00% 0.29%

Tab. 3.4: Performance of the sequential routing heuristic with and without local search
on the mathematically challenging data sets. Each row displays the averaged
results from 40 data sets. The maximum, minimum, and median improvement
found by local search is given for each group of 40 data sets.

105

Insertion Heuristic

Data Insertion Heuristic With Local Search Improvement
Set Demand Demand
Type Serviced Runtime (s) Serviced Runtime (s) Max. Min. Median

R0M3L25E75 130.17 0.17 135.08 307.34 12.56% 0.00% 3.94%
R1M5L25E75 193.65 0.29 199.11 191.78 7.24% 0.00% 1.99%
R2M7L25E75 254.71 0.31 264.20 677.30 9.62% 0.00% 3.24%
R3M10L25E75 311.92 0.30 320.82 1283.30 6.55% 0.23% 2.27%
R4M3L25E35 83.61 0.05 87.73 61.25 16.26% 0.00% 4.60%
R5M5L25E35 129.57 0.08 134.43 16.12 12.27% 0.00% 3.15%
R6M7L25E35 148.34 0.07 153.11 41.26 8.70% 0.00% 2.95%
R7M10L25E35 169.38 0.05 171.53 32.36 5.24% 0.00% 0.93%
R8M3L15E35 90.46 0.04 92.26 10.36 9.75% 0.00% 0.16%
R9M5L15E35 131.81 0.05 135.62 28.83 8.38% 0.00% 2.32%
R10M7L15E35 155.18 0.04 158.32 10.24 10.90% 0.00% 1.12%
R11M10L15E35 170.20 0.04 172.11 14.18 3.61% 0.00% 0.85%
R12M3L15E20 63.68 0.01 66.43 8.83 31.88% 0.00% 2.35%
R13M5L15E20 87.14 0.01 88.89 10.62 12.29% 0.00% 0.95%
R13M5L15E20 86.49 0.01 88.22 10.62 12.29% 0.00% 0.95%

Average 151.37 0.11 155.64 185.81 11.09% 0.02% 2.20%

Tab. 3.5: Performance of the insertion heuristic with and without local search on the
realistic data sets. Each row displays the averaged results from 25 data sets.
The maximum, minimum, and median improvement found by local search is
given for each group of 25 data sets.

Insertion Heuristic

Data Insertion Heuristic With Local Search Improvement
Set Demand Demand
Type Serviced Runtime (s) Serviced Runtime (s) Max. Min. Median

MC0M3L25E75 2436.55 0.49 2461.06 47.36 8.25% 0.00% 0.00%
MC1M5L25E75 3934.95 1.06 4015.27 14.29 7.27% 0.00% 1.84%
MC2M7L25E75 5234.01 1.73 5380.02 161.76 9.72% 0.00% 2.17%
MC3M10L25E75 6855.66 2.80 7119.38 182.76 11.34% 0.00% 3.76%
MC4M5L10E20 2322.04 0.13 2370.97 8.52 7.57% 0.00% 1.66%
MC5M10L25E50 5804.62 2.00 6031.09 360.15 17.62% 0.04% 2.67%
MC6M5L15E20 2204.13 0.17 2259.30 21.31 9.61% 0.00% 1.62%
MC7M10L15E20 3415.97 0.35 3502.45 51.77 5.51% 0.00% 1.57%
MC8M5L10E20 2405.41 0.10 2457.52 9.23 6.33% 0.00% 1.18%
MC9M5L10E15 1933.73 0.10 1966.64 8.44 7.87% 0.00% 0.93%

Average 3654.71 0.89 3756.37 86.55 9.11% 0.00% 1.74%

Tab. 3.6: Performance of the insertion heuristic with and without local search on the
mathematically challenging data sets. Each row displays the averaged results
from 40 data sets. The maximum, minimum, and median improvement found
by local search is given for each group of 40 data sets.

106

placing these fixed facilities to maximize the demand serviced as the static problem.

In many applications, static facilities are cheaper to operate than mobile fa-

cilities, which may exhibit costs for relocation that may be large enough for consid-

eration when generating routes. This is especially true when the demand serviced

can be equated with revenue. In such situations, the relocation costs of mobile fa-

cilities can be considered when generating routes by modifying the routing graph as

described in Section 2.7.4 each time a heuristic calls the SMFLPA. In such cases, an

operator may consider the trade offs between deploying static and mobile facilities

by comparing the demand serviced in the optimal placement of static facilities with

the demand serviced and the relocation costs in the mobile facility routes generated

by our heuristics with such modifications.

The optimal placement of fixed facilities may be found by solving a mixed

integer program (MIP). Let F be the set of fixed facilities. Given a scenario, let

S = {0 = s0 < s1 < · · · < sK = T} be the collection of all critical times of all

locations in L. For each f ∈ F and l ∈ L, define the binary variable xfl to be 1 if

fixed facility f is positioned at location l and 0 otherwise. For each f ∈ F , l ∈ L,

e ∈ E, and k = 0, 1, . . . , K − 1, define the nonnegative continuous variable dfek

to be the amount of demand serviced by fixed facility f from event point e during

[sk, sk+1). Let Dek be the total amount of demand generated by event point e during

[sk, sk+1). The optimal static solution may be found by solving the following mixed

107

integer program:

Maximize
∑

f∈F

∑
e∈E

K−1∑

k=0

dfek (3.4.1)

subject to:
∑

l∈L
xfl = 1 for each f ∈ F (3.4.2)

∑
e∈E

dfek ≤ C(sk+1 − sk) for each f ∈ F, k = 0, . . . , K − 1 (3.4.3)

∑

f∈F
dfek ≤ Dek for each e ∈ E, k = 0, . . . , K − 1 (3.4.4)

dfek ≤ Dek

∑

l∈Le

xfl for each f ∈ F, e ∈ E,

and for k = 0, . . . , K − 1 (3.4.5)

dfek ≥ 0 for each f ∈ F, e ∈ E,

and for k = 0, . . . , K − 1 (3.4.6)

xfl ∈ {0, 1} for each f ∈ F, l ∈ L (3.4.7)

The objective of the mixed integer program, given by Equation (3.4.1), is to

maximize the amount of demand serviced. Constraint (3.4.2) assigns each facility

to a single location l. Since the rate at which every event point generates demand is

constant during each interval of the form [sk, sk+1), Constraint (3.4.3) preserves the

rate capacity of the fixed facility by dictating that the amount of demand serviced

during [sk, sk+1) by the fixed facility cannot exceed the maximum amount of demand

it could serve during that time. Constraint (3.4.4) says the amount of demand

serviced by the fixed facilities during period k from event point e is less than or equal

to the amount of demand generated by event point e during period k. Constraint

(3.4.5) says that a facility may only service demand from event point e only if the

108

facility is positioned at a location l ∈ Le. Constraints (3.4.6) specifies nonnegativity

of the variables dfek and (3.4.7) specifies the variables xfl are binary.

Solving this mixed integer program can be computationally challenging as K

can be quite large. We implemented this mixed integer program in ILOG OPL 5.2

for the data sets we generated for our heuristics. For many of the mathematically

challenging data sets, this mixed integer program was computationally intractable.

For the data sets where we were able to find the optimal solution to the static

problem using this mixed integer program, a comparison is presented Table 3.7 of

solutions to MFRP instances generated with the sequential routing heuristic with

local search, and the optimal solution to the static problem. On average, using the

sequential heuristic with local search to route mobile facilities allows 6.4% more

demand to be serviced than the optimal use of the same number of fixed facilities

for the mathematically challenging data sets. This improvement increases to 16.6%

when comparing results of the realistic scenarios. In some instances, we observed

improvement as high as 61.83%. In a few instances we did observe the optimal

solution to the static problem outperform our heuristic solution, although typically

by less than 2%.

To further evaluate the tradeoff between deploying mobile facilities or fixed

facilities, we developed a third type of scenario. We begin the name of each of the

third type of scenario with the letter “T”. These scenarios are designed to test the

performance of the heuristics relative to the percentage of time each event point is

generating demand. Each of these scenarios is defined together with a parameter

λ ∈ (0, 1]. Upon creation, an event point e in one of these scenarios is assigned

109

Sequential Routing
Data Set Static Heuristic with Improvement Instances
Type Solution Local Search Max. Min. Median Improved

R0M3L25E75 117.19 133.41 32.46% 4.56% 15.05% 25/25
R1M5L25E75 169.76 199.11 32.57% 7.90% 17.06% 25/25
R2M7L25E75 232.78 264.30 29.07% 1.94% 12.20% 25/25
R3M10L25E75 283.08 320.64 20.90% 4.44% 13.80% 25/25
R4M3L25E35 71.08 87.57 49.84% 7.83% 22.70% 25/25
R5M5L25E35 111.81 134.62 39.74% 9.02% 20.27% 25/25
R6M7L25E35 129.06 152.60 40.93% 6.65% 17.50% 25/25
R7M10L25E35 152.43 171.85 30.66% 2.67% 12.08% 25/25
R8M3L15E35 78.84 92.22 47.62% 0.99% 15.53% 25/25
R9M5L15E35 119.03 135.71 33.69% 0.93% 13.46% 25/25
R10M7L15E35 144.78 158.44 21.76% 1.57% 8.70% 25/25
R11M10L15E35 162.67 171.99 13.23% 1.17% 5.32% 25/25
R12M3L15E20 53.96 66.21 61.83% 1.99% 26.54% 25/25
R13M5L15E20 77.41 89.03 37.13% 2.94% 13.92% 25/25
MC0M3L25E75 2473.36 2495.69 11.32% -4.03% 0.66% 30/40
MC1M5L25E75 3996.97 4065.89 5.94% -2.87% 1.50% 35/40
MC4M5L10E20 2202.41 2377.22 21.14% -9.85% 7.76% 38/40
MC6M5L15E20 2109.78 2259.30 28.01% -13.92% 6.07% 35/40

Tab. 3.7: A comparison of the total demand serviced in the optimal static solution and in
the solution to the MFRP generated with the sequential routing heuristic with
local search. Each row contains the averaged results of either 40 mathematically
challenging data sets, or 25 “realistic” data sets. The maximum, minimum, and
median improvement for the data sets in each row is displayed, as well as the
proportion of data sets on which the heuristic solution outperforms the optimal
static solution.

a total amount of demand it will generate during the planning horizon, De, and a

randomly chosen time in the planning horizon, te. For a fixed λ, event point e will

generate demand at rate De

λT
during the interval of time [(1−λ)te, te+λ(T −te)) and

at rate zero outside of that interval. Thus the total amount of demand generated

by a particular event point e is equal for every value of λ. Figure 3.3 displays an

example of the moment demand function, de(t), for a single event point e and several

values of the parameter λ. Notice that as λ approaches zero, the demand becomes

more “spiky”.

Each of these scenarios are generated in a 25 by 25 region of the plane with

110

a planning horizon of length 100. Each location is generated at a random position

where at least one event point can be covered. We chose a moderately wide coverage

radius of 3.5 to encourage the existence of locations that can cover multiple events.

The rate capacity of each mobile facility is
∑

e∈E
De

λT
. By definition, this rate capacity

will never be exceeded for any value of λ. Furthermore, because any particular

event point generates the same amount of total demand for every value of λ, this

rate capacity guarantees any optimal static solution for a particular value of λ is

optimal for every λ ∈ (0, 1]. Figure 3.4 shows four graphs comparing the demand

serviced in solutions generated by the sequential heuristic with local search and

in the optimal solution to the static problem for several instances of this types of

scenarios as λ takes on values between zero and one. These four were chosen as

being qualitatively representative of the types of behavior displayed by these data

sets. These plots demonstrate the amount of demand the mobile facilities are able

to service relative to the amount of demand serviced in the static problem increases

as the length of time each event point generates demand decreases, and the overall

demand profile becomes more “spiky”. It should also be noted that as the coverage

radius decreases, each facility is able to cover less nearby demand while at a location

and the quality of our heuristic solution for the MFRP relative to the static solution

should be expected to increase.

3.4.3 Moving Mobile Facilities to Arrive or Depart only at Critical Times

An approximation of the IDMIP formulation of the MFRP may be obtained

by discretizing time. This provides an approximate optimal solution and a lower

111

0 3 4 5.5 10
0

1

2

3

4

5

Time (t)

d e(t
)

(a)

0 2 4 7 10
0

1

2

3

4

5

Time (t)

d e(t
)

(b)

0 4 10
0

1

2

3

4

5

Time (t)

d e(t
)

(c)

Fig. 3.3: An example of the demand profile of a single event point from the third types of

scenarios for three different values of λ. In all three graphs, De = 10, T = 10,

and te = 4. Panel 3.3(a) displays the rate demand is generated at the event point

for λ = 0.25. Panel 3.3(b) displays the rate demand is generated at the same

event point for λ = 0.50. Panel 3.3(c) displays the rate demand is generated at

the same event point for λ = 1.

bound for the MFRP. The finer the discretization, the better the approximation.

On the other hand, the size of this time-discretized formulation is extremely large,

and grows rapidly with the level of discretization.

For the time discretization, let {t0, t1, . . . , tK} be the set of times when any

mobile facility can be assumed to either arrive at or depart from any location. Fur-

thermore, to discretize the IDMIP, the rate each event point generates demand must

be constant during each interval of time [tk, tk+1). Notice the set
⋃

l∈L Sl satisfies

this condition. We use this time discretization in our computational experiments.

To formulate this time discretization of the IDMIP as a mixed integer program,

let P be the set of time periods between these times, {(tk, tk+1) : k = 0, . . . , K − 1}.

For each p ∈ P define lp = tp+1 − tp, the length of period p. By design, during each

period p, a mobile facility will either be traveling from one location to another or be

providing service from a location for the entire period. Let Dp
e be the total demand

112

0 0.5 1
8000

9000

10000

11000

λ

D
em

an
d

S
er

vi
ce

d

T10M5L25E75

0 0.5 1
12000

12500

13000

13500

14000
T11M10L25E75

λ

D
em

an
d

S
er

vi
ce

d

0 0.5 1
8000

9000

10000

11000

12000

λ

D
em

an
d

S
er

vi
ce

d

T12M7L25E75

0 0.5 1
5000

6000

7000

8000
T13M3L25E75

λ

D
em

an
d

S
er

vi
ce

d

Fig. 3.4: Results from four scenarios of the third type. The horizontal line displays the

amount of demand serviced in the optimal solution to the static problem, which

is equal for every value of λ. The second curve displays the demand serviced

in the solution to the MFRP generated by the sequential routing heuristic with

local search for several scenarios as λ takes on values between 0 and 1.

generated at event point e during period p. Define the binary decision variable xp
ml

to be 1 if mobile facility m is providing service from location l in period p, and 0

otherwise. For each e ∈ E, l ∈ Le, and p ∈ P , define the nonnegative real-valued

decision variable dpel to be the amount of demand generated from event point e

during period p serviced by all mobile facilities at location l. Then this lower bound

113

can be found by solving the following mixed integer program:

Maximize
∑
p∈P

∑
e∈E

∑

l∈Le

dpel (3.4.8)

subject to:
∑

l∈Le

dpel ≤ Dp
e for each p ∈ P, e ∈ E (3.4.9)

∑
e∈El

dpel ≤ (Clp)
∑
m∈M

xp
ml for each p ∈ P, l ∈ L (3.4.10)

xp
ml + xp′

ml′ ≤ 1 for each m ∈ M, p, p′ ∈ P, l, l′ ∈ L s.t.

(tp′ , tp′+1) ∩ (tp − TTl′l, tp+1 + TTll′) 6= ∅

(3.4.11)

dpel ≥ 0 for each p ∈ P, e ∈ E, l ∈ Le (3.4.12)

xp
ml ∈ {0, 1} for each p ∈ P,m ∈ M, l ∈ L (3.4.13)

The objective function, Equation (3.4.8) seeks to maximize the amount of

demand covered. Constraint (3.4.9) ensures the amount of demand serviced during

period p from event point e does not exceed the amount of demand generated by

event point e during period p. Constraint (3.4.10) ensures the amount of demand

serviced by mobile facilities at location l during period p does not exceed the amount

of demand those mobile facilities may service during period p, which is Clp for

each mobile facility. Since the moment demand functions are constant during each

period, the rate capacity of a mobile facility won’t be exceeded if this constraint is

met. Constraint (3.4.11) ensures that the route of each mobile facility is feasible,

respecting the travel times between locations. Constraints (3.4.12) and (3.4.13)

specify the allowed values of the variables.

In general, this mixed integer program is computationally intractable for any

114

problem of reasonable size. Even for small problems, |P | can be very large. We

solved this mixed integer program using ∪l∈LSl as the set of times defining the

periods in P in ILOG OPL 5.2. Table 3.8 displays a comparison of the demand

serviced in the routes generated with this mixed integer program and with the

sequential routing heuristic with local search for small instances of the problem

with two mobile facilities and four or five event points and locations. We specified

in each of these scenarios that for each location l, El must contain the two closest

event points, in addition to any event points within the coverage range from location

l. In implementing this MIP, we found that problems with more than two mobile

facilities, more than five event points or locations, and more than five pieces in each

piecewise constant demand profile were computationally intractable. In fact, in

some instances of the MFRP with five event points and five locations were difficult

to solve to optimality. Because the event points in a realistic scenario only produce

demand during a distinct interval of time, a realistic data set with only four or

five event points could easily have no more than two events generating demand at

any given time. Consequently, we present results for mathematically challenging

problems generated having two mobile facilities, four or five locations, and four or

five event points, which each have between 2 and 5 pieces in their piecewise constant

demand profile.

Even when considering problems of such a small size, the mixed integer pro-

gram can take a long time to solve. Consequently, the mixed integer program was

terminated if it had not finished running after four hours and the best solution

found was taken. The solution gap produced by the mixed integer program is also

115

displayed in Table 3.8. The solutions to the MFRP given by the sequential heuristic

with local search are competitive with the solutions found by solving this mixed

integer program. The heuristic solutions to these instances were computed almost

instantly, while the mixed integer program sometimes couldn’t be solved within four

hours. In only three of the MFRP instances below with two mobile facilities, five lo-

cations, and five event points was the optimal solution to the mixed integer program

found in under one hour, running in 17 minutes, 19 minutes, and 45 minutes.

The computational intractability of this MIP for problems of reasonable size,

and the large amount of time it takes to solve small data sets with this mixed

integer program suggest that heuristics are the best choice to determine routes

for mobile facilities in the MFRP. We used our sequential routing heuristic with

local search to generate routes for these problems. For each of these data sets, our

heuristic executed almost instantly, returning a runtime of under 0.01 seconds. The

solutions generated by our heuristics were competitive with the solutions produced

by this mixed integer program, on average servicing 98.95% of the amount of demand

serviced in the routes computed with this mixed integer program. We have not found

any solutions to these data sets where it is locally optimal for a mobile facility at

some point in its route to depart from a location and arrive at the next location at

times that are not critical times. This is most probably because the data sets that

could be solved by the mixed integer program were of such small size this situation

did not occur. Consequently, the solutions found by the mixed integer program

are most likely the optimal solutions for these small problems. Consequently, we

believe it is unlikely that our heuristics could find better routes for these problems

116

MIP Solution Sequential Heuristic Percentage
Data Set Solution Runtime Gap with Local Search of MIP

MC10M2L4E4 1310.40 31.29 0.00% 1306.73 99.72%
MC11M2L4E4 1148.87 2.32 0.00% 1148.87 100.00%
MC12M2L4E4 711.53 6.90 0.00% 701.97 98.66%
MC13M2L4E4 1365.70 1.60 0.00% 1334.22 97.69%
MC14M2L4E4 1826.99 2.31 0.00% 1826.99 100.00%
MC15M2L4E4 1642.82 30.59 0.00% 1642.82 100.00%
MC16M2L4E4 641.21 3.07 0.00% 623.48 97.23%
MC17M2L4E4 749.18 2.57 0.00% 749.18 100.00%
MC18M2L4E4 1251.38 3.00 0.00% 1189.16 95.03%
MC19M2L4E4 515.86 3.26 0.00% 515.86 100.00%

MC20M2L5E5 1409.38 14400.00 1.54% 1391.01 98.70%
MC21M2L5E5 1318.38 2522.28 0.00% 1315.68 99.79%
MC22M2L5E5 1300.05 14400.00 0.19% 1300.05 100.00%
MC23M2L5E5 1436.13 14400.00 3.32% 1387.75 97.23%
MC24M2L5E5 1396.10 1053.80 0.00% 1389.24 99.51%
MC25M2L5E5 1211.44 2999.03 0.00% 1211.44 100.00%
MC26M2L5E5 711.00 19.79 0.00% 711.00 100.00%
MC27M2L5E5 998.24 14400.00 2.32% 998.24 100.00%
MC28M2L5E5 690.14 7483.68 0.00% 658.63 95.43%
MC29M2L5E5 1329.55 8656.25 0.00% 1329.55 100.00%

Tab. 3.8: A comparison of the demand serviced by solutions obtained with the MIP where
mobile facilities must either depart from or arrive at any location at during a
predetermined discrete set of times, and the demand serviced in the solutions
generated by the sequential routing heuristic with local search for the MFRP.
Each row displays the results from a single data set. When the MIP was solved
to optimality, solution gap of 0.00% is shown.

than found by the mixed integer program. Furthermore, the data sets this mixed

integer program could solve are in some sense outside the scope of the problem.

Since these data sets are very small in size, the rate demand is generated by each

event point varies less dramatically than in the larger data sets, which are more

representative of the type of demand profiles a mobile facility would encounter in

practice, and for which our heuristics are designed. Even so, the very fact that the

heuristics were on average able to service 98.95% of the demand serviced by the

MIP is a strong endorsement of our heuristic methods.

117

3.5 Conclusion

Mobile facilities are used in many different applications, ranging from cellular

communication to humanitarian logistics. In this chapter, we introduced the MFRP.

We showed that the optimal route for a single mobile facility may be found in

polynomial time, though in general the MFRP is NP-hard. We presented several

heuristics for routing mobile facilities to maximize the amount of demand they

service. Our computational results on a variety of data sets have confirmed the

effectiveness of our heuristics. In comparison to the optimal placement of fixed

facilities, we generated routes for a fleet of mobile facilities that service more demand

when demand levels are more “spiky”.

The heuristics introduced in this chapter provide the operator of a fleet of

mobile facilities the ability to effectively plan a set of routes to maximize the service

provided by the mobile facilities. This ability can be used to efficiently plan a set of

routes that will be followed periodically, such as when routing a mobile post office,

or that will be followed for the immediate future, such as in the providing of relief

after a disaster.

Our heuristics focus on a homogeneous fleet of mobile facilities, with predeter-

mined configurations. However, the heuristics (and models) can be easily extended

to a heterogeneous fleet of mobile facilities. For example, one may wish to select the

remaining mobile facility with the highest rate capacity as the next facility to route

in the sequential heuristic. In other situations, the configuration of a mobile facility

may be able to be modified by adding servers to accommodate a particular demand

118

profile of a scenario. This is to be part of our future research on the MFRP.

119

4. MINIMIZING TOTAL MOVEMENT IN MOBILE FACILITY

LOCATION

4.1 Introduction

The mobile facility location problem (MFLP) was proposed by Demaine et al.

[20]. The MFLP is set in a graph where clients and facilities are initially located

at vertices. Destination vertices must be determined for each client and facility so

that each client shares its destination with at least one facility. The objective is to

minimize the total weighted sum of the distances traveled by clients and facilities.

Demaine et al. [20] also discuss two other objectives: minimax and minimizing the

total number of clients and facilities moved.

One application of the MFLP arises in the distribution of relief supplies in

response to a disaster. Suppose a relief agency has supplies stored at warehouses and

must determine a distribution point for each warehouse, and from those distribution

points send supplies to aid stations. The relief agency incurs a cost of shipping

supplies from a warehouse to a distribution point. This is simply the per unit cost

of shipping from the warehouse to the distribution point times the amount of supplies

shipped. Additionally, the relief agency incurs a cost for distributing supplies from

a distribution point to an aid station. Similarly, this is the per unit cost of shipping

from the distribution point to the aid station times the amount of supplies shipped.

The objective is to distribute the supplies at minimum cost.

In this chapter, we show that given a set vertices that are to be the facility des-

tinations, the MFLP can be decomposed into two polynomially solvable subproblems

of determining a specific destination in this set for each client and each facility. We

call these two subproblems the client assignment subproblem and the facility assign-

ment subproblem. Using this observation, we present a novel integer programming

(IP) formulation for the MFLP with significantly fewer nonzero constraint coeffi-

cients and integer variables than an earlier formulation in the literature [25]. This

new formulation uses less memory, which allows us to solve large-scale instances to

optimality. We introduce two new classes of effective local search heuristics for the

MFLP, which we call n-OptSwap and n-SmartSwap. These local search heuristics

always terminate at solutions where the client and facility assignment subproblems

are solved optimally. We then introduce a new framework for the MFLP with a

more general cost structure that enables the p-median and uncapacitated facility

location problems to be seen as special cases of the MFLP. The IP formulations

and the local search heuristics discussed in this chapter may be easily implemented

in this new framework. These local search heuristics reduce to well-known local

search heuristics for the p-median and uncapacitated facility location problems with

bounded locality gaps. We test these local search heuristics and the new IP formu-

lations on a variety of instances. Our results demonstrate that these local search

heuristics produce high quality solutions for a large variety of test problems. In

addition, our tests demonstrate that the new IP formulation allows for the solution

121

of large-scale instances that could not be solved previously.

The remainder of this chapter proceeds as follows. Section 4.2 formally in-

troduces the MFLP, including previous results, the decomposition of the MFLP,

and two distinct IP formulations. Two novel classes of local search heuristics, n-

SmartSwap and n-OptSwap, are described in Section 4.3. A new framework for the

MFLP is presented in Section 4.4. Computational experiments with these heuristics

and IP formulations on a wide variety of data sets are presented in Section 4.5. A

brief discussion of using Lagrangian relaxation to solve the MFLP is presented in

Section 4.6. Finally, concluding remarks are in Section 4.7.

4.2 Problem Description

The MFLP is set in an edge-weighed graph G = (V,E) where V denotes the

set of vertices and E denotes the set of edges. There are clients at a subset C ⊆ V

of vertices in the graph. Each client i has a weight ui, representing the per distance

cost of satisfying the client’s demand. There are also p facilities initially positioned

at a subset F ⊆ V of vertices. Each facility j has nonnegative weight wj, which

represents the per distance cost of relocating mobile facility j. A feasible solution

to the MFLP is a selection of a destination vertex v(j) for each facility j and a

destination vertex v(i) for each client i so that the destination of each client is also

the destination of at least one facility (i.e., for each i, v(i) = v(j) for some j). The

(minisum) objective is to minimize the sum of the weighted distances traveled by

facilities and clients. Here, the cost of moving a client or facility is proportional to

122

the distance traveled. When this is not the case, we will describe a generalization

of the statement of the MFLP and the graph that allows us to model this.

Without loss of generality, it may assumed no two facilities are initially located

at the same vertex. In such a case, for a vertex where multiple facilities begin, a

copy of that vertex may be created for each of those facilities, and the distance

between the copies of the vertex set equal to zero. Thus, a facility may be uniquely

denoted by its vertex of origin j ∈ F . In addition, two clients beginning at the same

vertex can be assumed to have the same destination vertex. If not, both clients

could be reassigned to the closer of their two destinations without increasing the

cost of the solution. Therefore, multiple clients beginning at the same vertex may

be aggregated into a single client with weight equal to the sum of their individual

weights. Thus, each client may be uniquely denoted by its vertex of origin i ∈ C.

Let dvv′ be the distance of the shortest path from vertex v to vertex v′ in the graph.

Then the objective of the MFLP may be written as,

minimize
∑
j∈F

wjdjv(j) +
∑
i∈C

uidiv(i). (4.2.1)

4.2.1 Related Work

The MFLP was introduced by Demaine et al. [20] as one of a class of move-

ment problems. In these problems, pebbles are located at an initial configuration

at the vertices of a transportation network. The pebbles must be moved to a new

target configuration to satisfy a property P while minimizing either the total move-

ment of all pebbles (minisum), the maximum movement of some pebble (minimax),

or the total number of pebbles moved. Several properties P were considered, in-

123

cluding connectivity, directed connectivity, path connectivity between two vertices,

independence, and achieving a perfect matching. Tight approximation and inap-

proximability results were presented for some of these problems. Demaine et al.

[20] introduced the MFLP as an extension of these movement problems, where two

types of pebbles were placed on the graph, one for facilities and one for clients.

When initially introduced, it was assumed the weight of each client and facility was

equal to 1. It was observed that keeping facilities fixed and moving facilities to the

closest client provides a 2-approximation to the minimax variant of MFLP when the

weight of each client and facility equals one. The approximability of the minisum

variant of the MFLP (i.e., the Minimum Total Movement MFLP) was left as an

open problem.

Friggstad and Salavatipour [25] presented an 8-approximation algorithm for

the minisum variant of the MFLP when travel times satisfy the triangle inequality

and the facility weight wj equals one for every facility j ∈ F . This approximation

algorithm may easily be extended to the case where the facilities are homogeneous

(i.e., when the weights of all facilities are equal). In such a case, the weights of

the clients and facilities can be scaled so that the weight of every facility is one.

This approximation algorithm produces a feasible solution by rounding the optimal

solution of the linear relaxation of an IP formulation of the MFLP.

The MFLP has so far only been considered in the computer science literature,

where the focus has been on approximation algorithms. Friggstad and Salvatipour

[25] discuss a local search heuristic for the MFLP and demonstrate that it may have

an arbitrarily large approximation ratio. To demonstrate this, Friggstad and Sal-

124

vatipour show how to construct an instance with a local minimum that is arbitrarily

far from optimal. Our local search heuristics take advantage of the decomposabil-

ity of the MFLP, which prevents our heuristics from getting stuck at the bad local

minima in the Friggstad and Salavatipour instances.

Some location-relocation problems resemble the MFLP in the sense that they

deal with the relocation of facilities. Gendreau et al. [28] described a system for

the real-time relocation of ambulances to maintain coverage after an ambulance

responds to a call. In this problem, the ambulances begin at locations and must

be redeployed to satisfy coverage constraints, while maximizing the demand that

is double covered minus a penalty for relocating ambulances. Demand points in

this ambulance relocation problem are either double covered and add a fixed value

to the objective, or are not double covered and do not contribute to the objective.

Kolesar and Walker [34] considered the redeployment of fire companies in New York

City while some companies are responding to a call. Again, several differences exist

between the problem Kolesar and Walker considered and the MFLP. Kolesar and

Walker must relocate two different types of fire companies, as some companies have

ladder trucks and others do not. Kolesar and Walker seek to relocate fire companies

to satisfy minimum coverage constraints. Another multi-objective model for the

repositioning of response units in a probabilistic network after a change in the state

of the network was presented by Sathe and Miller-Hooks in [42]. The two objectives

where to maximize the demand double covered and minimize the expected relocation

costs. Nair and Miller-Hooks applied this model in determining relocation policies

for ambulances in [39]. The MFLP is significantly different in two regards. First

125

these problems deal with coverage (demand is either covered or not). Second, the

objective of the MFLP explicitly includes a cost incurred from servicing a client that

is dependent on the distance from its initial location to its assigned destination.

The location and relocation of servers in a stochastic network to minimize

the expected travel time of clients to servers and the expected relocation costs was

studied by Berman and LeBlanc [5], in which they presented a heuristic that uses the

Hungarian algorithm [38] to minimize relocation costs. This model was generalized

by Berman and Rahnama [6], enabling the transition of network states to be a

Markovian process. The MFLP is distinct from these models. These models, as well

as the stochastic models in [39] and [42], seek to determine placements of facilities

for each realization of a stochastic network. Thus, a solution to these problems

defines a policy specifying how to initially locate facilities given the current network

state, and how to relocate facilities as the network transitions from one state to

another. Since each of these problems considers the objective of minimizing the

expected relocation costs, the facilities are not necessarily relocated at least cost

after the network transitions from one specific network state to the another specific

state. This separates these problems from the MFLP in two regards. Unlike these

problems which seek to determine a policy that given the network state specifies

where to locate facilities, the MFLP considers the initial locations of the facilities

as an input to the problem. Second, the MFLP seeks to determine the least cost

relocation of the facilities and clients in a static network.

126

4.2.2 IP Formulations

We now present an IP formulation for the MFLP described by Friggstad and

Salavatipour [25]. Define a binary variable xiv for each i ∈ C and v ∈ V , and a

binary variable yjv for each j ∈ F and v ∈ V . Let xiv = 1 if the destination of

client i is vertex v, and xiv = 0 otherwise. Similarly, let yjv = 1 if the destination

of facility j is vertex v, and yjv = 0 otherwise. The MFLP can be formulated as

follows:

(IP1) Minimize
∑
j∈F

∑
v∈V

wjdjvyjv +
∑
i∈C

∑
v∈V

uidivxiv (4.2.2)

subject to:
∑
v∈V

xiv = 1 ∀i ∈ C (4.2.3)

∑
v∈V

yjv = 1 ∀j ∈ F (4.2.4)

∑
j∈F

yjv ≥ xiv ∀i ∈ C, v ∈ V (4.2.5)

yjv, xiv ∈ {0, 1} ∀i ∈ C, j ∈ F, v ∈ V.

(4.2.6)

The objective function (4.2.2) minimizes the total weighted movement of mo-

bile facilities plus the total weighted movement of the clients. Constraint (4.2.3)

specifies that each client i is sent to precisely one destination. Similarly, Constraint

(4.2.4) sends facility j to a single destination vertex. Constraint (4.2.5) allows the

destination of client i to be vertex v only if vertex v is the destination of some facility

j. Constraint (4.2.6) specifies that all the variables are binary. We note that the

variables xiv can be relaxed to be nonnegative continuous variables provided that

the variables yjv remain binary.

127

It is easy to see that given the destination of each facility, each client should

be assigned to the closest facility destination (ties may be broken arbitrarily). Since

no two facilities begin at the same vertex, it may be assumed that no two facilities

will have the same destination vertex in an optimal solution. If this were to occur,

all but one of the facilities sharing a destination could instead be kept at their initial

locations without increasing the value of the objective function (4.2.2). Thus, an

optimal solution exists where no two facilities share the same initial or destination

vertex. Noting this, we formulate the MFLP as follows. For each vertex v ∈ V ,

define the binary variable zv. Let zv = 1 if vertex v is the destination of some

facility, and zv = 0 otherwise. The MFLP may now be formulated as follows:

(IP2) Minimize
∑
j∈F

∑
v∈V

wjdjvyjv +
∑
i∈C

∑
v∈V

uidivxiv (4.2.7)

subject to:
∑
v∈V

xiv = 1 ∀i ∈ C (4.2.8)

∑
v∈V

yjv = 1 ∀j ∈ F (4.2.9)

∑
j∈F

yjv − zv = 0 ∀v ∈ V (4.2.10)

xiv − zv ≤ 0 ∀i ∈ C, v ∈ V (4.2.11)

zv, yjv, xiv,∈ {0, 1}. ∀i ∈ C, j ∈ F, v ∈ V

(4.2.12)

In this second formulation, IP2, the objective function (4.2.7), and Constraints

(4.2.8) and (4.2.9) are unchanged. If zv = 1, Constraint (4.2.10) specifies that vertex

v is the destination of precisely one facility. Alternatively, if zv = 0, this constraint

specifies that no facility may have vertex v as its destination. Constraint (4.2.11)

128

specifies that client i may travel to location zv only if zv = 1. Notice that if

client i travels to vertex v in a feasible solution to IP2, then zv = 1 by Constraint

(4.2.11). Consequently, by Constraint (4.2.10) vertex v must also be a destination of

some facility. Constraint (4.2.12) specifies the variables are binary. However, as we

will show, the variables xiv and yjv may be changed to be nonnegative continuous

variables so long as the variables zv remain binary.

While IP2 has more variables and constraints than IP1, IP2 has fewer nonzero

coefficients in the constraint matrix than IP1. Table 4.1 gives the exact number of

variables, binary variables, constraints, and nonzero constraint coefficients for each

IP. In addition, the minimum number of necessary binary variables in IP2 is less

than IP1. As the computational results demonstrate in Section 4.5, this enables

larger instances to be solved using IP2.

Any solution to LP relaxation of IP2 may be translated into a feasible solution

to the LP relaxation of IP1 with an equal objective value by keeping the values of the

variables xiv and yjv fixed. We only need to show Constraint (4.2.5) is not violated.

In any such solution, xiv ≤ zv =
∑

j∈F yjv by Constraints (4.2.10) and (4.2.11).

Conversely, the values of yjv and xiv in a feasible solution to the LP relaxation of

IP1 cannot always be used in a feasible solution to the LP relaxation of IP2. For

example, suppose there are three vertices, a, b, and c, and the distance between any

pair of vertices is 1. Let facilities begin at vertices a and b, and a client begin at

vertex c. One feasible solution to the LP relaxation of IP1 would be to send the two

facilities and the client to vertex b, which would set yab = 1, ybb = 1, xcb = 1, and

all other variables to 0. The value of these variables cannot be used in a feasible

129

Number Number of Number Number of Nonzero
of Binary of Entries in the

Variables Variables Constraints Constraint Matrix

IP1 |V |(|C|+ |F |) |V ||F | |V ||C|+ |C|+ |F | |V ||C||F |+ 2|V ||C|+ |V ||F |
IP2 |V |(|C|+ |F |+ 1) |V | |V ||C|+ |C|+ |F |+ |V | 3|V ||C|+ 2|V ||F |+ |V |

Tab. 4.1: A comparison of IP1 and IP2.

solution to the linear relaxation of IP2 since Constraint (4.2.10) would necessitate

that zb = 2 and contradict the requirement that zb ≤ 1 from relaxing Constraint

(4.2.12).

However, the optimal objective values of the two relaxations are equal. Given

any optimal solution to the LP relaxation of IP1, we will first describe how to modify

the optimal solution to obtain a new optimal solution with
∑

j∈F yjv ≤ 1 for each

v ∈ V , and then use this modified optimal solution to create an optimal solution for

the LP relaxation of IP2 with an equal objective value. If
∑

j∈F yjv > 1 for some

v, decreasing yjv and increasing yjj by an amount δ that is less than the minimum

of yjv and
∑

j∈F yjv − 1 maintains feasibility. If wjdjv > 0, this would decrease

the value of the objective function by wjdjvδ and contradict the assumption that we

started with an optimal solution to LP relaxation of IP1. Therefore, if
∑

j∈F yjv > 1,

then wjdjv = 0 for each j such that yjv > 0. To create a new optimal solution to

the LP relaxation of IP1 with
∑

j∈F yjv ≤ 1, for each v ∈ V that currently has

∑
j∈F yjv > 1, for each j ∈ F decrease yjv by

yjv∑
j′∈F yj′v

(
∑

j′∈F yj′v − 1) and increase

yjj by the same amount. This modification only changes the values of yjv with

wjdjv = 0. Therefore applying this modification for each v ∈ V with
∑

j∈F yjv > 1

produces a new optimal solution to the LP relaxation of IP1 with
∑

j∈F yjv ≤ 1 for

130

each v ∈ V .

To generate an optimal solution to the LP relaxation of IP2 from this modified

optimal solution to LP relaxation of IP1, keep the values of xiv and the modified

values of yjv, and define zv =
∑

j∈F yjv. By the modification above, we have that

0 ≤ zv ≤ 1 for each v ∈ V . Constraints (4.2.8) and (4.2.9) remain satisfied since the

values of xiv and yjv are those from a feasible solution to IP1. Constraint (4.2.10) is

immediately satisfied by this definition of zv. Constraint (4.2.11) must be satisfied

since by (4.2.5) and (4.2.10), xiv ≤
∑

j∈F yjv = zv.

We conclude this discussion by noting that if the constraint

∑
j∈F

yjv ≤ 1 ∀v ∈ V (4.2.13)

is added to IP1, then the LP relaxation of the two IP formulations would be equally

strong. Any feasible solution to the LP relaxation of IP1 with this additional con-

straint can be translated to a feasible solution to the LP relaxation of IP2 with an

equal objective value by setting zv =
∑

j∈F yjv.

4.2.3 Decomposing the MFLP

Suppose we are given a subset Z ⊂ V containing p vertices, and it is specified

that each mobile facility must have as its destination a distinct vertex in Z. In IP2,

this is equivalent to fixing zv = 1 for each v ∈ Z and zv = 0 for each v ∈ V \Z.

With the zv variables now fixed, IP2 decomposes into the two disjoint subproblems

of assigning each facility to a distinct vertex in Z, and assigning each client to a

vertex in Z.

The facility assignment subproblem is to find a least cost weighted bipartite

131

matching between the p facilities in F and the p destinations in Z. In this case,

yjv = 0 for each j ∈ F and v ∈ V \Z. Fixing these variables at zero in IP2 reduces

the size of the problem. For each v ∈ Z, we have zv = 1, allowing Constraint (4.2.10)

to be rewritten as
∑

v∈Z yjv = 1. The facility assignment subproblem can now be

formulated as the least cost weighted bipartite matching problem,

FA(Z) = Minimize
∑
j∈F

∑
v∈Z

wjdjvyjv (4.2.14)

subject to:
∑
v∈Z

yjv = 1 for each j ∈ F (4.2.15)

∑
j∈F

yjv = 1 for each v ∈ Z (4.2.16)

yjv ≥ 0 for each j ∈ F, v ∈ Z. (4.2.17)

Since the constraint matrix is totally unimodular, the integrality of the yjv variables

has been relaxed. Thus for a fixed Z, the solution to the facility assignment sub-

problem may be computed in polynomial time using one of may algorithms, such as

the Hungarian algorithm. [38]

The client assignment subproblem is to choose a destination in Z for each

client that minimizes the weighted distance traveled by clients. Constraint (4.2.11)

specifies that a client may travel to a vertex v only if zv = 1. By setting each variable

xiv = 0 for v ∈ V \Z, Constraint (4.2.11) may be set aside for each v ∈ V \Z. Thus,

Constraint (4.2.11) may be rewritten as xiv ≤ 1 for each i ∈ C, v ∈ Z. This

constraint is redundant since xiv is a binary variable and may also be thrown out.

132

Thus, the client assignment subproblem may be rewritten as,

CA(Z) = Minimize
∑
i∈C

∑
v∈Z

uidivxiv

subject to:
∑
v∈Z

xiv = 1 for each i ∈ C (4.2.18)

xiv ≥ 0 for each i ∈ C, v ∈ Z.

Again, since the constraint matrix is totally unimodular, the integrality of the xiv

variables has been relaxed. Since no constraints link two different clients, this can

be further decomposed into a separate subproblem for each client, which can be

solved by sending the client to the closest location in Z. This produces a formulaic

explanation why the client assignment subproblem may be solved by sending each

client i ∈ C to the closest vertex in Z.

Consequently, each subset of Z ⊂ V of size p can be identified with a unique

solution where both subproblems are solved optimally. Noting this, we focus on

developing local search heuristics that seek to find a subset Z minimizing the sum

FA(Z) + CA(Z).

4.3 Local Search for the MFLP

Friggstad and Salavatipour [25] described a collection of local search operations

that define a solution neighborhood. It was shown a local search heuristic allowing

only these operations (which we now describe) can produce an arbitrarily large

locality gap. For a fixed number n, the neighborhood of solutions is defined by the

following two types of operations:

1. Select a subset of k ≤ n facilities, j1, . . . , jk, and a subset of k unoccupied

133

destination vertices for them, v1, . . . , vk, respectively; change the destination

of facility jl to be vl for each l = 1, . . . , k.

2. Select a subset of k ≤ n facilities, j1, . . . , jk, and choose a permutation π :

{1, . . . , k} → {1, . . . , k}; change the destination of facility jl to v(jπ(l)) for

each l = 1, . . . , k.

These two operations produce a large neighborhood of solutions. The first operation

described above generates
∑n

k=1

(|F |
k

)(|V |−|F |
k

)
k! solutions in the neighborhood and

the second operation generates an additional
∑n

k=1

(|F |
k

)
k! solutions in the neighbor-

hood.

One example of a local search heuristic using only these operations is to start

with the solution where each facility remains fixed at its initial location. Then

repeatedly select the least cost solution in local search neighborhood if it improves

the current solution (where the cost of a solution is calculate by the cost of moving

each facility to its destination plus the cost of sending each client to the closest

facility). We name this n-Swap local search. Figure 4.1 gives an example of how

solutions in this local search neighborhood are generated.

Friggstad and Salavatipour demonstrate how to construct an MFLP instance

where a local search heuristic allowing only the above operations may exhibit an

arbitrarily large locality gap. To construct this example, choose a large positive

integer F .1 The graph will contain F + n+ 1 vertices in a cycle that are numbered

1 The local search in Friggstad and Salavatipour [25] considers any improving solution in the
neighborhood. n-Swap (choosing the best solution in the neighborhood) will not terminate in the
local minimum with cost F in these examples. However, we can construct examples where n-Swap
terminate at a local minimum that is arbitrarily far from optimal (even when the best neighbor is
selected).

134

4

22

uuu 2 31=1 =1=1

Vertex

Facility

Client

Edge

6

3

Traversed Edge

a b c d e

w w w=11 2=1 =13

11

1

1

1

22

3 3 1

9

(a) Initial Configuration

9

3

Z={a,d,e}

ba c ed

2 2 1

3

(b) Initial Solution

9

22

Z={b,c,e}

a b c d e

1 1 1

(c) Example of the first type of oper-
ation.

1

3

6

Z={a,d,e}

edcba

1

2 2

(d) Example of the second type of op-
eration.

Fig. 4.1: An example of 2-Swap local search. Panel 4.1(a) gives the configuration of the
graph. Clients and facilities begin, respectively, at the vertices labeled with their
weights ui and wj . Panel 4.1(b) gives an initial feasible solution with cost 20.
Here, Facility 1 and Client 1 travel to Vertex a, Facility 2 and Client 2 travel
to Vertex d, and Facility 3 and Client 3 travel to Vertex e. Panel 4.1(c) shows
an example of a feasible solution in the neighborhood explored by 2-Swap local
search generated by the first type of operation. Here, Facility 2 which had Vertex
a as its destination is instead moved to Vertex c, and Facility 3 which had Vertex
d as its destination is instead moved to Vertex b. The cost of this solution is 16.
Panel 4.1(d) shows another solution in the neighborhood explored by 2-Swap
resulting from the second type of operation where the destinations of Facilities 1
and 2 are permuted. The cost of this solution is 15. 2-Swap local search explores
the neighborhood defined by all such operations and selects the solution in the
neighborhood with the lowest cost.

135

2(F−n+2)

...

...

2(F−n−2)

2F

2(F+1)

4 6 2(F−n−1) 2(F−n)

2(F−n+1)

Fig. 4.2: An example of an MFLP instance with an arbitrarily large locality gap. Weights
are shown for each client. Each facility has weight 1 and each edge has length 1.

in counter-clockwise order starting with 1 and ending with F + n + 1. Each edge

is given length 1. A facility and client with demand 2k is placed at each vertex

k = 2, . . . , F − n. The remaining vertices alternate between having a client and a

facility, beginning with a client on vertex F − n + 1. The demand of each of these

clients is two more than the demand of the previous clients. Figure 4.2 depicts this

instance.

The solution produced by keeping all clients fixed and moving each facility

one vertex counter-clockwise produces a local minimum with cost F . The solution

generated by keeping all clients fixed moving each facility to the closest client in the

clockwise direction produces a solution of cost n + 1. This yields a locality gap of

F/(n+1). Thus, an instance with an arbitrarily large locality gap may be produced

by choosing a sufficiently large value F .

In this example, the clients do not move in either solution and each facility

travels to a distinct destination with a client. In fact, the set of facility destinations

(i.e., Z) in both solutions are equal. The facility assignment subproblem is solved

optimally in only one of these two solutions, namely the lower-cost solution where

each facility moves to the nearest client in the clockwise direction.

136

4.3.1 n-OptSwap Local Search

Each set of facility destinations Z can be identified with a unique solution that

can be computed in polynomial time by solving the facility and client assignment

subproblems. This is a least cost solution where facilities occupy the destinations in

Z. This suggests how to define an improved local search neighborhood. To do so,

associate with each subset of facility locations Z the solution where the facility and

client assignment subproblems are solved optimally. Then rather than searching for

the changes to the individual destinations of each facility independently, define a

local search neighborhood by a collection of changes to the set of facility destinations

Z.

We have developed a local search heuristic that explores such a neighborhood,

which we call n-OptSwap local search. In n-OptSwap, each subset of p vertices Z

is associated with the solution found by solving optimally the facility assignment

subproblem and the client assignment subproblem. Given a current set of facility

destinations Z, the solutions in the neighborhood searched by n-OptSwap are gen-

erated by replacing of each subset of n facility destinations in Z with each subset of

n destinations in V \Z, and then optimally solving the facility assignment subprob-

lem and the client assignment subproblem. The solution found providing the best

improvement is selected as the new solution. This process is iterated until no further

improvements are found. Notice the second type of exchange operation referenced

above would never improve a solution generated by n-OptSwap since n-OptSwap

optimally solves the facility assignment subproblem. The steps for n-OptSwap are

137

as follows:

Step 1: Define the variables Z and Z ′. Initialize the variables curObj := FA(Z)+

curCAcost and curImp := 0.

Step 2: For each subset {v1, . . . , vn} ∈ V \Z of distinct vertices and each sub-

set {z1, . . . zn} ⊂ Z of distinct vertices do the following: Set Z ′ := Z ∪

{v1, . . . , vn}\{z1, . . . , zn}. If CA(Z ′) > curObj, no improvement will be found

so move onto the next pair of subsets. Otherwise, compute FA(Z ′). If

curObj − FA(Z ′) − CA(Z ′) > curImp, then set Z := Z ′ and set curImp :=

curObj− FA(Z ′)− CA(Z ′).

Step 3: If curImp = 0, terminate. Otherwise, set Z := Z, set curObj := curObj−

curImp, and update the client and facility assignments. Return to Step 2.

Figure 4.3 gives an example of how 2-OptSwap computes solutions in the

local search neighborhood. n-OptSwap has a considerable smaller neighborhood of

solutions to explore during each iteration than n-Swap. Specifically,
(|F |

n

)(|V |−|F |
n

)

solutions are in the neighborhood of a current solution during n-OptSwap. However,

more time must be taken to compute each solution since the facility assignment

subproblem is solved for each feasible solution in this neighborhood. Thus, we now

describe a method for quickly solving the facility assignment subproblem in Step 2

of n-OptSwap.

138

1

3

6

Z={a,d,e}

edcba

1

2 2

(a) Initial Solution

Z={b,c,e}

22

6

a b c d e

11 1

13 1

Solve Facility Assignment Subproblem

9

4

(b) Facility Assignment Subproblem to
Solve

Z={b,c,e}

2

a b c d e

11 1

3

4

(c) Solution in Search Neighborhood

Fig. 4.3: An example of how solutions in the neighborhood explored by 2-OptSwap are
generated. Panel 4.3(a) gives an initial solution where Z = {a, d, e} with cost
15. Unlike 2-Swap local search, 2-OptSwap would only see the solution in Figure
4.1(b) if it is initialized with that solution, since the facility assignment sub-
problem is not solved optimally in that solution. Panel 4.3(b) shows the facility
assignment subproblem that is solved by 2-OptSwap when a and d in Z are
replaced with b and c. Panel 4.3(c) displays the solution found after solving
the facility assignment subproblem. The cost of this solution is 12. 2-OptSwap
explores all solutions in the neighborhood and selects the one with the least cost.

Quickly Resolving the Facility Assignment Subproblem

To decrease runtime during execution of Step 2, we do not resolve the facility

assignment subproblem FA(Z ′) from scratch. Rather, we use a modified version

the Hungarian algorithm to reduce runtime. Recall that given an edge-weighted

bipartite graph G = (X ∪ Y,E), the Hungarian algorithm takes as input a feasible

labeling of the vertices, {lx : x ∈ X}∪{ly : y ∈ Y }, and outputs a maximum weight

perfect matching between X and Y . Munkres [38] observed that the Hungarian

139

algorithm is strongly polynomial. The worst case runtime is O(|X|4). Edmonds

and Karp [22] and Tomizawa [44] described modifications that produce a O(|X|3)

running time, which we adopt. Gabow and Tarjan [26] devised an algorithm for

solving the maximum weight bipartite matching problem that has polynomial time

complexity of O(
√

|X||E| log(D|X|)) where D is the distance matrix with entries

wjdjz for j ∈ F and z ∈ Z ′.

The Hungarian algorithm may be easily modified to quickly find a least cost

perfect matching in the facility assignment subproblem. The Hungarian algorithm

is initialized with an initial feasible labeling L = {lx : x ∈ X} ∪ {ly : y ∈ Y } and

an initial matching M . In the context of the facility assignment subproblem given

by (4.2.14)-(4.2.17), a labeling is feasible if lx + ly ≤ dxy for all (x, y) ∈ E. Let

GL = (V,EL) be the graph formed by the tight edges of G with labeling L (i.e., EL

contains those edges (x, y) where lx+ ly = dxy.) For a subset of vertices V ′ ⊂ X∪Y ,

define the neighborhood of V ′ as JGL
(V ′) = {u : (v, u) ∈ El}. The steps of the

O(|X|3) algorithm for finding the least cost perfect matching are as follows:

Step 1: If M is a perfect matching, then stop. Otherwise find an unmatched vertex

x ∈ X and set S := {x} and T := ∅. For each y ∈ Y , define slacky :=

maxx∈S{lx + ly − dxy}.

Step 2: If JGL
(S) 6= T , goto Step 3. Otherwise, set δ := maxy∈Y \T slacky. Then

140

update the labels as follows:

lv :=





lv − δ, if v ∈ S;

lv + δ, if v ∈ T ;

lv otherwise.

Update the graph GL to include the additional tight edges under the new

labeling. For each y ∈ Y \T , set slacky := slacky − δ. Goto Step 3.

Step 3: Choose a y ∈ JGL
(S). If y is matched by M with a vertex x′, set S :=

S∪{x′} and T := T∪{y}. For each y ∈ Y , update slacky := max{slacky, lx′+

ly−dx′y}. Goto Step 2. Otherwise, an path P exists from x to y that alternates

between edges in M and edges in El\M . Increase the size of the matching M

by setting M := (M\P) ∪ (P\M). Return to Step 1.

When solving the facility assignment subproblem, we create a node labeled xj

for each facility j ∈ F and a node labeled yv for each vertex v ∈ Z. An edge is

added between node xj and node yv with length djv. Assume we have constructed

this graph for a given Z, we have solved the least cost perfect matching problem

on this graph, and we have the corresponding labels lxj
and lyj . Now, suppose we

are computing FA(Z ′) during Step 2. Changing zk ∈ Z to vk ∈ Z ′ is equivalent to

changing the length on each edge (xj, yzk) from djzk to djvk and relabeling vertex zk

as vk. As a result, if we define the label lyvk by lyvk = lyzk +minj∈F{djvk − lxj
− lyzk}

for k = 1, . . . , n, then we create feasible labels for the least cost perfect matching

problem between F and Z ′. After updating each label lyvk in this manner, we look

to see if we can increase each label lxj
by setting lxj

= lxj
+minv∈Z′{djv − lxj

− lyv}.

141

During execution of Step 2 of n-OptSwap, an improved solution to the MFLP

is found if curObj− FA(Z ′)− CA(Z ′) > curImp. Therefore, an improved solution

is found in Step 2 if FA(Z) + CA(Z) − curImp > FA(Z ′) + CA(Z ′). Since these

new vertex labels for the updated least cost perfect matching problem are a dual

feasible solution to the facility assignment subproblem, it follows that FA(Z ′) ≥
∑

j∈F lxj
+

∑
v∈Z′ lyv . Therefore, if at some stage of calculating FA(Z ′) we find

that
∑

j∈F lxj
+
∑

v∈Z′ lyv ≥ FA(Z) + CA(Z)− curImp− CA(Z ′), then FA(Z ′) ≥

FA(Z)+CA(Z)−curImp−CA(Z ′). Moving CA(Z ′) to the left hand side, we have

that FA(Z ′) + CA(Z ′) ≥ FA(Z) + CA(Z) − curImp. In other words, replacing Z

with Z ′ will not improve the least cost solution observed.

n-OptSwap initializes the Hungarian algorithm with these vertex labels and

also seeds the maximum cardinality matching with whatever edges from the match-

ing between F and Z ′ remain tight with respect to these new labels. After each

time the Hungarian algorithm updates the labels, n-OptSwap checks to ensure

∑
j∈F lxj

+
∑

v∈Z′ lyv < FA(Z) + CA(Z) − curImp − CA(Z ′). If this inequality

does not hold, Z ′ is not an improvement over the least cost solution observed. If

the inequality does hold true, then the Hungarian algorithm is allowed to continue

searching for augmenting paths to increase the size of the matching.

As described above, each iteration of the Hungarian algorithm has runtime

O(p2). If a least cost perfect matching was computed from scratch to obtain FA(Z ′)

using the Hungarian Algorithm, the runtime would be O(p3). However, updating

the solution to the Hungarian algorithm as described above, reduces the runtime to

O(np2) since at least p− n edges from the matching between Y and Z will remain

142

tight under the new labels. Since n typically should be small relative to p, this

method for computing FA(Z ′) can substantially reduce runtime.

4.3.2 n-SmartSwap Local Search

The computational results presented in Section 4.5 will show that while n-

OptSwap produces high quality solutions, the runtime of n-OptSwap, even with

the improved method for resolving the facility assignment subproblem in Step 2,

can be undesirably long. Consequently, we devised a hybrid local search called n-

SmartSwap, which combines the speed of n-Swap local search with the capability

of n-OptSwap to resolve the facility assignment subproblem optimally. Again, let

Z ⊂ V be the set of facility destinations for a current feasible solution. The n-

SmartSwap heuristic searches a neighborhood of solutions defined by all swaps of

the destinations of n facilities in Z with n distinct vertices in V \Z. All such swaps

are considered. If an improvement is found, the swap that produces the best im-

provement is implemented. If no improvement can be found, the facility assignment

subproblem is resolved optimally to see if a new assignment of the facilities will

produce a lower cost solution. The steps in the algorithm are as follows:

Step 1: Define the variables v1, . . . vn and j1, . . . , jn. Next, set curCAcost :=

CA(Z) and set curObj := FA(Z) + curCAcost. Set curImp := 0.

Step 2: For each subset {v1, . . . , vn} ⊂ V \Z and subset {j1, . . . , jn} ⊂ F of distinct

facilities, do the following. Set Z ′ := Z ∪ {v1, . . . , vn}\{v(j1), . . . , v(jn)}. If

CA(Z ′) >= curObj, continue to the next pair of subsets of facilities and loca-

tions. Otherwise, let matchCost be the cost of the least cost perfect matching

143

9

2

Z={b,c,e}

a b c d e

1 1 1

2 11

Compute Optimal Assignment

(a) Matching Problem to Solve

9

Z={b,c,e}

a b c d e

1 1 1

1 1

(b) New Solution

Fig. 4.4: An example of how 2-SmartSwap generates solutions in its local search neighbor-
hood during Step 2. Starting with the initial solution from Figure 4.1(b) where
Z = {a, d, e}, the pictures here display how the solution in the neighborhood
is computed by replacing a and d in Z with b and c. Panel 4.4(a) displays the
matching problem to be solved during Step 2 of 2-SmartSwap between facilities 2
and 3 and vertices b and c. Panel 4.4(b) displays the solution found by comput-
ing this assignment. The particular member of the search neighborhood found
has cost 14. 2-SmartSwap explores all solutions in the neighborhood and selects
the one with the least cost.

between {v1, . . . , vn} and {j1, . . . , jn}. If curCAcost+
∑n

k=1 djk,v(jk)−CA(Z ′)−

matchCost > curImp, set curImp := curCAcost +
∑n

k=1 djk,v(jk) − CA(Z ′) −

matchCost. Then set jk := jk and vk to the vertex in {v1, . . . vn} that facility

jk was matched with.

Step 3: If curImp = 0, goto Step 4. Otherwise implement the improvement found.

Set Z := Z ∪ {v1, . . . , vn}\{v(j1), . . . , v(jn)}. Next set curCAcost := CA(Z)

and set curObj := curObj − curImp. Set v(jk) := vk. Reset curImp := 0.

Goto Step 2.

Step 4: Resolve FA(Z). If curObj − curCAcost − FA(Z) ≤ 0, then terminate.

Otherwise, set curObj := curCAcost + FA(Z) and update the facility and

client assignments. Goto Step 2.

144

Figure 4.4 gives an example of how 2-SmartSwap computes solutions in its

local search neighborhood during Step 2. There are
(|F |

n

)(|V |−|F |
n

)
solutions in the

neighborhood explored by n-SmartSwap, which is the same size as the neighbor-

hood explored n-OptSwap. However, the time n-SmartSwap takes to compute each

solution is significantly less than n-OptSwap when n is small relative to |F |. Using

the Hungarian algorithm, the computation of each solution in the search neighbor-

hood of n-SmartSwap has runtime O(n3) while the computation of each solution by

n-OptSwap has runtime O(n|F |2).

At the end of execution, the solution generated by n-SmartSwap will always

have the facility assignment subproblem and the client assignment subproblem

solved optimally. Consequently, n-SmartSwap may be able to get out of a local

minimum where n-Swap may stuck.

4.4 A New Framework for the MFLP that generalizes the p-Median
and Uncapacitated Facility Location Problems

The MFLP was originally formulated as taking place in a graph G(V,E) where

facilities are initially located at a subset of vertices F ⊂ V and clients are initially

located at a subset of vertices C ⊂ V . However, the decomposition of the MFLP

into the polynomially solvable client and facility assignment subproblems for a given

set of facility destinations hints at a new framework for the MFLP that generalizes

both the p-median and uncapacitated facility location problems [19]. In addition,

this new framework permits the p-center problem [19] to be seen as a special case

of the MFLP with a minimax objective. As the MFLP in this new framework is

145

d

1 1

1

u =1 u =121

w =11

a

b

c

(a) MFLP in the origi-
nal framework, set on a
graph G(V,E) with F ⊂
V and C ⊂ V .

F

u =1 u =121

w =11

d

a d

0 2
1 2

12 02

2

b c

2

0 1

V

C

(b) MFLP in the new frame-
work, set on a graph G(F ∪V ∪
C,E) where F , V , and C are
disjoint sets of vertices.

Fig. 4.5: An example of transforming the MFLP into the more general framework. Panel
4.5(a) shows an instance of the MFLP on a graph G(V,E), while Panel 4.5(b)
shows the same instance in the new framework. In this new graph, F is the lone
vertex in the top row, V contains vertices a, b, c, and d in the second row, and
C contains the two vertices in the bottom row.

a generalization of these important and well-studied problems in facility location,

algorithms and results for the MFLP can be applied to these other problems.

Our new framework for the MFLP is created by separating the initial locations

of the facilities F and clients C from the vertices V , so that the MFLP is set in

a graph G(F ∪ V ∪ C,E) where F , V , and C are disjoint sets of vertices. More

specifically, given an instance of the MFLP, create a new vertex for each j ∈ F and

create an edge between each j ∈ F and each v ∈ V with length djv. In addition,

create a new vertex for each i ∈ C and an edge between each i ∈ C and each v ∈ V

with length div. This creates a graph with three disjoint levels of vertices: F , V , and

C. Figure 4.5 gives an example of the transformation of an MFLP instance from

the original framework to our new framework. In this new framework, a feasible

solution to the MFLP is a selection of a destination vertex v(j) ∈ V for each facility

j ∈ F and a destination vertex v(i) ∈ V for client i ∈ C so that the destination of

146

each client is the destination of at least one facility.

This new framework permits a more general cost structure, where the reloca-

tion costs of clients and facilities over an edge are not proportional to each other.

As a result, the p-median and uncapacitated facility location problems can now be

modeled as special cases of the MFLP.

The p-median is set on a graph G(V ,E) with clients located at vertices in V .

The objective is to place p or less facilities and assign each client to a facility to

minimize the cost of serving all clients. To realize this as a special case of the MFLP,

create p vertices in F that are each the initial location of one facility. Set V = V ,

and set djv = 0 for each j ∈ F and v ∈ V . Create a vertex in C for each client i

in the p-median problem, and set div equal to the cost in the p-median problem of

serving client i from a facility at vertex v. Set the weight of each facility and client

equal to one. An optimal solution determines a placement of p facilities in V that

minimizes the cost of servicing all clients. The p-Center Problem may be realized as

a special case of the MFLP in the same manner, except with a minimax objective.

The uncapacitated facility location problem is set in a graph G(V ,E) with

clients located at vertices in V . There is a cost hv for opening a facility at each

vertex v ∈ V . The problem is to determine which facilities to open and determine

an assignment of clients to open facilities that minimizes the cost of opening facilities

and serving clients. To realize this as a special case of the MFLP, create |V | vertices

in F , each with a facility with weight one. Create a vertex i ∈ C with weight one

for each client i in the uncapacitated facility location problem. V will consist of

two disjoint sets of vertices, V1 and V2. For each v ∈ V , create a vertex v ∈ V1.

147

Assign the length of the edge from each j ∈ F to each v ∈ V1 by div = hv, and

set the length of the edge from each i ∈ C to each v ∈ V1 as the cost of assigning

client i to a facility at vertex v in the uncapacitated facility location problem. Next,

create |V | − 1 new vertices in V2. For each v ∈ V2, set djv = 0 for all j ∈ F and

div = M for each i ∈ C, where M is a number large enough to prevent a client

from ever having a destination in V2 in an optimal solution. (For example, set

M =
∑

i∈C
∑

v∈V uidiv +
∑

j∈F
∑

v∈V wjdjv.)

If a facility moves from j ∈ F to v ∈ V1 in a feasible solution to the MFLP,

the cost incurred is the same as the cost of opening a facility at vertex v in the

uncapacitated facility location problem. For each vertex without an open facility

in a solution to the uncapacitated facility location problem, there will be a facility

j ∈ F in the MFLP that cannot have a destination v ∈ V1. These facilities may be

given a destination in V2 without incurring an additional cost in the solution to the

MFLP.

In our new framework, n-Swap, n-OptSwap, and n-SmartSwap reduce to the

well-known local search heuristics for the p-median and uncapacitated facility loca-

tion problems presented in [2], where it was shown that when n = 1, these local

search heuristics provide a 5-approximation algorithm for the p-median problem and

a 3-approximation algorithm for the uncapacitated facility location problem. While

it was previously proven that the neighborhood explored by n-Swap has a local min-

imum that is arbitrarily far away from optimal, we conjecture that by terminating

at a solution with the facility assignment subproblem solved optimally, n-OptSwap

and n-SmartSwap produce constant-factor approximations to the MFLP.

148

4.5 Computational Results

This section presents results from our extensive computational experiments

with the IP formulations and the heuristics presented in this chapter. First, we

discuss the computational tractability of IP1 and IP2. These computational exper-

iments demonstrate IP1 and IP2 may often be solved reasonably quickly; however,

instances were observed where one or both IP formulations could not be solved,

or the time taken to solve either IP was considerable. Second, we present results

from our implementations of the local search heuristics discussed in this chapter.

These results demonstrate that while, these heuristics are all effective at finding high

quality solutions to the MFLP, optimally resolving the facility location subproblem

significantly lowers the optimality gap of n-SmartSwap and n-OptSwap. In most

cases, the runtime of 1-SmartSwap is shorter than the time taken by CPLEX to

solve either IP.

All computational results were implemented on a Dell Optiplex 740 with a

AMD Athlon 64 X2 5000+ dual core processor and 3GB of RAM running Microsoft

Windows XP. Our implementations were coded in C++ and compiled using Mi-

crosoft Visual Studio 2005. All IP formulations were solved using ILOG CPLEX

11.0.

Our MFLP instances were adapted from the 40 uncapacitated p-median in-

stances of Beasley [31], and were obtained from the OR-Library [4]. These MFLP

instances may be view as set in the original framework for the MFLP. (i.e., F and

C are subsets of V .) The p-median data files are named “pmed1.txt”, “pmed2.txt”,

149

..., “pmed40.txt”. Each p-median instance is defined on a graph. The data file for

an instance provides the number of vertices in the network, the lengths of a number

of edges in the network, and the number of facilities to be placed p. The length of

any edge not listed is defined to be infinity. Floyd’s algorithm was used to determine

the shortest path between all pairs of vertices of the network. The MFLP instance

has p facilities. The initial location of each facility is a randomly chosen vertex. For

each data set, a number ρ chosen from a uniform distribution between 0.2 and 0.8.

With probability ρ, a client is given a weight chosen from a uniform distribution

between 1 and 10, and assigned weight 1 with probability 1− ρ. Table 4.2 gives the

number of vertices, facilities, and clients in each of our MFLP data sets.

Table 4.3 gives the results from solving IP1, and IP2 when relaxing the inte-

grality of the variables xiv and yjv, and the linear relaxation of IP2 for each MFLP

data set. IP1 was able to solve 26 of the 40 instances, while IP2 was able to solve 37

of the 40 instances. Furthermore, for the 26 instances solved in both formulations,

CPLEX took on average 213.8% longer to solve IP1 than to solve IP2. In addition,

IP2 was solved in less time than IP1 for 23 of those 26 instances. The IP-LP gap

was generally small, with a maximum gap of 1.202%. In many cases, the solution

to the LP relaxation produced integer valued variables, yielding an optimal solution

to the MFLP. These results were generated by solving the LP relaxation of IP2,

however since the optimal objective values of the linear relaxation of either IP1 or

IP2 are equal, the IP-LP gap will be equal as well.

Our computational results indicate the heuristics proposed in this chapter

provide effective methods for determining low cost solutions. Table 4.4 gives the

150

Scenario Locations Facilities Clients

1 100 5 100
2 100 10 100
3 100 10 100
4 100 20 100
5 100 33 100
6 200 5 200
7 200 10 200
8 200 20 200
9 200 40 200
10 200 67 200
11 300 5 300
12 300 10 300
13 300 30 300
14 300 60 300
15 300 100 300
16 400 5 400
17 400 10 400
18 400 40 400
19 400 80 400
20 400 133 400
21 500 5 500
22 500 10 500
23 500 50 500
24 500 100 500
25 500 167 500
26 600 5 600
27 600 10 600
28 600 60 600
29 600 120 600
30 600 200 600
31 700 5 700
32 700 10 700
33 700 70 700
34 700 140 700
35 800 5 800
36 800 10 800
37 800 80 800
38 900 5 900
39 900 10 900
40 900 90 900

Tab. 4.2: The number of vertices, facilities and clients in each of our MFLP data sets.

optimality gap of the solution produced by 1-Swap, 1-SmartSwap, and 1-OptSwap

as well as the runtime of 1-Swap, 1-SmartSwap, 1-OptSwap, and IP2 each MFLP in-

stance. The results show that each local search heuristic produces low-cost solutions.

Not surprisingly, 1-SmartSwap and 1-OptSwap generate equal or better solutions

151

Scenario IP1 Obj IP1 RT IP2 Obj IP2 RT IP-LP Gap LP2 RT

1 7231.77 3.094 7231.77 1.438 0.634% 0.516
2 4914.03 0.578 4914.03 0.250 0.000% 0.250
3 5792.74 0.531 5792.74 0.250 0.000% 0.188
4 4748.11 0.859 4748.11 0.281 0.000% 0.172
5 2170.57 1.125 2170.57 0.234 0.000% 0.125
6 8958.09 6.141 8958.09 5.547 0.019% 6.625
7 7241.09 3.047 7241.09 2.359 0.000% 2.563
8 6077.76 4.500 6077.76 2.016 0.000% 1.906
9 4348.86 5.719 4348.86 1.375 0.000% 0.844
10 2377.40 8.938 2377.40 1.313 0.000% 0.672
11 8444.63 22.438 8444.63 38.672 0.128% 17.547
12 9219.27 35.797 9219.27 24.000 0.056% 15.234
13 5487.23 27.219 5487.02 11.516 0.013% 5.641
14 3963.37 22.141 3963.37 4.047 0.000% 2.438
15 2642.84 34.594 2642.84 3.531 0.000% 1.922
16 9655.15 355.891 9655.15 186.188 0.882% 34.406
17 8300.98 108.391 8300.98 70.078 0.418% 26.859
18 5844.42 49.313 5844.42 31.422 0.002% 9.000
19 4229.19 56.406 4229.19 9.297 0.000% 4.922
20 3178.70 90.297 3178.70 7.703 0.000% 3.984
21 10908.30 23.391 10908.30 27.453 0.000% 61.578
22 10856.90 372.828 10856.90 433.922 0.606% 137.078
23 6756.93 67.625 6756.93 19.703 0.000% 14.328
24 O.O.M. O.O.M. 4782.64 15.281 0.000% 8.938
25 D.N.L. D.N.L. 3033.29 12.750 0.000% 5.734
26 13314.30 553.375 13314.30 490.734 0.716% 222.719
27 11200.00 234.641 11200.00 350.078 0.120% 228.969
28 O.O.M. O.O.M. 6133.26 48.406 0.023% 22.781
29 D.N.L. D.N.L. 4756.74 38.188 0.015% 15.031
30 D.N.L. D.N.L. 3151.90 19.281 0.000% 8.266
31 12524.20 915.906 12524.20 439.281 0.646% 291.922
32 O.O.M. O.O.M. 10743.60 743.063 0.118% 433.203
33 D.N.L. D.N.L. 6740.80 45.469 0.000% 41.781
34 D.N.L. D.N.L. 4507.58 75.766 0.016% 19.000
35 O.O.M. O.O.M. 12408.10 3547.840 0.991% 423.531
36 O.O.M. O.O.M. 12943.40 56590.700 1.202% 629.281
37 D.N.L. D.N.L. 6296.17 196.422 0.023% 69.578
38 O.O.M. O.O.M. O.O.M. O.O.M. N/A 654.516
39 O.O.M. O.O.M. O.O.M. O.O.M. N/A 597.75
40 D.N.L. D.N.L. O.O.M. O.O.M. N/A 226.922

Tab. 4.3: Above shows the size of each data set, and gives a comparison of the performance
of CPLEX when solving IP1 and IP2, and the LP-IP ratio found by solving the
LP relaxation of IP2 (LP2). An entry “O.O.M.” indicates CPLEX ran out
of memory when attempting to solve the corresponding IP. An entry “D.N.L”
indicates CPLEX could not load the problem into memory. The runtimes (RT)
are displayed in seconds.

152

than 1-Swap in every instance, respectively reducing the optimality gap by factors

of roughly two and four. Furthermore, 1-SmartSwap found the optimal solution in

12 of the 37 instances solved with IP2 and 1-OptSwap found the optimal solution

in 13 of those instances, while 1-Swap found the optimal solution in only 3 of those

instances. The runtime of 1-Swap and 1-SmartSwap were quick and comparable,

while 1-OptSwap in most cases took longer to solve than either IP. On average, the

execution time of 1-SmartSwap was only 2.04 seconds longer than 1-SmartSwap and

at most 29.49 seconds longer in the largest instance.

These results indicate that 1-SmartSwap provides the best option of the three

heuristics we implemented when n = 1 for quickly computing high quality solutions.

In addition, the higher quality solutions produced by 1-OptSwap and 1-SmartSwap

in these results highlights the importance of optimally solving the facility location

subproblem.

One interesting characteristic of the MFLP is that the nature of the optimal

solution to an MFLP instance changes as the ratio of the client weights to facility

weights changes. Consider an instance of the MFLP set in the original framework.

(i.e., set on a graph G(V,E) where F and C are subsets of V .) When the client

weights are small relative to the facility weights, there is less of an incentive to

relocate the facilities. In the extreme, the optimal solution would be given by keeping

each facility at its initial location and solving the client assignment subproblem.

Conversely, when the client weights are very large relative to the facility weights,

the incentive is to pick facility destinations that minimize the movement of the

clients. In the extreme, the optimal solution to the MFLP would be the same as

153

the optimal solution to the p-median problem on the same graph. Thus, we ask the

question, how does 1-SmartSwap perform as the demand parameters change?

To test this, we generated four variants from each of our MFLP instances,

which we named “MFLP n-1” through “MFLP n-4”. Each of the four variants

of an MFLP instance have the same underlying network and p facility locations.

The four variants differ by the weight of each client. Client weights are created for

each variants by scaling the client weights in our MFLP instances that we described

earlier. In variant 1, ui is computed by scaling the client weights to lie in [0, 0.1].

Similarly, the values of ui in variants 2, 3, and 4 are computed by scaling the client

weights to lie in [0.1, 1], [1, 10] and [10, 100], respectively. The vertices in the graph,

the length of the edges in the graph, the facility weights, and the initial locations of

facilities and clients in each variant are the same in the original instance. Notice that

variant 3 of an instance is identical the original MFLP instance that we described at

the start of this section. Thus, the results above may also be considered as results

for variant 3.

Tables 4.5 and 4.6 provide the optimality gap and runtime of 1-SmartSwap

as well as the CPLEX runtime when solving IP2 for each variant of each MFLP

instance. The results show 1-SmartSwap performs well on a variety of client weights.

1-SmartSwap produces a lower optimality gap on the lower number variants, when

the client weights ui lie in a lower range. However, as noted previously, lower client

weights provide a greater incentive to keep each facility fixed at its initial location,

and move clients longer distances. Since these local search heuristics keep each

facility fixed in the initial solution, they are more likely to find the optimal solution

154

Data Set 1-SmartSwap 1-OptSwap 1-Swap IP2
Gap Runtime Gap Runtime Gap Runtime Runtime

1 0.00% 0.016 0.00% 0.047 0.32% 0.000 1.438
2 0.00% 0.047 0.00% 0.172 0.31% 0.047 0.250
3 0.00% 0.032 0.00% 0.125 0.00% 0.031 0.250
4 1.30% 0.078 0.32% 1.015 1.30% 0.078 0.281
5 0.58% 0.094 0.58% 2.078 0.58% 0.094 0.234
6 0.00% 0.063 0.00% 0.063 0.84% 0.047 5.547
7 0.00% 0.203 0.00% 0.422 0.94% 0.188 2.359
8 0.03% 0.531 0.03% 2.766 2.01% 0.453 2.016
9 0.63% 1.484 0.24% 24.063 1.97% 1.312 1.375
10 1.60% 1.702 0.22% 106.172 1.60% 1.672 1.313
11 0.86% 0.094 0.86% 0.109 0.86% 0.094 38.672
12 0.00% 0.656 0.00% 1.016 0.26% 0.625 24.000
13 1.23% 2.749 0.02% 23.453 2.05% 2.734 11.516
14 1.06% 9.655 0.63% 243.359 1.57% 8.969 4.047
15 0.00% 10.530 0.00% 962.234 0.00% 10.359 3.531
16 0.04% 0.343 0.00% 0.375 0.09% 0.312 186.188
17 0.00% 0.781 0.00% 1.312 0.36% 0.719 70.078
18 0.10% 14.091 0.05% 108.984 0.29% 13.750 31.422
19 1.00% 33.682 0.36% 1436.700 2.82% 27.594 9.297
20 0.97% 32.354 0.84% 8802.000 0.97% 32.562 7.703
21 0.00% 0.453 0.00% 0.407 0.04% 0.375 27.453
22 0.00% 2.718 0.00% 3.156 0.99% 2.500 433.922
23 0.67% 43.274 0.09% 467.703 1.98% 38.078 19.703
24 0.76% 67.426 0.28% 4057.610 1.77% 65.656 15.281
25 0.80% 85.907 0.38% 36432.500 0.86% 82.985 12.750
26 0.48% 0.813 1.02% 0.750 0.60% 0.703 490.734
27 0.00% 3.234 0.00% 3.156 0.00% 3.063 350.078
28 0.39% 80.112 0.02% 1211.500 1.40% 79.328 48.406
29 1.02% 150.381 0.17% 11585.900 1.23% 148.672 38.188
30 0.31% 176.627 0.23% 119512.000 0.37% 172.032 19.281
31 0.02% 0.875 0.02% 0.954 0.02% 0.875 439.281
32 0.02% 4.624 0.02% 5.328 0.26% 4.344 743.063
33 0.75% 147.554 0.10% 2228.391 1.44% 146.219 45.469
34 0.60% 259.613 0.31% 27091.734 0.78% 258.578 75.766
35 0.00% 1.672 0.00% 1.547 0.01% 1.672 3547.840
36 0.53% 5.859 0.34% 8.125 0.72% 5.453 56590.700
37 0.67% 248.521 0.02% 3681.969 1.17% 225.562 196.422
38 1.11%∗ 2.781 1.11%∗ 2.625 1.11%∗ 2.422 O.O.M
39 0.55%∗ 10.123 0.55%∗ 11.468 0.92%∗ 9.328 O.O.M
40 0.98%∗ 431.131 0.04%∗ 8822.156 1.79%∗ 401.641 O.O.M

Average 0.45% 45.822 0.22% 5671.147 0.85% 43.778 1716.104

Tab. 4.4: The optimality gap for each heuristic as well as the runtime (RT) in seconds
of each heuristic with n = 1, and of IP2 for each of our 40 MFLP instances.
The entries “O.O.M” indicate that IP2 could not be solved because CPLEX ran
out of memory. An asterisk indicates the gap was calculated using the optimal
solution to the LP relaxation of IP2 as a lower bound.

155

in such cases. Thus, the increase in the average optimality gap as client weights

increase may not necessarily indicate a decrease in the ability of 1-SmartSwap to

find high quality solutions. In particular, the average optimality gap for variant 4,

where the client weights lie in [10, 100] is less than the average optimality gap for

variant 3, where client weights lie in the lower range, [1, 10].

2-SmartSwap explores a larger neighborhood that 1-SmartSwap, giving it the

potential to produce higher quality solutions. While 1-SmartSwap explores a neigh-

borhood with |F |(|V | − |F |) solutions, 2-SmartSwap explores a much larger neigh-

borhood containing |F |(|F |−1)
2

· (|V |−|F |)(|V |−|F |−1)
2

solutions. In other words, for each

solution in the neighborhood explored by 1-SmartSwap, there are (|F |−1)(|V |−|F |−1)
4

solutions in the neighborhood explored by 2-SmartSwap. With so many more so-

lutions, the runtime of 2-SmartSwap typically exceeds the runtime of 1-OptSwap

and the time CPLEX needs to solve either IP1 or IP2. Table 4.7 gives results from

implementing 2-SmartSwap on (variant 3 of) each data set. (We return to using our

original data sets, which are the same as variant 3, since 1-SmartSwap produced

the highest average optimality gap on these instances.) Because each iteration of

2-SmartSwap is not quick, our implementation of 2-SmartSwap is initialized with

the solution found with 1-SmartSwap. The runtime of 2-SmartSwap was limited

to two hours. After executing for two hours, the best improvement found during

the current iteration of 2-SmartSwap was implemented. The facility assignment

subproblem was then resolved and 2-SmartSwap was terminated.

These results show that 2-SmartSwap was able to find a local minimum in

two hours for only 14 of the 40 MFLP instances. In seven of the 40 data sets,

156

V
a
ri
a
n
t
1

V
ar
ia
n
t
2

V
ar
ia
n
t
3

V
ar
ia
n
t
4

1-
S
m
ar
tS
w
ap

IP
2

1
-S
m
ar
tS
w
ap

IP
2

1-
S
m
ar
tS
w
ap

IP
2

1-
S
m
ar
tS
w
ap

IP
2

In
st
an

ce
G
ap

R
u
n
ti
m
e

R
u
n
ti
m
e

G
ap

R
u
n
ti
m
e

R
u
n
ti
m
e

G
ap

R
u
n
ti
m
e

R
u
n
ti
m
e

G
ap

R
u
n
ti
m
e

R
u
n
ti
m
e

1
0.
0
0%

0.
0
0

0.
3
8

0.
00
%

0.
00

2.
13

0.
00
%

0.
02

1.
44

0.
00
%

0.
02

3.
08

2
0.
0
0%

0.
0
0

0.
0
8

0.
00
%

0.
00

0.
33

0.
00
%

0.
05

0.
25

0.
00
%

0.
06

0.
47

3
0.
0
0%

0.
0
0

0.
1
9

0.
00
%

0.
00

0.
45

0.
00
%

0.
03

0.
25

0.
00
%

0.
05

0.
47

4
0.
0
0%

0.
0
0

0.
1
9

0.
00
%

0.
00

0.
36

1.
30
%

0.
08

0.
28

0.
00
%

0.
13

0.
44

5
0.
0
0%

0.
0
0

0.
2
0

0.
00
%

0.
02

0.
38

0.
58
%

0.
09

0.
23

0.
58
%

0.
19

0.
45

6
0.
0
0%

0.
0
0

0.
6
9

0.
00
%

0.
03

22
.8
1

0.
00
%

0.
06

5.
55

0.
00
%

0.
08

5.
27

7
0.
0
0%

0.
0
0

0.
9
4

0.
00
%

0.
13

11
.5
2

0.
00
%

0.
20

2.
36

0.
00
%

0.
20

7.
92

8
0.
0
0%

0.
0
0

0.
6
7

0.
00
%

0.
09

2.
31

0.
03
%

0.
53

2.
02

0.
00
%

0.
64

2.
77

9
0.
0
0%

0.
0
3

1.
2
3

0.
00
%

0.
11

2.
06

0.
63
%

1.
48

1.
38

0.
00
%

2.
12

2.
52

10
0.
0
0%

0.
0
5

0.
9
5

0.
00
%

0.
16

2.
02

1.
60
%

1.
70

1.
31

0.
70
%

4.
23

2.
61

11
0.
0
0%

0.
0
0

1.
0
8

0.
00
%

0.
09

11
.3
0

0.
86
%

0.
09

38
.6
7

1.
24
%

0.
13

39
.2
7

12
0.
0
0%

0.
1
3

2
3.
5
6

0.
00
%

0.
33

33
.8
0

0.
00
%

0.
66

24
.0
0

0.
00
%

0.
75

32
.9
4

13
0.
0
0%

0.
0
3

1.
1
1

0.
00
%

0.
56

7.
42

1.
23
%

2.
75

11
.5
2

0.
09
%

4.
06

9.
36

14
0.
0
0%

0.
0
5

1.
0
5

0.
00
%

0.
47

7.
06

1.
06
%

9.
66

4.
05

0.
66
%

13
.8
1

8.
69

15
0.
0
0%

0.
0
9

1.
4
4

0.
00
%

0.
31

7.
02

0.
00
%

10
.5
3

3.
53

0.
67
%

20
.3
6

9.
31

16
0.
0
0%

0.
0
5

2
0.
2
3

0.
00
%

0.
34

97
.7
5

0.
04
%

0.
34

18
6.
19

0.
08
%

0.
31

32
6.
94

17
0.
0
0%

0.
0
2

4.
8
8

0.
00
%

0.
64

28
.6
4

0.
00
%

0.
78

70
.0
8

0.
00
%

0.
86

12
3.
64

18
0.
0
0%

0.
0
6

1.
6
9

0.
00
%

3.
45

16
.5
0

0.
10
%

14
.0
9

31
.4
2

0.
04
%

18
.0
9

79
.5
9

19
0.
0
0%

0.
2
8

5.
1
9

0.
00
%

2.
36

16
.5
6

1.
00
%

33
.6
8

9.
30

0.
31
%

42
.1
8

19
.7
2

20
0.
0
0%

0.
4
9

7.
7
7

0.
00
%

0.
77

16
.5
8

0.
97
%

32
.3
5

7.
70

0.
76
%

76
.3
2

20
.9
5

T
ab

.
4.
5:

T
h
e
op

ti
m
al
it
y
ga

p
an

d
ru
n
ti
m
e
in

se
co
n
d
s
of

1
-S
m
a
rt
S
w
a
p
a
n
d
th
e
ru
n
ti
m
e
in

se
co
n
d
s
o
f
C
P
L
E
X

w
h
en

so
lv
in
g
IP

2
fo
r
va
ri
a
n
ts

1
th
ro
u
gh

4
of

th
e
fi
rs
t
tw

en
ty

in
st
an

ce
s.

T
h
e
in
st
a
n
ce

is
li
st
ed

o
n
th
e
le
ft

h
a
n
d
si
d
e
a
n
d
th
e
va
ri
a
n
t
is

li
st
ed

o
n
to
p
.

157

V
ar
ia
n
t
1

V
ar
ia
n
t
2

V
ar
ia
n
t
3

V
ar
ia
n
t
4

1
-S
m
a
rt
S
w
ap

IP
2

1
-S
m
a
rt
S
w
ap

IP
2

1-
S
m
ar
tS
w
ap

IP
2

1-
S
m
ar
tS
w
ap

IP
2

G
ap

R
u
n
ti
m
e

R
u
n
ti
m
e

G
ap

R
u
n
ti
m
e

R
u
n
ti
m
e

G
ap

R
u
n
ti
m
e

R
u
n
ti
m
e

G
ap

R
u
n
ti
m
e

R
u
n
ti
m
e

21
0.
0
0%

0.
1
1

45
.6
1

0.
00
%

0.
45

25
5.
06

0.
00
%

0.
45

27
.4
5

0.
00
%

0.
45

44
.2
2

22
0.
0
0%

0.
3
6

52
.8
9

1.
22
%

2.
22

24
7.
38

0.
00
%

2.
72

43
3.
92

0.
00
%

2.
70

50
4.
16

23
0.
0
0%

0.
5
8

18
.5
6

0.
00
%

8.
48

27
.9
7

0.
67
%

43
.2
7

19
.7
0

0.
25
%

48
.8
7

35
.0
9

24
0.
0
0%

0.
9
4

18
.3
1

0.
00
%

7.
08

27
.7
8

0.
76
%

67
.4
3

15
.2
8

0.
66
%

10
9.
70

34
.1
7

25
0.
0
0%

0.
5
5

6.
41

0.
00
%

1.
56

31
.0
6

0.
80
%

85
.9
1

12
.7
5

0.
63
%

18
1.
35

17
2.
28

26
1.
2
0%

0.
3
8

13
2
.8
4

0.
63
%

0.
91

11
63
.5
2

0.
48
%

0.
81

49
0.
73

1.
01
%

0.
81

78
0.
23

27
0.
0
0%

0.
7
2

32
.8
3

0.
00
%

2.
48

70
.0
5

0.
00
%

3.
23

35
0.
08

0.
00
%

2.
98

31
4.
70

28
0.
0
0%

0.
8
1

18
.8
4

0.
30
%

12
.7
2

48
.1
3

0.
39
%

80
.1
1

48
.4
1

0.
15
%

91
.7
8

54
.6
1

29
0.
0
0%

1.
5
6

26
.2
5

0.
00
%

8.
75

42
.5
2

1.
02
%

15
0.
38

38
.1
9

0.
27
%

24
5.
93

52
.3
4

30
0.
0
0%

0.
8
3

8.
56

0.
00
%

5.
69

44
.3
4

0.
31
%

17
6.
63

19
.2
8

0.
95
%

38
9.
19

60
.1
9

31
0.
0
0%

0.
3
6

10
7
.5
6

0.
00
%

0.
89

47
3.
22

0.
02
%

0.
88

43
9.
28

0.
04
%

0.
89

71
2.
66

32
0.
0
0%

0.
2
2

18
.1
7

0.
34
%

4.
69

15
49
.3
4

0.
02
%

4.
62

74
3.
06

0.
00
%

5.
44

64
4.
08

33
0.
0
0%

4.
5
6

34
.4
4

0.
00
%

35
.1
2

62
.4
5

0.
75
%

14
7.
55

45
.4
7

0.
04
%

18
3.
08

59
5.
64

34
0.
0
0%

1.
7
5

23
.6
7

0.
00
%

10
.9
4

56
.8
0

0.
60
%

25
9.
61

75
.7
7

0.
14
%

48
5.
65

77
.5
9

35
0.
0
0%

0.
3
4

10
8
.4
2

0.
03
%

1.
27

15
99
.1
1

0.
00
%

1.
67

35
47
.8
4

0.
00
%

1.
67

14
91
.1
4

36
0.
0
0%

1.
7
2

22
0
.9
5

0.
00
%

6.
39

61
15
6.
50

0.
53
%

5.
86

56
59
0.
70

0.
47
%

7.
53

15
66
5.
90

37
0.
0
0%

0.
8
6

12
.5
5

0.
00
%

28
.4
8

95
.8
6

0.
67
%

24
8.
52

19
6.
42

0.
13
%

25
7.
44

92
0.
92

38
0.
0
0%

1.
1
9

48
3
.7
5

O
.O

.M
.

2.
22

O
.O

.M
.

1.
11
%

∗
2.
78

O
.O

.M
.

O
.O

.M
.

2.
78

O
.O

.M
.

39
0.
0
0%

0.
1
7

15
.7
0

O
.O

.M
.

7.
91

O
.O

.M
.

0.
55
%

∗
10
.1
2

O
.O

.M
.

O
.O

.M
.

10
.1
1

O
.O

.M
.

40
0.
0
0%

3.
0
3

53
.1
6

0.
00
%

73
.0
8

11
6.
23

0.
98
%

∗
43
1.
13

O
.O

.M
.

O
.O

.M
.

51
0.
13

O
.O

.M
.

A
ve
ra
ge

0.
0
3%

0.
5
6

37
.8
3

0.
07
%

5.
78

17
72
.4
8

0.
45
%

45
.8
2

17
16
.1
0

0.
27
%

68
.0
8

61
7.
74

T
ab

.
4.
6:

T
h
e
op

ti
m
al
it
y
ga

p
an

d
ru
n
ti
m
e
in

se
co
n
d
s
of

1
-S
m
a
rt
S
w
a
p
a
n
d
th
e
ru
n
ti
m
e
in

se
co
n
d
s
o
f
C
P
L
E
X

w
h
en

so
lv
in
g
IP

2
fo
r
va
ri
a
n
ts

1
th
ro
u
gh

4
of

th
e
se
co
n
d
tw

en
ty

in
st
a
n
ce
s.

T
h
e
av
er
a
g
e
re
su
lt
s
fr
o
m

a
ll
fo
rt
y
in
st
a
n
ce

is
a
ls
o
p
re
se
n
te
d
in

th
e
la
st

ro
w
.
T
h
e

in
st
an

ce
is

li
st
ed

on
th
e
le
ft

h
an

d
si
d
e
an

d
th
e
va
ri
a
n
t
is

li
st
ed

o
n
to
p
.
A
n
a
st
er
is
k
in
d
ic
a
te
s
th
e
g
a
p
w
a
s
ca
lc
u
la
te
d
u
si
n
g
th
e

op
ti
m
al

so
lu
ti
on

to
th
e
L
P

re
la
x
a
ti
on

o
f
IP

2
a
s
a
lo
w
er

b
o
u
n
d
.

158

2-SmartSwap was able to improve the solution found by 1-SmartSwap. While 2-

SmartSwap could potentially find further improvements to the solutions produced

by 1-SmartSwap if the runtime was not limited, there do exist data sets, such as data

sets 8 and 9, for which 2-SmartSwap could not find any improvements to the solution

found by 1-SmartSwap without being limited by time. Conversely, 2-SmartSwap

also found significant improvements in other cases, such as when it produced the

optimal solution to data set 5. However, overall 2-SmartSwap was able to find

rather limited improvements to the solutions found by 1-SmartSwap while typically

requiring more time to execute than 1-OptSwap, even when limiting execution time

to 2 hours. Furthermore, the solutions found by 1-OptSwap were superior to those

found by 2-SmartSwap. When limiting execution time, it may be more effective to

greedily search the neighborhood explored by 2-SmartSwap. However, in 26 of the

40 instances, 2-SmartSwap was unable to complete even a single iteration in two

hours. In such cases, a greedy heuristic would also not be capable of exploring the

entire neighborhood once in two hours. With a large number of solutions in each

neighborhood, the chances of finding an improvement might also decrease as the

size of the problem gets larger since the percentage of the neighborhood explored in

the limited execution time would decrease.

2-OptSwap also displayed unreasonably long runtimes. Table 4.8 displays the

runtimes of 2-OptSwap on the first nine data sets without any limitation on the

runtime. The runtime of 2-OptSwap was excessively long, even for relatively small

data sets. 2-OptSwap took more than 13 hours to terminate when solving data

set 9. 2-OptSwap did not terminate in 72 hours for data set 10. As a result of

159

Data Set Gap Runtime (s) Iterations
Completed

1 0.00% 2.109 1
2 0.00% 8.578 1
3 0.00% 8.484 1
4 0.82% 84.266 3
5 0.00% 161.297 3
6 0.00% 58.391 1
7 0.00% 287.532 1
8 0.03% 944.766 1
9 0.63% 4004.969 1
10 1.42% 7200.015 0
11 0.00% 2025.719 4
12 0.00% 1743.610 1
13 1.23% 7200.016 0
14 1.06% 7200.016 0
15 0.00% 7200.032 0
16 0.00% 4333.797 3
17 0.00% 6235.031 1
18 0.10% 7200.016 0
19 1.00% 7200.031 0
20 0.89% 7200.063 0
21 0.00% 3818.844 1
22 0.00% 7200.015 0
23 0.67% 7200.015 0
24 0.76% 7200.031 0
25 0.80% 7200.125 0
26 0.00% 7200.016 0
27 0.00% 7200.016 0
28 0.39% 7200.016 0
29 1.02% 7200.062 0
30 0.31% 7200.203 0
31 0.02% 7200.016 0
32 0.02% 7200.016 0
33 0.75% 7200.031 0
34 0.60% 7200.094 0
35 0.00% 7200.015 0
36 0.53% 7200.016 0
37 0.67% 7200.047 0
38 1.11%∗ 7200.015 0
39 0.98%∗ 7200.015 0
40 0.55%∗ 7200.047 0

Average 0.41% 5272.96 0.575

Tab. 4.7: The optimality gap and runtime of 2-SmartSwap on (variant 3 of) each data
set. 2-SmartSwap was initialized with the solution found by 1-SmartSwap. The
runtime of 2-SmartSwap was limited to two hours. If 2-SmartSwap could not
terminate in two hours, the best solution found so far in the current iteration
was implemented and the facility assignment subproblem was resolved one final
time. An asterisk indicates the gap was calculated with the solution to the LP
relaxation of IP2 as a lower bound.

160

2-OptSwap

Data Set Gap Runtime

1 0.16% 1.703
2 0.02% 22.438
3 0.25% 18.469
4 0.00% 488.312
5 0.00% 1827.937
6 0.00% 12.906
7 0.00% 110.5
8 0.03% 2387.718
9 0.00% 49818.75

Average 0.05% 6076.526

Tab. 4.8: The Performance of 2-OptSwap on (variant 3 of) the first nine data sets.

these extremely long runtimes, results for larger instances were not computed. The

neighborhood explored by 2-OptSwap has the large same size as the neighborhood

explored by 2-SmartSwap; however, 2-OptSwap must spend significantly more time

to compute each solution in the neighborhood.

Figure 4.6(a) displays a graph comparing the optimality gaps of the results

reported for (variant 3 of) each data set. Similarly, Figure 4.6(b) shows a graph com-

paring the runtimes of each local search heuristic implemented as well as the time

CPLEX took to solve each data set. We believe these demonstrate that 1-SmartSwap

provides the best choice of the methods presented in this chapter for quickly com-

puting efficient solutions to the MFLP. While the runtime of 1-SmartSwap is very

close to the runtime of 1-Swap local search, the solutions it finds very often come

close to the best solution we computed with a heuristic. In addition, the runtime

of 1-SmartSwap typically outperforms the time CPLEX needed to solve IP1 or IP2.

This appears to be particularly true when the number of mobile facilities is small

compared to the number of locations.

161

1 5 10 15 20 25 30 35 40
0%

0.5%

1%

1.5%

2%

2.5%

3%

Data Set

O
pt

im
al

ity
 G

ap

1−Swap
1−OptSwap
1−SmartSwap
2−SmartSwap
2−OptSwap

(a) Optimality Gap of Local Search Heuristics

5 10 15 20 25 30 35 401
0.001

0.01

0.1

1

10

100

1000

10000

100000

Data Set

R
un

tim
e

in
 S

ec
on

ds

1−SmartSwap 1−OptSwap 1−Swap 2−SmartSwap 2−OptSwap IP1 IP2

(b) Runtimes of Local Search Heuristics, IP1, and, IP2

Fig. 4.6: Plots of the optimality gaps and runtimes from Table 4.3, Table 4.4, Table 4.7,
and Table 4.8. Panel 4.6(a) gives a comparison of the optimality gap of the
computational results presented for the local search heuristics. Panel 4.6(b) gives
a comparison of the runtimes on a logscale of the computational results presented
on the local search heuristics and the runtimes of CPLEX when solving IP1 and
IP2.

4.6 Lagrangian Heuristics for the MFLP

The local search heuristics presented in this chapter provide effective methods

for finding high quality solutions to the MFLP. Another approach for computing

solutions to the MFLP would be to solve the Lagrangian dual of either IP1 or IP2.

Such Lagrangian heuristics have been effective in solving many problems that can

be formulated as integer programs [24], including problems in locating facilities such

as the uncapacitated facility location problem [12], the p-median problem [35], and

the maximal covering location problem [27].

162

A Lagrangian dual for the MFLP can be formulated by relaxing Constraint

(4.2.5) in IP1 to give,

Minimize SP(λ) =
∑
i∈C

∑
v∈V

(uidiv + λiv)xiv +
∑
j∈F

∑
v∈V

(
wjdjv −

∑
i∈C

λiv

)
yjv

(4.6.1)

subject to (4.2.3), (4.2.4), and (4.2.6).

For fixed values of λiv, the problem can be decomposed into polynomially

solvable subproblems of assigning each facility j to the vertex v minimizing wjdjv −
∑

i∈C λiv and assigning each client i to the vertex v minimizing uidiv+λiv. This yields

a feasible solution for the Lagrangian, and thus a lower bound for the MFLP. An

upper bound may then be computed by sending the facilities to the same destination

as in the feasible solution to the Lagrangian, and then solving the client assignment

subproblem (i.e., assign each client to its nearest facility). However, the solution

to the MFLP found in this manner may have one vertex v as the destination of

multiple facilities. If this is the case, we improve the solution by moving only the

mobile facility with destination v with the weighted distance to vertex v, and keeping

the other facilities with destination vertex v at their original location prior to solving

the client assignment subproblem.

We solved the Lagrangian dual using subgradient optimization. However, we

found that the Lagrangian dual converges very slowly and the solutions it obtained

for the MFLP were of poor quality.

163

4.7 Conclusion

We have shown for each set of facility locations Z, the MFLP decomposes into

the facility assignment subproblem and the client assignment subproblem, which can

both be solved in polynomial time. Thus, the MFLP can be viewed as the problem

of determining the set Z yielding the least cost solution. Using this viewpoint,

we presented an improved IP formulation for the MFLP with a smaller memory

footprint, allowing a commercial solver like CPLEX to solve much larger instances

than possible with an earlier model for the MFLP.

In addition, we have introduced a new framework for the MFLP that permits a

more general cost structure. In this new framework, the MFLP generalizes both the

p-median and uncapacitated facility location problems. The local search heuristics

discussed in this chapter reduce to well known local search heuristics for these other

problems that have known constant factor approximation algorithms.

To appropriately design heuristics for the MFLP, it is necessary to resolve the

facility assignment subproblem optimally. Friggstad and Salvatipour [25] produced

an example where a local search heuristic may terminate at a solution with an

arbitrarily large locality gap. We proposed and tested two local search heuristics

that always produce solutions with the facility subproblem solved optimally. Our

computational results confirm the effectiveness of our local search heuristics. In

particular, 1-SmartSwap quickly finds high quality solutions for large instances of

the MFLP. Whether either n-OptSwap or n-SmartSwap provide a constant factor

approximation ratio remains as a open question.

164

5. CONCLUDING REMARKS AND FUTURE RESEARCH

In the past several chapters, we have discussed two problems on modeling

the efficient deployment of mobile facilities. These models have wide-ranging appli-

cations in telecommunication networks, humanitarian relief logistics, public sector

services, health care, and private industry. We have presented several innovative

heuristics, exact algorithms, and novel formulations for these problems. The effec-

tiveness of these heuristics and computational tractability of these formulations was

demonstrated with computational experiments on large numbers of heterogeneous

data sets. Many interesting research questions arise from the study of these models.

Below we describe the unique contributions of this work and potential directions of

future research.

5.1 The SMFRP

In Chapter 2, we described a widely applicable model for routing a single

mobile facility to maximize the total demand serviced during a continuous-time

planning horizon. We named this problem the single mobile facility routing problem

(SMFRP). The SMFRP can be used to model a large class of mobile facilities that are

used in many application settings. We introduced two exact algorithms for solving

the SMFRP when the moment demand functions are piecewise constant, and a

number of supporting theoretical results describing characteristics of optimal routes

and methods for improving the runtime of these algorithms. The first of these exact

algorithms, the schedule resolution dynamic program (SRDP), may have a worst

case exponential runtime, although it typically executes quickly. In addition, the

SRDP naturally extends to cases when the moment demand functions take on more

general forms. The second of these two exact algorithms is the single mobile facility

longest path algorithm (SMFLPA), and has a worst case runtime that is polynomial

in the number of pieces of the piecewise constant moment demand functions.

We have shown how the SMFRP can be extended to several variants of the

problem. The SRDP (and the SMFLPA) can be modified to optimally solve many

cases when the moment demand functions are not piecewise linear. In addition, the

SMFRP can easily be extended to model the requirement that the mobile facility

starts and ends its route at a depot or at specific locations by simply modifying the

moment demand functions. The SMFLPA permits the addition of relocation costs

to the SMFRP, which allows the most profitable route to be found in applications

where demand serviced can be equated with revenue.

There are several interesting and useful variants of the SMFRP that could

be fruitful topics of future research. These are driven by service constraints an

operator of a mobile facility may impose in practice. For example, it may be deemed

appropriate for a mobile facility to visit a location only if it can remain there for a

minimum length of time. This constraint may reconcile the mathematical solution

with the realities of operating a mobile facility in practice. In such a case, an

optimal route must be computed where the mobile facility remains at each stop for

a minimum duration of time. Alternatively, an operator may wish to encourage the

166

mobile facility to visit a number of locations, in which case they could impose a

constraint specifying the minimum number of locations that must be visited, or a

maximum amount of time a mobile facility may be at a location.

5.2 The MFRP

The MFRP introduced in Chapter 3 extends the SMFRP to the case when mul-

tiple mobile facilities are operating in an area. We proposed several novel heuristics

for solving the MFRP and demonstrated their effectiveness through computational

results on a wide range of test instances. The SMFRP and MFRP are unique among

mobile facility models in that these models are both set in a continuous-time plan-

ning horizon and seek to maximize the demand serviced. The SMFRP and MFRP

are two of the few models of mobile facility operations set in a continuous-time

planning horizon. In fact, we are aware of only one other [8]. Traditionally, most

facility location problems are set in either a single period planning horizon, or a

multi-period planning horizon. This continuous-time planning horizon allows the

SMFRP and MFRP to more accurately model the relocation times of the mobile

facilities. This is important in settings where facility relocation times are significant

in relation to the length of the planning horizon and mobile facilities can not pro-

vide service while relocating, such as when routing portable cellular base stations

or mobile medical facilities.

An exact method for solving the MFRP remains a topic of future research.

We can model the MFRP as an infinite dimensional mixed integer program. Un-

fortunately, no general methods are known for solving infinite dimensional integer

167

programs. One possible method for solving the MFRP would be to determine a

finite set of times when a mobile facility could either depart a location, or arrive at

a location. If this set of times was known, an optimal solution for the MFRP could

be computed by solving the integer program given by (3.4.8)-(3.4.13).

Since the MFRP is NP-complete, any exact method found likely has an expo-

nential worst case runtime. However, an exact method would be useful for evaluating

the performance of heuristics for the MFRP. In lieu of an exact solution method for

the MFRP, a procedure for producing a quality upper bounding would be useful for

evaluating these heuristics and in developing improved heuristics in the future.

Both the SMFRP and MFRP assume that demand is either serviced at the

moment it is generated, or the demand is lost. However, in some applications the

demand for service may accumulate over time. For example, when using mobile

facilities to provide humanitarian relief after a natural or manmade disaster, an

individual who arrives at a location in need of food, water, or other supplies may

continue to need these items if a mobile facility is not around to provide them.

Perhaps models similar to the SMFRP and MFRP can be developed for such situ-

ations?

The MFRP also assumes the planner has perfect control of assigning demand

from event points to mobile facilities. However, this may not be possible in every

application. For example, the population may choose which mobile facility to travel

to, giving little control to the operator of the facility. In some cases, the heuristics

described in Chapter 3 may be modified to handle such situations. For example, the

demand assignment phase of our heuristics for the MFRP can be easily modified

168

when service is always provided by the closest mobile facility. In other cases, it

may be that the heuristics described in Chapter 3 provide effective routes even if

the method for demand assignment in the heuristics does not exactly mirror reality.

However, there may exist other situations requiring new solution methods.

The SMFRP and MFRP make an assumption that the demand profile of each

location and event point, respectively, is known perfectly for the entire planning

horizon. In some applications, this may not be the case. The rate demand for service

is generated at an event could deviate from a predicted demand profile over time.

In addition, there may exist cases where the demand profile cannot be accurately

forecasted. The extension of the SMFRP and MFRP to stochastic environments

may prove to be interesting topics of future research.

5.3 The MFLP

In Chapter 4 we demonstrated that given a set of locations to be occupied by

facilities, the MFLP can be decomposed into two polynomially solvable subproblems

of assigning customers and facilities to specific locations in this set. We named

these subproblems the facility assignment subproblem and the customer assignment

subproblem. With this in hand, we proposed a new IP formulation for the MFLP

that permits a commercial solver, such as CPLEX, to solve large scale instances.

In addition, we used this decomposition to devise novel local search heuristics for

solving the MFLP. These local search heuristic always terminate at a solution where

the facility assignment subproblem and customer assignment subproblem are solved

optimally. As a result these local search heuristics will never terminate in the local

169

minimum demonstrated by Friggstad and Salavatipour [25], which is arbitrarily

far away from optimal. We demonstrated the effectiveness of these local search

heuristics on a wide variety of data sets. In addition, we proposed a new framework

for the MFLP that allows the MFLP to model more general cost structures. In

this new framework, the MFLP generalizes both the p-median and uncapacitated

location problems.

It remains an open question whether either n-OptSwap or n-SmartSwap is

a constant ratio approximation algorithm. If so, these heuristics would provide a

simpler constant factor approximation algorithm than the LP rounding procedure

introduced by Friggstad and Salavatipour [25].

It is easy to produce several simple variants of the MFLP that could be in-

teresting problems. For example, one could introduce capacity constraints on the

amount of demand or number of clients that may be assigned to a facility. Alter-

natively, one could impose a constraint on the maximum distance that a facility

or client may travel in a solution. Another interesting variant would be a multi-

objective formulation of the problem, where the two objectives to be minimized

are the maximum movement of some client and the total movement of all facilities.

This may closely mirror situations where the planner wants to minimize the costs of

relocating facilities while ensuring that individual clients move as little as possible.

170

BIBLIOGRAPHY

[1] Betty B. Alexy and Christine A. Elnitsky. Community outreach: Rural mobile
health unit. Journal of Nursing Administration, 26(12):38–42, December 1996.

[2] Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Mu-
nagala, and Vinayaka Pandit. Local search heuristic for k-median and facility
location problems. In STOC ’01: Proceedings of the thirty-third annual ACM
symposium on Theory of computing, pages 21–29, New York, NY, USA, 2001.
ACM.

[3] R.H. Ballou. Dynamic warehouse location analysis. Journal of Marketing Re-
search, 5(3):271–276, August 1968.

[4] J.E. Beasley. OR-library: Distributing test problems by electronic mail. Journal
of the Operational Research Society, 41(11):1069–1072, 1990.

[5] O. Berman and B. LeBlanc. Location-relocation of mobile facilities on a stochas-
tic network. Transportation Science, 18(4):315–330, November 1984.

[6] Oded Berman and Mina R. Rahnama. Optimal location-relocation decisions
on stochastic networks. Transportation Science, 19(3):203–221, August 1985.

[7] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[8] S. Bespamyatnikh, B. Bhattacharya, D. Kirkpatrick, and M. Segal. Mobile
facility location. In Proc. Int. ACM Workshop of Discrete Algorithms and
Methods for Mobile Computing and Communications, volume 4, pages 199–217,
2000.

[9] Luce Brotcorne, Gilbert Laporte, and Frederic Semet. Ambulance location and
relocation models. European Journal of Operational Research, 147(3):451–463,
June 2003.

[10] C. Canel, B. M. Khumawala, J. Law, and A. Loh. An algorithm for the capaci-
tated, multi-commodity multi-period facility location problem. Computers and
Operations Research, 28(5):411–427, April 2001.

[11] R. L. Church, D. M. Stoms, and F. W. Davis. Reserve selection as a maximal
covering location problem. Biological Conservation, 76(2):105–112, 1996.

[12] Gerard Cornuejols, Marshall L. Fisher, and George L. Nemhauser. Location of
bank accounts to optimize float: An analytic study of exact and approximate
algorithms. Management Science, 23(8):789–810, 1977.

[13] J. R. Current and J. E. Storbeck. Capacitated covering models. Environment
and Planning B: Planning and Design, 15(2):153–163, 1988.

[14] J.R. Current, H. Pirkul, and E. Rolland. Efficient algorithms for solving the
shortest covering path problem. Transportation Science, 28(4):317–327, Novem-
ber 1994.

[15] J.R. Current, C.S. ReVelle, and J. Cohon. The shortest covering path problem:
An application of locational constraints to network design.

[16] J.R. Current, C.S. ReVelle, and J.L. Cohon. The maximum covering/shortest
path problem: A multiobjective network design and routing formulation. Eu-
ropean Journal of Operational Research, 21:189–199, 1985.

[17] J.R. Current and David A. Schilling. The covering salesman problem. Trans-
portation Science, 23(3):208–213, August 1989.

[18] J.R. Current and David A. Schilling. The median tour and maximal covering
tour problems: Formulations and heuristics. European Journal of Operational
Research, 73:114–126, 1994.

[19] M. Daskin. Network and Discrete Location. John Wiley & Sons, Inc, New York,
NY, 1995.

[20] Erik D. Demaine, MohammadTaghi Hajiaghayi, Hamid Mahini, Amin S.
Sayedi-Roshkhar, Shayan Oveisgharan, and Morteza Zadimoghaddam. Min-
imizing movement. In SODA ’07: Proceedings of the eighteenth annual ACM-
SIAM symposium on Discrete algorithms, 2007.

[21] S. Durocher and D. Kirkpatrick. The Steiner centre of a set of points: Stability,
eccentricity, and applications to mobile facility location. International Journal
of Computational Geomerty and Applications, 16(4):345–371, 2006.

[22] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic
efficiency for network flow problems. J. ACM, 19(2):248–264, 1972.

[23] Donald Erlenkotter. A comparative study of approaches to dynamic location
problems. European Journal of Operational Research, 6(2):133–143, February
1981.

[24] Marshall L. Fisher. The lagrangian relaxation method for solving integer pro-
gramming problems. Management Science, 27(1):1–18, 1981.

[25] Zachary Friggstad and Mohammad R. Salavatipour. Minimizing movement in
mobile facility location problems. In FOCS ’08: Proceedings of the 2008 49th
Annual IEEE Symposium on Foundations of Computer Science, 2008.

172

[26] Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for network
problems. SIAM Journal on Computing, (5):1013–1036, 1989.

[27] Roberto Diguez Galvo and Charles ReVelle. A lagrangean heuristic for the
maximal covering location problem. European Journal of Operational Research,
88:114–123, 1996.

[28] M. Gendreau, G. Laporte, and F. Semet. A dynamic model and parallel
tabu search heuristic for real-time ambulance relocation. Parallel Computing,
27(12):1641–1653, 2001.

[29] Hongkong Post. Mobile post office locations. http://www.hongkongpost.com/
eng/locations/mobile/index.htm, December 1 2008. Viewed Jan 21, 2009.

[30] M. L. Jay. Katrina leaves wireless industry better prepared for next disaster.
http://www.ctia.org/content/index.cfm/AID/10410, 2006.

[31] J.E.Beasley. A note on solving large p-median problems. European Journal of
Operational Research, 21:270–273, 1985.

[32] Marisa G. Kantor and Moshe B. Rosenwein. The orienteering problem with
time windows. The Journal of the Operational Research Society, 43(6):629–
635, June 1992.

[33] Orhan Karasakal and Esra K. Karasakal. A maximal covering location model
in the presence of partial coverage. Computers and Operations Research,
31(9):1515–1526, 2004.

[34] Peter Kolesar and Warren E. Walker. An algorithm for the dynamic relocation
of fire companies. Operations Research, 22(2):249–274, 1974.

[35] Lazaros P. Mavrides. An indirect method for the generalized k-median problem
applied to lock-box location. Management Science, 25(10):990–996, 1979.

[36] Pitu B. Mirchandani and Richard L. Francis. Discrete Location Theory. Wiley-
Interscience, July 1990.

[37] Mike Moss, Bruce Alan, and Joe Farren. COLTs and COWs to help with cell
phone demand, 2008. December 10, 2008.

[38] James Munkres. Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):32–38,
March 1957.

[39] Rahul Nair and Elise Miller-Hooks. Evaluation of relocation strategies for emer-
gency medical service vehicles. Transportation Research Record, 2010.

[40] H. Pirkul and D. A. Schilling. The maximum covering location problem with
capacities on total workload. Management Science, 37(2):233–248, February
1991.

173

[41] T. J. Van Roy and D. Erlenkotter. A dual-based procedure for dynamic facility
location. Management Science, 28(10):1091–1105, October 1982.

[42] Aamod Sathe and Elise Miller-Hooks. Optimizing location and relocation of
response units in guarding critical facilities. Transportation Research Record,
1923:127–136, 2005.

[43] Smiths Detection. Smiths detection security technologies selected by U.S. postal
inspection service for mobile screening. http://www.smithsdetection.com/

eng/1025_4071.php, January 18, 2009. Viewed January 21, 2009.

[44] N. Tomizawa. On some techniques useful for solution of transportation network
problems. Networks, 1, 1971.

[45] Theodore Tsiligride. Heuristic methods applied to orienteering. Journal of the
Operational Research Society, 35(9):797–809, September 1984.

[46] United Kingdom, Department of Transportation. Mobile post of-
fice website. http://www.dft.gov.uk/pgr/regional/ltp/accessibility/

knowledgepool/aos/mobilepostoffice, 2009. Viewed Jan 21, 2009.

[47] United States Postal Service. Postal facts 2008. http://www.usps.com/

communications/newsroom/postalfacts.htm, 2008. Viewed January 21,
2009.

[48] M. Wendland. Cell capacity will be super during the big game in Detroit.
Detroit Free Press, 2006. February 1, 2006.

[49] G. O. Wesolowsky. Dynamic facility location. Management Science,
19(11):1241–1248, 1973. Theory Series.

[50] G. O. Wesolowsky and W. G. Truscott. The multiperiod location-allocation
problem with relocation of facilties. Management Science, 22(1):57–65, 1975.

[51] Laurence A. Wolsey. Integer Programming. Wiley-Interscience, September
1998.

174

