474 research outputs found

    Properties of Noncommutative Renyi and Augustin Information

    Full text link
    The scaled R\'enyi information plays a significant role in evaluating the performance of information processing tasks by virtue of its connection to the error exponent analysis. In quantum information theory, there are three generalizations of the classical R\'enyi divergence---the Petz's, sandwiched, and log-Euclidean versions, that possess meaningful operational interpretation. However, these scaled noncommutative R\'enyi informations are much less explored compared with their classical counterpart, and lacking crucial properties hinders applications of these quantities to refined performance analysis. The goal of this paper is thus to analyze fundamental properties of scaled R\'enyi information from a noncommutative measure-theoretic perspective. Firstly, we prove the uniform equicontinuity for all three quantum versions of R\'enyi information, hence it yields the joint continuity of these quantities in the orders and priors. Secondly, we establish the concavity in the region of s∈(−1,0)s\in(-1,0) for both Petz's and the sandwiched versions. This completes the open questions raised by Holevo [\href{https://ieeexplore.ieee.org/document/868501/}{\textit{IEEE Trans.~Inf.~Theory}, \textbf{46}(6):2256--2261, 2000}], Mosonyi and Ogawa [\href{https://doi.org/10.1007/s00220-017-2928-4/}{\textit{Commun.~Math.~Phys}, \textbf{355}(1):373--426, 2017}]. For the applications, we show that the strong converse exponent in classical-quantum channel coding satisfies a minimax identity. The established concavity is further employed to prove an entropic duality between classical data compression with quantum side information and classical-quantum channel coding, and a Fenchel duality in joint source-channel coding with quantum side information in the forthcoming papers

    A Generalized Typicality for Abstract Alphabets

    Full text link
    A new notion of typicality for arbitrary probability measures on standard Borel spaces is proposed, which encompasses the classical notions of weak and strong typicality as special cases. Useful lemmas about strong typical sets, including conditional typicality lemma, joint typicality lemma, and packing and covering lemmas, which are fundamental tools for deriving many inner bounds of various multi-terminal coding problems, are obtained in terms of the proposed notion. This enables us to directly generalize lots of results on finite alphabet problems to general problems involving abstract alphabets, without any complicated additional arguments. For instance, quantization procedure is no longer necessary to achieve such generalizations. Another fundamental lemma, Markov lemma, is also obtained but its scope of application is quite limited compared to others. Yet, an alternative theory of typical sets for Gaussian measures, free from this limitation, is also developed. Some remarks on a possibility to generalize the proposed notion for sources with memory are also given.Comment: 44 pages; submitted to IEEE Transactions on Information Theor

    Joint source-channel coding with feedback

    Get PDF
    This paper quantifies the fundamental limits of variable-length transmission of a general (possibly analog) source over a memoryless channel with noiseless feedback, under a distortion constraint. We consider excess distortion, average distortion and guaranteed distortion (dd-semifaithful codes). In contrast to the asymptotic fundamental limit, a general conclusion is that allowing variable-length codes and feedback leads to a sizable improvement in the fundamental delay-distortion tradeoff. In addition, we investigate the minimum energy required to reproduce kk source samples with a given fidelity after transmission over a memoryless Gaussian channel, and we show that the required minimum energy is reduced with feedback and an average (rather than maximal) power constraint.Comment: To appear in IEEE Transactions on Information Theor

    One-shot lossy quantum data compression

    Get PDF
    We provide a framework for one-shot quantum rate distortion coding, in which the goal is to determine the minimum number of qubits required to compress quantum information as a function of the probability that the distortion incurred upon decompression exceeds some specified level. We obtain a one-shot characterization of the minimum qubit compression size for an entanglement-assisted quantum rate-distortion code in terms of the smooth max-information, a quantity previously employed in the one-shot quantum reverse Shannon theorem. Next, we show how this characterization converges to the known expression for the entanglement-assisted quantum rate distortion function for asymptotically many copies of a memoryless quantum information source. Finally, we give a tight, finite blocklength characterization for the entanglement-assisted minimum qubit compression size of a memoryless isotropic qubit source subject to an average symbol-wise distortion constraint.Comment: 36 page

    Randomized Quantization and Source Coding with Constrained Output Distribution

    Full text link
    This paper studies fixed-rate randomized vector quantization under the constraint that the quantizer's output has a given fixed probability distribution. A general representation of randomized quantizers that includes the common models in the literature is introduced via appropriate mixtures of joint probability measures on the product of the source and reproduction alphabets. Using this representation and results from optimal transport theory, the existence of an optimal (minimum distortion) randomized quantizer having a given output distribution is shown under various conditions. For sources with densities and the mean square distortion measure, it is shown that this optimum can be attained by randomizing quantizers having convex codecells. For stationary and memoryless source and output distributions a rate-distortion theorem is proved, providing a single-letter expression for the optimum distortion in the limit of large block-lengths.Comment: To appear in the IEEE Transactions on Information Theor
    • …
    corecore