19,489 research outputs found

    Automatic Metro Map Layout Using Multicriteria Optimization

    Get PDF
    This paper describes an automatic mechanism for drawing metro maps. We apply multicriteria optimization to find effective placement of stations with a good line layout and to label the map unambiguously. A number of metrics are defined, which are used in a weighted sum to find a fitness value for a layout of the map. A hill climbing optimizer is used to reduce the fitness value, and find improved map layouts. To avoid local minima, we apply clustering techniques to the map the hill climber moves both stations and clusters when finding improved layouts. We show the method applied to a number of metro maps, and describe an empirical study that provides some quantitative evidence that automatically-drawn metro maps can help users to find routes more efficiently than either published maps or undistorted maps. Moreover, we found that, in these cases, study subjects indicate a preference for automatically-drawn maps over the alternatives

    An Algorithmic Framework for Labeling Network Maps

    Full text link
    Drawing network maps automatically comprises two challenging steps, namely laying out the map and placing non-overlapping labels. In this paper we tackle the problem of labeling an already existing network map considering the application of metro maps. We present a flexible and versatile labeling model. Despite its simplicity, we prove that it is NP-complete to label a single line of the network. For a restricted variant of that model, we then introduce an efficient algorithm that optimally labels a single line with respect to a given weighting function. Based on that algorithm, we present a general and sophisticated workflow for multiple metro lines, which is experimentally evaluated on real-world metro maps.Comment: Full version of COCOON 2015 pape

    Improving Search-Based Schematic Layout by Parameter Manipulation

    Get PDF
    This paper reports on a method to improve the automated layout of schematic diagrams by widening the search space examined by the system. In search-based layout methods there are typically a number of parameters that control the search algorithm which do not affect the fitness function, but nevertheless have an impact on the final layout. We explore how varying three parameters (grid spacing, the starting distance of allowed node movement and the number of iterations) affects the resultant diagram in a hill- climbing layout system. Using an iterative process, we produce diagram layouts that are significantly better than those produced by ad-hoc parameter settings

    Gesture-Based Input for Drawing Schematics on a Mobile Device

    Get PDF
    We present a system for drawing metro map style schematics using a gesture-based interface. This work brings together techniques in gesture recognition on touch-sensitive devices with research in schematic layout of networks. The software allows users to create and edit schematic networks, and provides an automated layout method for improving the appearance of the schematic. A case study using the metro map metaphor to visualize social networks and web site structure is described

    Efficient Generation of Geographically Accurate Transit Maps

    Full text link
    We present LOOM (Line-Ordering Optimized Maps), a fully automatic generator of geographically accurate transit maps. The input to LOOM is data about the lines of a given transit network, namely for each line, the sequence of stations it serves and the geographical course the vehicles of this line take. We parse this data from GTFS, the prevailing standard for public transit data. LOOM proceeds in three stages: (1) construct a so-called line graph, where edges correspond to segments of the network with the same set of lines following the same course; (2) construct an ILP that yields a line ordering for each edge which minimizes the total number of line crossings and line separations; (3) based on the line graph and the ILP solution, draw the map. As a naive ILP formulation is too demanding, we derive a new custom-tailored formulation which requires significantly fewer constraints. Furthermore, we present engineering techniques which use structural properties of the line graph to further reduce the ILP size. For the subway network of New York, we can reduce the number of constraints from 229,000 in the naive ILP formulation to about 4,500 with our techniques, enabling solution times of less than a second. Since our maps respect the geography of the transit network, they can be used for tiles and overlays in typical map services. Previous research work either did not take the geographical course of the lines into account, or was concerned with schematic maps without optimizing line crossings or line separations.Comment: 7 page

    Exploring Local Optima in Schematic Layout

    Get PDF
    In search-based graph drawing methods there are typically a number of parameters that control the search algorithm. These parameters do not affect the ?tness function, but nevertheless have an impact on the ?nal layout. One such search method is hill climbing, and, in the context of schematic layout, we explore how varying three parameters (grid spacing, the starting distance of allowed node movement and the number of iterations) affects the resultant diagram. Although we cannot characterize schematics completely and so cannot yet automatically assign parameters for diagrams, we observe that when parameters are set to values that increase the search space, they also tend to improve the ?nal layout. We come to the conclusion that hillclimbing methods for schematic layout are more prone to reaching local optima than had previously been expected and that a wider search, as described in this paper, can mitigate this, so resulting in a better layout

    Planar Octilinear Drawings with One Bend Per Edge

    Get PDF
    In octilinear drawings of planar graphs, every edge is drawn as an alternating sequence of horizontal, vertical and diagonal (4545^\circ) line-segments. In this paper, we study octilinear drawings of low edge complexity, i.e., with few bends per edge. A kk-planar graph is a planar graph in which each vertex has degree less or equal to kk. In particular, we prove that every 4-planar graph admits a planar octilinear drawing with at most one bend per edge on an integer grid of size O(n2)×O(n)O(n^2) \times O(n). For 5-planar graphs, we prove that one bend per edge still suffices in order to construct planar octilinear drawings, but in super-polynomial area. However, for 6-planar graphs we give a class of graphs whose planar octilinear drawings require at least two bends per edge

    A Tabu Search Based Approach for Graph Layout

    Get PDF
    This paper describes an automated tabu search based method for drawing general graph layouts with straight lines. To our knowledge, this is the first time tabu methods have been applied to graph drawing. We formulated the task as a multi-criteria optimization problem with a number of metrics which are used in a weighted fitness function to measure the aesthetic quality of the graph layout. The main goal of this work is to speed up the graph layout process without sacrificing layout quality. To achieve this, we use a tabu search based method that goes through a predefined number of iterations to minimize the value of the fitness function. Tabu search always chooses the best solution in the neighbourhood. This may lead to cycling, so a tabu list is used to store moves that are not permitted, meaning that the algorithm does not choose previous solutions for a set period of time. We evaluate the method according to the time spent to draw a graph and the quality of the drawn graphs. We give experimental results applied on random graphs and we provide statistical evidence that our method outperforms a fast search-based drawing method (hill climbing) in execution time while it produces comparably good graph layouts.We also demonstrate the method on real world graph datasets to show that we can reproduce similar results in a real world setting

    Snapping Graph Drawings to the Grid Optimally

    Full text link
    In geographic information systems and in the production of digital maps for small devices with restricted computational resources one often wants to round coordinates to a rougher grid. This removes unnecessary detail and reduces space consumption as well as computation time. This process is called snapping to the grid and has been investigated thoroughly from a computational-geometry perspective. In this paper we investigate the same problem for given drawings of planar graphs under the restriction that their combinatorial embedding must be kept and edges are drawn straight-line. We show that the problem is NP-hard for several objectives and provide an integer linear programming formulation. Given a plane graph G and a positive integer w, our ILP can also be used to draw G straight-line on a grid of width w and minimum height (if possible).Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    corecore