4 research outputs found

    Relaxed Steering towards Oriented Region Goals

    Full text link

    Relaxed Steering towards Oriented Region Goals

    Get PDF
    This paper extends the funnelling behavior to offer a low-cost flexible guidance of mobile entities towards a circular region goal with the guarantee of enforcing an orientation within a predefined tolerance interval. The key requirements are the same as the tunnelling control, i.e. a low and constant cost update of the control even when the goal parameters change (distance and relative orientation of the goal, position tolerance radius, orientation tolerance interval, desired speed). The smoothness and the optimality of the resulting trajectory being of high importance the paper qualitatively compares the trajectories produced by both tunnelling algorithms. The new relaxed approach appears to produce smoother and shorter path for path made of a succession of large region goals. These qualities and its low cost advocate for its exploitation for moving through large dynamically changing regions without precise a priori planning

    The Mental Vision framework - A platform for teaching, practicing and researching with computer graphics and virtual reality

    No full text
    Despite the wide amount of computer graphics frameworks and solutions available, it is still difficult to find a perfect one fitting at the same time many constraints, like pedagogical intents and user-friendliness or speed with high rendering quality and portability. In this article we describe our contribution to the topic: the Mental Vision platform. Mental Vision is a framework composed of a teaching/research oriented graphics engine simplifying the users needs in computer visualization and a set of corollary tools specifically designed for practicing and learning of computer graphics and virtual reality. In this dissertation we explain our approach design and the contribution brought into a series of study cases to show how concretely Mental Vision satisfies existing needs not addressed by other solutions

    Mental vision:a computer graphics platform for virtual reality, science and education

    Get PDF
    Despite the wide amount of computer graphics frameworks and solutions available for virtual reality, it is still difficult to find a perfect one fitting at the same time the many constraints of research and educational contexts. Advanced functionalities and user-friendliness, rendering speed and portability, or scalability and image quality are opposite characteristics rarely found into a same approach. Furthermore, fruition of virtual reality specific devices like CAVEs or wearable systems is limited by their costs and accessibility, being most of these innovations reserved to institutions and specialists able to afford and manage them through strong background knowledge in programming. Finally, computer graphics and virtual reality are a complex and difficult matter to learn, due to the heterogeneity of notions a developer needs to practice with before attempting to implement a full virtual environment. In this thesis we describe our contributions to these topics, assembled in what we called the Mental Vision platform. Mental Vision is a framework composed of three main entities. First, a teaching/research oriented graphics engine, simplifying access to 2D/3D real-time rendering on mobile devices, personal computers and CAVE systems. Second, a series of pedagogical modules to introduce and practice computer graphics and virtual reality techniques. Third, two advanced VR systems: a wearable, lightweight and handsfree mixed reality setup, and a four sides CAVE designed through off the shelf hardware. In this dissertation we explain our conceptual, architectural and technical approach, pointing out how we managed to create a robust and coherent solution reducing complexity related to cross-platform and multi-device 3D rendering, and answering simultaneously to contradictory common needs of computer graphics and virtual reality for researchers and students. A series of case studies evaluates how Mental Vision concretely satisfies these needs and achieves its goals on in vitro benchmarks and in vivo scientific and educational projects
    corecore