545,530 research outputs found

    Application of the matrix exponential kernel

    Get PDF
    A point matrix kernel for radiation transport, developed by the transmission matrix method, has been used to develop buildup factors and energy spectra through slab layers of different materials for a point isotropic source. Combinations of lead-water slabs were chosen for examples because of the extreme differences in shielding properties of these two materials

    Exponential parameterization of the neutrino mixing matrix - comparative analysis with different data sets and CP violation

    Full text link
    The exponential parameterization of Pontecorvo-Maki-Nakagawa-Sakata mixing matrix for neutrino is used for comparative analysis of different neutrino mixing data. The UPMNS matrix is considered as the element of the SU(3) group and the second order matrix polynomial is constructed for it. The inverse problem of constructing the logarithm of the mixing matrix is addressed. In this way the standard parameterization is related to the exponential parameterization exactly. The exponential form allows easy factorization and separate analysis of the rotation and the CP violation. With the most recent experimental data on the neutrino mixing (May 2016), we calculate the values of the exponential parameterization matrix for neutrinos with account for the CP violation. The complementarity hypothesis for quarks and neutrinos is demonstrated to hold, despite significant change in the neutrino mixing data. The values of the entries of the exponential mixing matrix are evaluated with account for the actual degree of the CP violation in neutrino mixing and without it. Various factorizations of the CP violating term are investigated in the framework of the exponential parameterization

    Residual, restarting and Richardson iteration for the matrix exponential

    Get PDF
    A well-known problem in computing some matrix functions iteratively is a lack of a clear, commonly accepted residual notion. An important matrix function for which this is the case is the matrix exponential. Assume, the matrix exponential of a given matrix times a given vector has to be computed. We interpret the sought after vector as a value of a vector function satisfying the linear system of ordinary differential equations (ODE), whose coefficients form the given matrix. The residual is then defined with respect to the initial-value problem for this ODE system. The residual introduced in this way can be seen as a backward error. We show how the residual can efficiently be computed within several iterative methods for the matrix exponential. This completely resolves the question of reliable stopping criteria for these methods. Furthermore, we show that the residual concept can be used to construct new residual-based iterative methods. In particular, a variant of the Richardson method for the new residual appears to provide an efficient way to restart Krylov subspace methods for evaluating the matrix exponential.\u

    Fast computation of the matrix exponential for a Toeplitz matrix

    Full text link
    The computation of the matrix exponential is a ubiquitous operation in numerical mathematics, and for a general, unstructured nƗnn\times n matrix it can be computed in O(n3)\mathcal{O}(n^3) operations. An interesting problem arises if the input matrix is a Toeplitz matrix, for example as the result of discretizing integral equations with a time invariant kernel. In this case it is not obvious how to take advantage of the Toeplitz structure, as the exponential of a Toeplitz matrix is, in general, not a Toeplitz matrix itself. The main contribution of this work are fast algorithms for the computation of the Toeplitz matrix exponential. The algorithms have provable quadratic complexity if the spectrum is real, or sectorial, or more generally, if the imaginary parts of the rightmost eigenvalues do not vary too much. They may be efficient even outside these spectral constraints. They are based on the scaling and squaring framework, and their analysis connects classical results from rational approximation theory to matrices of low displacement rank. As an example, the developed methods are applied to Merton's jump-diffusion model for option pricing

    Information Geometry Approach to Parameter Estimation in Markov Chains

    Full text link
    We consider the parameter estimation of Markov chain when the unknown transition matrix belongs to an exponential family of transition matrices. Then, we show that the sample mean of the generator of the exponential family is an asymptotically efficient estimator. Further, we also define a curved exponential family of transition matrices. Using a transition matrix version of the Pythagorean theorem, we give an asymptotically efficient estimator for a curved exponential family.Comment: Appendix D is adde
    • ā€¦
    corecore