7 research outputs found

    Exponential Screening and optimal rates of sparse estimation

    Full text link
    In high-dimensional linear regression, the goal pursued here is to estimate an unknown regression function using linear combinations of a suitable set of covariates. One of the key assumptions for the success of any statistical procedure in this setup is to assume that the linear combination is sparse in some sense, for example, that it involves only few covariates. We consider a general, non necessarily linear, regression with Gaussian noise and study a related question that is to find a linear combination of approximating functions, which is at the same time sparse and has small mean squared error (MSE). We introduce a new estimation procedure, called Exponential Screening that shows remarkable adaptation properties. It adapts to the linear combination that optimally balances MSE and sparsity, whether the latter is measured in terms of the number of non-zero entries in the combination (â„“0\ell_0 norm) or in terms of the global weight of the combination (â„“1\ell_1 norm). The power of this adaptation result is illustrated by showing that Exponential Screening solves optimally and simultaneously all the problems of aggregation in Gaussian regression that have been discussed in the literature. Moreover, we show that the performance of the Exponential Screening estimator cannot be improved in a minimax sense, even if the optimal sparsity is known in advance. The theoretical and numerical superiority of Exponential Screening compared to state-of-the-art sparse procedures is also discussed

    Counterexamples to the classical central limit theorem for triplewise independent random variables having a common arbitrary margin

    Get PDF
    We present a general methodology to construct triplewise independent sequences of random variables having a common but arbitrary marginal distribution FF (satisfying very mild conditions). For two specific sequences, we obtain in closed form the asymptotic distribution of the sample mean. It is non-Gaussian (and depends on the specific choice of FF). This allows us to illustrate the extent of the 'failure' of the classical central limit theorem (CLT) under triplewise independence. Our methodology is simple and can also be used to create, for any integer KK, new KK-tuplewise independent sequences that are not mutually independent. For K≥4K \geq 4, it appears that the sequences created using our methodology do verify a CLT, and we explain heuristically why this is the case.Comment: 15 pages, 5 figures, 1 tabl

    Numbers of center points appropriate to blocked response surface experiments

    Get PDF
    Tables are given for the numbers of center points to be used with blocked sequential designs of composite response surface experiments as used in empirical optimum seeking. The star point radii for exact orthogonal blocking is presented. The center point options varied from a lower limit of one to an upper limit equal to the numbers proposed by Box and Hunter for approximate rotatability and uniform variance, and exact orthogonal blocking. Some operating characteristics of the proposed options are described

    Sparse Estimation by Exponential Weighting

    Full text link
    Consider a regression model with fixed design and Gaussian noise where the regression function can potentially be well approximated by a function that admits a sparse representation in a given dictionary. This paper resorts to exponential weights to exploit this underlying sparsity by implementing the principle of sparsity pattern aggregation. This model selection take on sparse estimation allows us to derive sparsity oracle inequalities in several popular frameworks, including ordinary sparsity, fused sparsity and group sparsity. One striking aspect of these theoretical results is that they hold under no condition in the dictionary. Moreover, we describe an efficient implementation of the sparsity pattern aggregation principle that compares favorably to state-of-the-art procedures on some basic numerical examples.Comment: Published in at http://dx.doi.org/10.1214/12-STS393 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Pairwise versus mutual independence: visualisation, actuarial applications and central limit theorems

    Full text link
    Accurately capturing the dependence between risks, if it exists, is an increasingly relevant topic of actuarial research. In recent years, several authors have started to relax the traditional 'independence assumption', in a variety of actuarial settings. While it is known that 'mutual independence' between random variables is not equivalent to their 'pairwise independence', this thesis aims to provide a better understanding of the materiality of this difference. The distinction between mutual and pairwise independence matters because, in practice, dependence is often assessed via pairs only, e.g., through correlation matrices, rank-based measures of association, scatterplot matrices, heat-maps, etc. Using such pairwise methods, it is possible to miss some forms of dependence. In this thesis, we explore how material the difference between pairwise and mutual independence is, and from several angles. We provide relevant background and motivation for this thesis in Chapter 1, then conduct a literature review in Chapter 2. In Chapter 3, we focus on visualising the difference between pairwise and mutual independence. To do so, we propose a series of theoretical examples (some of them new) where random variables are pairwise independent but (mutually) dependent, in short, PIBD. We then develop new visualisation tools and use them to illustrate what PIBD variables can look like. We showcase that the dependence involved is possibly very strong. We also use our visualisation tools to identify subtle forms of dependence, which would otherwise be hard to detect. In Chapter 4, we review common dependence models (such has elliptical distributions and Archimedean copulas) used in actuarial science and show that they do not allow for the possibility of PIBD data. We also investigate concrete consequences of the 'nonequivalence' between pairwise and mutual independence. We establish that many results which hold for mutually independent variables do not hold under sole pairwise independent. Those include results about finite sums of random variables, extreme value theory and bootstrap methods. This part thus illustrates what can potentially 'go wrong' if one assumes mutual independence where only pairwise independence holds. Lastly, in Chapters 5 and 6, we investigate the question of what happens for PIBD variables 'in the limit', i.e., when the sample size goes to infi nity. We want to see if the 'problems' caused by dependence vanish for sufficiently large samples. This is a broad question, and we concentrate on the important classical Central Limit Theorem (CLT), for which we fi nd that the answer is largely negative. In particular, we construct new sequences of PIBD variables (with arbitrary margins) for which a CLT does not hold. We derive explicitly the asymptotic distribution of the standardised mean of our sequences, which allows us to illustrate the extent of the 'failure' of a CLT for PIBD variables. We also propose a general methodology to construct dependent K-tuplewise independent (K an arbitrary integer) sequences of random variables with arbitrary margins. In the case K = 3, we use this methodology to derive explicit examples of triplewise independent sequences for which no CLT hold. Those results illustrate that mutual independence is a crucial assumption within CLTs, and that having larger samples is not always a viable solution to the problem of non-independent data
    corecore