409 research outputs found

    Escaping the Local Minima via Simulated Annealing: Optimization of Approximately Convex Functions

    Full text link
    We consider the problem of optimizing an approximately convex function over a bounded convex set in Rn\mathbb{R}^n using only function evaluations. The problem is reduced to sampling from an \emph{approximately} log-concave distribution using the Hit-and-Run method, which is shown to have the same O∗\mathcal{O}^* complexity as sampling from log-concave distributions. In addition to extend the analysis for log-concave distributions to approximate log-concave distributions, the implementation of the 1-dimensional sampler of the Hit-and-Run walk requires new methods and analysis. The algorithm then is based on simulated annealing which does not relies on first order conditions which makes it essentially immune to local minima. We then apply the method to different motivating problems. In the context of zeroth order stochastic convex optimization, the proposed method produces an ϵ\epsilon-minimizer after O∗(n7.5ϵ−2)\mathcal{O}^*(n^{7.5}\epsilon^{-2}) noisy function evaluations by inducing a O(ϵ/n)\mathcal{O}(\epsilon/n)-approximately log concave distribution. We also consider in detail the case when the "amount of non-convexity" decays towards the optimum of the function. Other applications of the method discussed in this work include private computation of empirical risk minimizers, two-stage stochastic programming, and approximate dynamic programming for online learning.Comment: 27 page

    Convergence Rate of Riemannian Hamiltonian Monte Carlo and Faster Polytope Volume Computation

    Full text link
    We give the first rigorous proof of the convergence of Riemannian Hamiltonian Monte Carlo, a general (and practical) method for sampling Gibbs distributions. Our analysis shows that the rate of convergence is bounded in terms of natural smoothness parameters of an associated Riemannian manifold. We then apply the method with the manifold defined by the log barrier function to the problems of (1) uniformly sampling a polytope and (2) computing its volume, the latter by extending Gaussian cooling to the manifold setting. In both cases, the total number of steps needed is O^{*}(mn^{\frac{2}{3}}), improving the state of the art. A key ingredient of our analysis is a proof of an analog of the KLS conjecture for Gibbs distributions over manifolds

    The step Sidorenko property and non-norming edge-transitive graphs

    Get PDF
    Sidorenko's Conjecture asserts that every bipartite graph H has the Sidorenko property, i.e., a quasirandom graph minimizes the density of H among all graphs with the same edge density. We study a stronger property, which requires that a quasirandom multipartite graph minimizes the density of H among all graphs with the same edge densities between its parts; this property is called the step Sidorenko property. We show that many bipartite graphs fail to have the step Sidorenko property and use our results to show the existence of a bipartite edge-transitive graph that is not weakly norming; this answers a question of Hatami [Israel J. Math. 175 (2010), 125-150].Comment: Minor correction on page

    Distinguishing graphs by their left and right homomorphism profiles

    Get PDF
    We introduce a new property of graphs called ‘q-state Potts unique-ness’ and relate it to chromatic and Tutte uniqueness, and also to ‘chromatic–flow uniqueness’, recently studied by Duan, Wu and Yu. We establish for which edge-weighted graphs H homomor-phism functions from multigraphs G to H are specializations of the Tutte polynomial of G, in particular answering a question of Freed-man, Lovász and Schrijver. We also determine for which edge-weighted graphs H homomorphism functions from multigraphs G to H are specializations of the ‘edge elimination polynomial’ of Averbouch, Godlin and Makowsky and the ‘induced subgraph poly-nomial’ of Tittmann, Averbouch and Makowsky. Unifying the study of these and related problems is the notion of the left and right homomorphism profiles of a graph.Ministerio de Educación y Ciencia MTM2008-05866-C03-01Junta de Andalucía FQM- 0164Junta de Andalucía P06-FQM-0164
    • …
    corecore