1,931,015 research outputs found

    The existence of light-like homogeneous geodesics in homogeneous Lorentzian manifolds

    Full text link
    In previous papers, a fundamental affine method for studying homogeneous geodesics was developed. Using this method and elementary differential topology it was proved that any homogeneous affine manifold and in particular any homogeneous pseudo-Riemannian manifold admits a homogeneous geodesic through arbitrary point. In the present paper this affine method is refined and adapted to the pseudo-Riemannian case. Using this method and elementary topology it is proved that any homogeneous Lorentzian manifold of even dimension admits a light-like homogeneous geodesic. The method is illustrated in detail with an example of the Lie group of dimension 3 with an invariant metric, which does not admit any light-like homogeneous geodesic

    Breaking the light speed barrier

    Full text link
    As it is well known, classical special relativity allows the existence of three different kinds of particles: bradyons, luxons and tachyons. Bradyons have non-zero mass and hence always travel slower than light. Luxons are particles with zero mass, like the photon, and they always travel with invariant velocity. Tachyons are hypothetical superluminal particles that always move faster than light. The existence of bradyons and luxons is firmly established, while the tachyons were never reliably observed. In quantum field theory, the appearance of tachyonic degrees of freedom indicates vacuum instability rather than a real existence of the faster-than-light particles. However, recent controversial claims of the OPERA experiment about superluminal neutrinos triggered a renewed interest in superluminal particles. Driven by a striking analogy of the old Frenkel-Kontorova model of a dislocation dynamics to the theory of relativity, we conjecture in this note a remarkable possibility of existence of the fourth type of particles, elvisebrions, which can be superluminal. The characteristic feature of elvisebrions, distinguishing them from tachyons, is that they are outside the realm of special relativity and their energy remains finite (or may even turn to zero) when the elvisebrion velocity approaches the light velocity.Comment: 37 pages, no figures, two last sections extended, to be published in Acta Physica Polonica

    Light sterile neutrinos

    Full text link
    The theory and phenomenology of light sterile neutrinos at the eV mass scale is reviewed. The reactor, Gallium and LSND anomalies are briefly described and interpreted as indications of the existence of short-baseline oscillations which require the existence of light sterile neutrinos. The global fits of short-baseline oscillation data in 3+1 and 3+2 schemes are discussed, together with the implications for beta-decay and neutrinoless double-beta decay. The cosmological effects of light sterile neutrinos are briefly reviewed and the implications of existing cosmological data are discussed. The review concludes with a summary of future perspectives.Comment: 41 pages; final version to be published as a Topical Review in Journal of Physics

    On a characteristic initial value problem in Plasma physics

    Get PDF
    The relativistic Vlasov-Maxwell system of plasma physics is considered with initial data on a past light cone. This characteristic initial value problem arises in a natural way as a mathematical framework to study the existence of solutions isolated from incoming radiation. Various consequences of the mass-energy conservation and of the absence of incoming radiation condition are first derived assuming the existence of global smooth solutions. In the spherically symmetric case, the existence of a unique classical solution in the future of the initial cone follows by arguments similar to the case of initial data at time t=0t=0. The total mass-energy of spherically symmetric solutions equals the (properly defined) mass-energy on backward and forward light cones.Comment: 16 pages. Version in pres

    Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects

    Full text link
    Ultracompact objects are self-gravitating systems with a light ring. It was recently suggested that fluctuations in the background of these objects are extremely long-lived and might turn unstable at the nonlinear level, if the object is not endowed with a horizon. If correct, this result has important consequences: objects with a light ring are black holes. In other words, the nonlinear instability of ultracompact stars would provide a strong argument in favor of the "black hole hypothesis," once electromagnetic or gravitational-wave observations confirm the existence of light rings. Here we explore in some depth the mode structure of ultracompact stars, in particular constant-density stars and gravastars. We show that the existence of very long-lived modes -- localized near a second, stable null geodesic -- is a generic feature of gravitational perturbations of such configurations. Already at the linear level, such modes become unstable if the object rotates sufficiently fast to develop an ergoregion. Finally, we conjecture that the long-lived modes become unstable under fragmentation via a Dyson-Chandrasekhar-Fermi mechanism at the nonlinear level. Depending on the structure of the star, it is also possible that nonlinearities lead to the formation of small black holes close to the stable light ring. Our results suggest that the mere observation of a light ring is a strong evidence for the existence of black holes.Comment: 10 pages, RevTeX

    Resonance states below pion-nucleon threshold and their consequences for nuclear systems

    Get PDF
    Regular sequences of narrow peaks have been observed in the missing mass spectra in the reactions pp --> p pi^+ X and pd --> ppX_1 below pion-production threshold. They are interpreted in the literature as manifestations of supernarrow light dibaryons, or nucleon resonances, or light pions forming resonance states with the nucleon in its ground state. We discuss how existence of such exotic states would affect properties of nuclear systems. We show that the neutron star structure is drastically changed in all three cases. We find that in the presence of dibaryons or nucleon resonances the maximal possible mass of a neutron star would be smaller than the observational limit. Presence of light pions does not contradict the observed neutron star masses. Light pions allow for the existence of extended nuclear objects of arbitrary size, bound by strong and electromagnetic forces.Comment: preprint ECT*-02-18, 6 pages, 3 figure
    • …
    corecore