203 research outputs found

    Adaptive Regularized Level Set Method for Weak Boundary Object Segmentation

    Get PDF
    An adaptive regularized level set method for image segmentation is proposed. A weighted p(x)-Dirichlet integral is presented as a geometric regularization on zero level curve, which is used to diminish the influence of image noise on level set evolution while ensuring the active contours not to pass through weak object boundaries. The idea behind the new energy integral is that the amount of regularization on the zero level curve can be adjusted automatically by the variable exponent p(x) to fit the image data. This energy is then incorporated into a level set formulation with an external energy term that drives the motion of the zero level set toward the desired objects boundaries, and a level set function regularization term that is necessary for maintaining stable level set evolution. The proposed model has been applied to a wide range of both real and synthetic images with promising results

    Enhanced diffuse optical tomographic reconstruction using concurrent ultrasound information

    Get PDF
    Multimodal imaging is an active branch of research as it has the potential to improve common medical imaging techniques. Diffuse optical tomography (DOT) is an example of a low resolution, functional imaging modality that typically has very low resolution due to the ill-posedness of its underlying inverse problem. Combining the functional information of DOT with a high resolution structural imaging modality has been studied widely. In particular, the combination of DOT with ultrasound (US) could serve as a useful tool for clinicians for the formulation of accurate diagnosis of breast lesions. In this paper, we propose a novel method for US-guided DOT reconstruction using a portable time-domain measurement system. B-mode US imaging is used to retrieve morphological information on the probed tissues by means of a semi-automatical segmentation procedure based on active contour fitting. A two-dimensional to three-dimensional extrapolation procedure, based on the concept of distance transform, is then applied to generate a three-dimensional edge-weighting prior for the regularization of DOT. The reconstruction procedure has been tested on experimental data obtained on specifically designed dual-modality silicon phantoms. Results show a substantial quantification improvement upon the application of the implemented technique. This article is part of the theme issue ‘Synergistic tomographic image reconstruction: part 2’

    The neuroprotective effects of bilingualism upon the inferior parietal lobule: A Structural Neuroimaging Study in Aging Chinese Bilinguals

    Get PDF
    Abstract It is a timely issue to understand the impact of bilingualism upon brain structure in healthy aging and upon cognitive decline given evidence of its neuroprotective effects. Plastic changes induced by bilingualism were reported in young adults in the left inferior parietal lobule (LIPL) and its right counterpart (RIPL) (Mechelli et al., 2004). Moreover, both age of second language (L2) acquisition and L2 proficiency correlated with increased grey matter (GM) in the LIPL/RIPL. However it is unknown whether such findings replicate in older bilinguals. We examined this question in an aging bilingual population from Hong Kong. Results from our Voxel Based Morphometry study show that elderly bilinguals relative to a matched monolingual control group also have increased GM volumes in the inferior parietal lobules underlining the neuroprotective effect of bilingualism. However, unlike younger adults, age of L2 acquisition did not predict GM volumes. Instead, LIPL and RIPL appear differentially sensitive to the effects of L2 proficiency and L2 exposure with LIPL more sensitive to the former and RIPL more sensitive to the latter. Our data also intimate that such differences may be more prominent for speakers of languages that are linguistically closer such as in Cantonese-Mandarin bilinguals as compared to Cantonese-English bilinguals

    New Region-Scalable Discriminant and Fitting Energy Functional for Driving Geometric Active Contours in Medical Image Segmentation

    Get PDF
    We propose a novel region-based geometric active contour model that uses region-scalable discriminant and fitting energy functional for handling the intensity inhomogeneity and weak boundary problems in medical image segmentation. The region-scalable discriminant and fitting energy functional is defined to capture the image intensity characteristics in local and global regions for driving the evolution of active contour. The discriminant term in the model aims at separating background and foreground in scalable regions while the fitting term tends to fit the intensity in these regions. This model is then transformed into a variational level set formulation with a level set regularization term for accurate computation. The new model utilizes intensity information in the local and global regions as much as possible; so it not only handles better intensity inhomogeneity, but also allows more robustness to noise and more flexible initialization in comparison to the original global region and regional-scalable based models. Experimental results for synthetic and real medical image segmentation show the advantages of the proposed method in terms of accuracy and robustness

    BrainPrint: A discriminative characterization of brain morphology

    Get PDF
    We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace–Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets.National Cancer Institute (U.S.) (1K25-CA181632-01)Athinoula A. Martinos Center for Biomedical Imaging (P41-RR014075)Athinoula A. Martinos Center for Biomedical Imaging (P41-EB015896)National Alliance for Medical Image Computing (U.S.) (U54-EB005149)Neuroimaging Analysis Center (U.S.) (P41-EB015902)National Center for Research Resources (U.S.) (U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (5P41EB015896-15)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006758)National Institute on Aging (AG022381)National Institute on Aging (5R01AG008122-22)National Institute on Aging (AG018344)National Institute on Aging (AG018386)National Center for Complementary and Alternative Medicine (U.S.) (RC1 AT005728-01)National Institute of Neurological Diseases and Stroke (U.S.) (R01 NS052585-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R21NS072652-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R01NS070963)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS083534)National Institutes of Health (U.S.) ((5U01-MH093765

    BrainPrint: A discriminative characterization of brain morphology

    Get PDF
    We introduce BrainPrint, a compact and discriminative representation of brain morphology. BrainPrint captures shape information of an ensemble of cortical and subcortical structures by solving the eigenvalue problem of the 2D and 3D Laplace–Beltrami operator on triangular (boundary) and tetrahedral (volumetric) meshes. This discriminative characterization enables new ways to study the similarity between brains; the focus can either be on a specific brain structure of interest or on the overall brain similarity. We highlight four applications for BrainPrint in this article: (i) subject identification, (ii) age and sex prediction, (iii) brain asymmetry analysis, and (iv) potential genetic influences on brain morphology. The properties of BrainPrint require the derivation of new algorithms to account for the heterogeneous mix of brain structures with varying discriminative power. We conduct experiments on three datasets, including over 3000 MRI scans from the ADNI database, 436 MRI scans from the OASIS dataset, and 236 MRI scans from the VETSA twin study. All processing steps for obtaining the compact representation are fully automated, making this processing framework particularly attractive for handling large datasets.National Cancer Institute (U.S.) (1K25-CA181632-01)Athinoula A. Martinos Center for Biomedical Imaging (P41-RR014075)Athinoula A. Martinos Center for Biomedical Imaging (P41-EB015896)National Alliance for Medical Image Computing (U.S.) (U54-EB005149)Neuroimaging Analysis Center (U.S.) (P41-EB015902)National Center for Research Resources (U.S.) (U24 RR021382)National Institute of Biomedical Imaging and Bioengineering (U.S.) (5P41EB015896-15)National Institute of Biomedical Imaging and Bioengineering (U.S.) (R01EB006758)National Institute on Aging (AG022381)National Institute on Aging (5R01AG008122-22)National Institute on Aging (AG018344)National Institute on Aging (AG018386)National Center for Complementary and Alternative Medicine (U.S.) (RC1 AT005728-01)National Institute of Neurological Diseases and Stroke (U.S.) (R01 NS052585-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R21NS072652-01)National Institute of Neurological Diseases and Stroke (U.S.) (1R01NS070963)National Institute of Neurological Diseases and Stroke (U.S.) (R01NS083534)National Institutes of Health (U.S.) ((5U01-MH093765

    Recommended Implementation of Quantitative Susceptibility Mapping for Clinical Research in The Brain: A Consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group

    Get PDF
    This article provides recommendations for implementing quantitative susceptibility mapping (QSM) for clinical brain research. It is a consensus of the ISMRM Electro-Magnetic Tissue Properties Study Group. While QSM technical development continues to advance rapidly, the current QSM methods have been demonstrated to be repeatable and reproducible for generating quantitative tissue magnetic susceptibility maps in the brain. However, the many QSM approaches available give rise to the need in the neuroimaging community for guidelines on implementation. This article describes relevant considerations and provides specific implementation recommendations for all steps in QSM data acquisition, processing, analysis, and presentation in scientific publications. We recommend that data be acquired using a monopolar 3D multi-echo GRE sequence, that phase images be saved and exported in DICOM format and unwrapped using an exact unwrapping approach. Multi-echo images should be combined before background removal, and a brain mask created using a brain extraction tool with the incorporation of phase-quality-based masking. Background fields should be removed within the brain mask using a technique based on SHARP or PDF, and the optimization approach to dipole inversion should be employed with a sparsity-based regularization. Susceptibility values should be measured relative to a specified reference, including the common reference region of whole brain as a region of interest in the analysis, and QSM results should be reported with - as a minimum - the acquisition and processing specifications listed in the last section of the article. These recommendations should facilitate clinical QSM research and lead to increased harmonization in data acquisition, analysis, and reporting
    • …
    corecore