420,100 research outputs found

    Teaching the Grid: Learning Distributed Computing with the M-grid Framework

    No full text
    A classic challenge within Computer Science is to distribute data and processes so as to take advantage of multiple computers tackling a single problem in a simultaneous and coordinated way. This situation arises in a number of different scenarios, including Grid computing which is a secure, service-based architecture for tackling massively parallel problems and creating virtual organizations. Although the Grid seems destined to be an important part of the future computing landscape, it is very difficult to learn how to use as real Grid software requires extensive setting up and complex security processes. M-grid mimics the core features of the Grid, in a much simpler way, enabling the rapid prototyping of distributed applications. We describe m-grid and explore how it may be used to teach foundation Grid computing skills at the Higher Education level and report some of our experiences of deploying it as an exercise within a programming course

    A GRID-BASED E-LEARNING MODEL FOR OPEN UNIVERSITIES

    Get PDF
    E-learning has grown to become a widely accepted method of learning all over the world. As a result, many e-learning platforms which have been developed based on varying technologies were faced with some limitations ranging from storage capability, computing power, to availability or access to the learning support infrastructures. This has brought about the need to develop ways to effectively manage and share the limited resources available in the e-learning platform. Grid computing technology has the capability to enhance the quality of pedagogy on the e-learning platform. In this paper we propose a Grid-based e-learning model for Open Universities. An attribute of such universities is the setting up of multiple remotely located campuses within a country. The grid-based e-learning model presented in this work possesses the attributes of an elegant architectural framework that will facilitate efficient use of available e-learning resources and cost reduction, leading to general improvement of the overall quality of the operations of open universities

    Learning Generative ConvNets via Multi-grid Modeling and Sampling

    Full text link
    This paper proposes a multi-grid method for learning energy-based generative ConvNet models of images. For each grid, we learn an energy-based probabilistic model where the energy function is defined by a bottom-up convolutional neural network (ConvNet or CNN). Learning such a model requires generating synthesized examples from the model. Within each iteration of our learning algorithm, for each observed training image, we generate synthesized images at multiple grids by initializing the finite-step MCMC sampling from a minimal 1 x 1 version of the training image. The synthesized image at each subsequent grid is obtained by a finite-step MCMC initialized from the synthesized image generated at the previous coarser grid. After obtaining the synthesized examples, the parameters of the models at multiple grids are updated separately and simultaneously based on the differences between synthesized and observed examples. We show that this multi-grid method can learn realistic energy-based generative ConvNet models, and it outperforms the original contrastive divergence (CD) and persistent CD.Comment: CVPR 201

    Towards collaborative learning via shared artefacts over the Grid

    Get PDF
    The Web is the most pervasive collaborative technology in widespread use today; and its use to support eLearning has been highly successful. There are many web-based Virtual Learning Environments such as WebCT, FirstClass, and BlackBoard as well as associated web-based Managed Learning Environments. In the future, the Grid promises to provide an extremely powerful infrastructure allowing both learners and teachers to collaborate in various learning contexts and to share learning materials, learning processes, learning systems, and experiences. This position paper addresses the role of support for sharing artefacts in distributed systems such as the Grid. An analogy is made between collaborative software development and collaborative learning with the goal of gaining insights into the requisite support for artefact sharing within the eLearning community

    Grid Cell Hexagonal Patterns Formed by Fast Self-Organized Learning within Entorhinal Cortex

    Full text link
    Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. How these hexagonal patterns arise has excited intense interest. It has previously been shown how a selforganizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? A neural model is proposed that converts path integration signals into hexagonal grid cell patterns of multiple scales. This GRID model creates only grid cell patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support a unified computational framework for explaining how entorhinal-hippocampal interactions support spatial navigation.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of Defense Advanced Research Projects Agency (HR00ll-09-3-0001, HR0011-09-C-0011

    Exact Topology and Parameter Estimation in Distribution Grids with Minimal Observability

    Full text link
    Limited presence of nodal and line meters in distribution grids hinders their optimal operation and participation in real-time markets. In particular lack of real-time information on the grid topology and infrequently calibrated line parameters (impedances) adversely affect the accuracy of any operational power flow control. This paper suggests a novel algorithm for learning the topology of distribution grid and estimating impedances of the operational lines with minimal observational requirements - it provably reconstructs topology and impedances using voltage and injection measured only at the terminal (end-user) nodes of the distribution grid. All other (intermediate) nodes in the network may be unobserved/hidden. Furthermore no additional input (e.g., number of grid nodes, historical information on injections at hidden nodes) is needed for the learning to succeed. Performance of the algorithm is illustrated in numerical experiments on the IEEE and custom power distribution models
    • …
    corecore