6 research outputs found

    The completion of optimal (3,4)(3,4)-packings

    Full text link
    A 3-(n,4,1)(n,4,1) packing design consists of an nn-element set XX and a collection of 44-element subsets of XX, called {\it blocks}, such that every 33-element subset of XX is contained in at most one block. The packing number of quadruples d(3,4,n)d(3,4,n) denotes the number of blocks in a maximum 33-(n,4,1)(n,4,1) packing design, which is also the maximum number A(n,4,4)A(n,4,4) of codewords in a code of length nn, constant weight 44, and minimum Hamming distance 4. In this paper the undecided 21 packing numbers A(n,4,4)A(n,4,4) are shown to be equal to Johnson bound J(n,4,4)J(n,4,4) (=⌊n4⌊nβˆ’13⌊nβˆ’22βŒ‹βŒ‹βŒ‹)( =\lfloor\frac{n}{4}\lfloor\frac{n-1}{3}\lfloor\frac{n-2}{2}\rfloor\rfloor\rfloor) where n=6k+5n=6k+5, k∈{m:Β mk\in \{m:\ m is odd, 3≀m≀35,Β mβ‰ 17,21}βˆͺ{45,47,75,77,79,159}3\leq m\leq 35,\ m\neq 17,21\}\cup \{45,47,75,77,79,159\}

    Optical orthogonal codes obtained from conics on finite projective planes

    Get PDF
    AbstractOptical orthogonal codes can be applied to fiber optical code division multiple access (CDMA) communications. In this paper, we show that optical orthogonal codes with auto- and cross-correlations at most 2 can be obtained from conics on a finite projective plane. In addition, the obtained codes asymptotically attain the upper bound on the number of codewords when the order q of the base field is large enough

    Subject Index Volumes 1–200

    Get PDF
    corecore