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Abstract

Optical orthogonal codes can be applied to fiber optical code division multiple access

(CDMA) communications. In this paper, we show that optical orthogonal codes with auto-

and cross-correlations at most 2 can be obtained from conics on a finite projective plane. In

addition, the obtained codes asymptotically attain the upper bound on the number of

codewords when the order q of the base field is large enough.

r 2003 Elsevier Inc. All rights reserved.
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1. Introduction

An optical orthogonal code (OOC) ðn;w; la; lcÞ-OOC is a family C of (0,1)-
sequences of length n with constant Hamming-weight w satisfying the following two
properties:

* (auto-correlation property) for any codeword c ¼ ðc0; c1;y; cn�1ÞAC; the inequal-

ity
Pn�1

i¼0 ciciþtpla holds for any integer 1ptpn � 1; and
* (cross-correlation property) for any two distinct codewords c; c0AC; the inequalityPn�1

i¼0 cic
0
iþtplc holds for any integer 0ptpn � 1;
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where each subscript i of ci is reduced modulo n: We denote an optical orthogonal
code with these parameters, n;w; la; lc; by ðn;w; la; lcÞ-OOC. When la ¼ lc ¼ l; we
denote ðn;w; lÞ-OOC for simplicity. The number of codewords is called the size of
the optical orthogonal code. We assume low because if lXw then all ð0; 1Þ-
sequences have the above properties of optical orthogonal codes.

From a practical point of view, a code with large size is required. To find best
possible codes, we need to determine an upper bound on the size of an optical
orthogonal code with given parameters. Let Fðn;w; lÞ be the largest possible size of
an ðn;w; lÞ-OOC. An optical orthogonal code achieving this maximum size is said to
be optimal. Based on the Johnson bound for constant weight codes, we have the
following bound [4]:

Fðn;w; lÞp 1

w

n � 1

w � 1
?

n � l
w � l

� �
?

� �� �� �
: ð1Þ

When l ¼ 2;

Fðn;w; lÞp 1

w

n � 1

w � 1

n � 2

w � 2

� �� �� �
:

Example 1. The following 3 sequences are the codewords of a ð40; 4; 1Þ-OOC.

1100000000000000000000000000100000000100

1010000000000000001000000100000000000000

1000010000010000000100000000000000000000

This code is optimal since Fð40; 4; 1Þp 1
4

40�1
4�1

� �� �
¼ 3:

We often use the notation fi: ci ¼ 1g for representing the codeword
ðc0; c1;y; cn�1Þ: For example, the three codewords in Example 1 can be rewritten
as f0; 1; 28; 37g; f0; 2; 18; 25g; and f0; 5; 11; 19g:

For lX2; there are only a few methods of construction of optimal optical

orthogonal codes. Chung and Kumar [3] constructed optimal ðp2m � 1; pm þ 1; 2Þ-
OOCs for any prime p by applying logarithmic maps from GFðp2mÞ\f0g to the

integers modulo p2m � 1: Optimal ðn; 4; 2Þ-OOCs were derived from block designs
constructed by Bitan and Etzion [2]. Bird and Keedwell [1] showed a construction
method of optimal ðn; k; 2Þ-OOCs from cyclic Steiner 3-designs with block size k: In
this paper, we show that for any prime power q a series of optical orthogonal codes

ðq3 þ q2 þ q þ 1; q þ 1; 2Þ-OOCs, can be obtained from conics on a projective plane
over a finite field of order q: The method introduced in this paper is a generalization
of the method using lines in a projective geometry, which is first given in [4]. In
Section 2, we briefly review the construction method from lines. In Section 3, a new
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construction method of optical orthogonal codes is described. The optimality of the
obtained optical orthogonal codes is discussed in Section 4.

2. Known construction method from lines

Let GFðqÞ be a finite field of order q: By using lines in a projective geometry
PGðd; qÞ; we have an ðn;w; 1Þ-OOC, where n is the number of points in PGðd; qÞ and
w is the number of points on a line.

Let o be a primitive element of a finite field GFðqdþ1Þ of order qdþ1: The
points in a projective geometry PGðd; qÞ of dimension d over GFðqÞ can be

represented as the powers of o; that is, o0 ¼ 1;o;o2;y;on�1; where n ¼ qdþ1�1
q�1

is

the number of points in PGðd; qÞ: Let f be the collineation defined as oi/oiþ1:

For a line l in PGðd; qÞ; the set of exponents of the points on the line l; fi: oiAlg; can
be regarded as the set notation of a codeword of an optical orthogonal code,
since two distinct lines have at most one point in common. A line must be chosen
as a representative from each orbit under f since the map f induces a cyclic shift
for a codeword. If a line belongs to a short orbit, then the line should be omitted
since otherwise the auto-correlation of the corresponding codeword is equal to the
weight w:

Theorem 2 (Bird and Keedwell [1]). For any prime power q and any positive integer d;

there exists a qdþ1�1
q�1

; q þ 1; 1
� �

-OOC consisting of qd�1
q2�1

j k
codewords, where Iam is the

largest integer not greater than a:

By using the above method, we have an example as follows.

Example 3. Let o be a primitive element of GFð34Þ satisfying o4 þ o3 � 1 ¼ 0:
The following four lines are representatives of the four orbits.

l̂1 ¼ f1;o;o28;o37g

l̂2 ¼ f1;o2;o18;o25g

l̂3 ¼ f1;o5;o11;o19g

l̂0 ¼ f1;o10;o20;o30g

By regarding the exponents of points on each line, we have four sets each of
which represents the positions of non-zero elements in the corresponding codeword.
The first three lines are representatives of full orbits, and the last one is in a short
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orbit. Hence we obtain three codewords of an optimal OOC, which is shown in
Example 1.

3. New construction method of optical orthogonal codes with k ¼ 2

The correlation between two codewords obtained by the method shown in the
previous section can be considered as the number of points in the intersection of
two lines. The auto-correlation is the largest number of points in the intersection
of two lines in the same orbit, and the cross-correlation is the largest number of
points in the intersection of two lines from distinct orbits. Since the number
of common points of distinct two lines is at most one, optical orthogonal codes
with lX2 cannot be directly obtained by applying the method in the previous
section.

In this section non-singular plane curves of degree 2, called conics, are used for
constructing optical orthogonal codes with l ¼ 2: By the same manner as the
method using lines, we consider the exponents of the points on a conic as the 1’s
position in a codeword. Hence the auto- and cross-correlation can be regarded as the
number of points in the intersection between two conics respectively. In general, two
conics have at most 4 common points in a three-dimensional projective space
PGð3; qÞ: It can be shown that the number of points in the intersection of two conics
is at most 2 in PGð3; qÞ when the conics are from a particular set of conics on a
projective plane.

Lemma 4. Let C be a set of conics on a projective plane PGð2; qÞ each pair of which

has at most two common points. Then there exists a ðq3 þ q2 þ q þ 1; q þ 1; 2Þ-OOC

consisting of #Cþ q codewords, where #C is the number of conics in C:

Proof. Let o be a primitive element of a finite field GFðq4Þ and f :oi/oiþ1:
Any point in PGð3; qÞ is represented as the power of o: Since the number of points
on any conic is q þ 1 and f is an automorphism on the points in PGð3; qÞ; the
weight of codewords is q þ 1: The length of codewords is the number of points in

PGð3; qÞ; that is, q3 þ q2 þ q þ 1: Let P be a projective plane in PGð3; qÞ: We can
assume that all the conics in C are on P: For a point set X ; let fðX Þ ¼
ffðxÞ: xAXg: Two distinct conics C and C0 in C can be regarded as the intersection
of C with P; and of C0 with P; respectively. The cross-correlation is the

largest number of the points in the intersection between C-P and fiðC0-PÞ for
i ¼ 0; 1;y; n � 1: When i ¼ 0 this number is less than or equal to 2 from
assumption. For i ¼ 1;y; n � 1; we have

ðC-PÞ-ðfiðC0-PÞÞ ¼C-P-fiðC0Þ-fiðPÞ

DC-ðP-fiðPÞÞ:
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Since f is a collineation, fiðPÞ is also a plane. Moreover, PafiðPÞ for i ¼
1;y; n � 1: Hence C-ðP-fiðPÞÞ is the set of points in the intersection between a
conic and a line, and the number is no more than 2. Similarly, it can be said that the
auto-correlation is less than or equal to 2 since it is the number of points in

the intersection between a conic and a line. In addition, the q3�1
q2�1

j k
¼ q

codewords obtained from lines in Theorem 2 can be added to the above codewords
from conics since the number of points on any line is equal to q þ 1 and since
the number of points in the intersection between a line and a conic is not more
than 2. &

In Lemma 4, a set of conics each pair of which meet at most two points is required
to obtain an optimal orthogonal code.

Lemma 5. Let P be a point on PGð2; q2Þ but not on PGð2; qÞ; and let C be the

set of conics over GFðqÞ passing through the point P: Any pair of two distinct

conics in C have at most two common points, and the number of conics in C

is q3 � q2:

Proof. Put P ¼ ða; b; gÞ and a conic C passing through P is defined by the equation
f ðx; y; zÞ ¼ 0 over GFðqÞ: Then the point Pq ¼ ðaq;bq; gqÞ is a point on C since

f ðaq; bq; gqÞ ¼ ð f ða; b; gÞÞq ¼ 0: Since any conic in C passes through the two points P

and Pq; any pair of two distinct conics have at most two common points in PGð2; qÞ:
The number of conics in C can be calculated as follows [5]. Let fPs;Pt;Pug be three
non-collinear points on PGð2; qÞ each of which is not on the line passing through P

and Pq: Since no three points in fPs;Pt;Pu;P;Pqg are collinear, there exists a unique

conic C defined over GFðq2Þ passing through these five points. Moreover, the
intersection of the conic C with PGð2; qÞ is also a conic in PGð2; qÞ: The number of

triples fPs;Pt;Pug is q2ðq2 � 1Þðq2 � qÞ; and the number of triples which determine
the same conic is ðq þ 1Þqðq � 1Þ: Hence, the number of conics in C is
q2ðq2�1Þðq2�qÞ
ðqþ1Þqðq�1Þ ¼ q3 � q2: &

From Lemmas 4 and 5 we have a series of optical orthogonal code with l ¼ 2:

Proposition 6. Let q be a prime power. Then there exists a ðq3 þ q2 þ q þ 1; q þ 1; 2Þ-
OOC consisting of q3 � q2 þ q codewords.

Example 7. Let o be a primitive element of GFð32Þ satisfying o2 ¼ oþ 1:
Any conic over GFð3Þ passing through the point ð1;o; 0Þ also passes through

the point ð1;o3; 0Þ: We have the following 18 conics passing through
these two points. The right-hand of each polynomial is the corresponding
codeword.
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x2 þ xy þ 2y2 þ xz þ 2yz ¼ 0 f3; 24; 26; 30g
x2 þ xy þ 2y2 þ 2xz þ 2yz ¼ 0 f3; 9; 19; 30g
x2 þ xy þ 2y2 þ 2xz þ yz þ 2z2 ¼ 0 f9; 17; 24; 30g
x2 þ xy þ 2y2 þ z2 ¼ 0 f24; 30; 35; 39g
x2 þ xy þ 2y2 þ 2z2 ¼ 0 f9; 17; 19; 26g
x2 þ xy þ 2y2 þ yz ¼ 0 f3; 9; 24; 39g
x2 þ xy þ 2y2 þ yz þ 2z2 ¼ 0 f19; 26; 30; 35g
x2 þ xy þ 2y2 þ 2yz ¼ 0 f3; 17; 30; 35g
x2 þ xy þ 2y2 þ 2yz þ 2z2 ¼ 0 f19; 24; 26; 39g
x2 þ xy þ 2y2 þ xz ¼ 0 f3; 9; 26; 35g
x2 þ xy þ 2y2 þ xz þ z2 ¼ 0 f17; 19; 30; 39g
x2 þ xy þ 2y2 þ xz þ yz ¼ 0 f3; 17; 26; 39g
x2 þ xy þ 2y2 þ xz þ yz þ z2 ¼ 0 f9; 19; 24; 35g
x2 þ xy þ 2y2 þ 2xz þ 2yz þ z2 ¼ 0 f17; 24; 26; 35g
x2 þ xy þ 2y2 þ xz þ 2yz þ 2z2 ¼ 0 f9; 17; 35; 39g
x2 þ xy þ 2y2 þ 2xz ¼ 0 f3; 17; 19; 24g
x2 þ xy þ 2y2 þ 2xz þ z2 ¼ 0 f9; 26; 30; 39g
x2 þ xy þ 2y2 þ 2xz þ yz ¼ 0 f3; 19; 35; 39g

In addition, the three codewords obtained in Example 1 are

f0; 1; 28; 37g; f0; 2; 18; 25g; and f0; 5; 11; 19g:

Then the set of these 21 codewords forms a ð40; 4; 2Þ-OOC.

4. Optimality of the obtained code

Table 1 shows the comparison between the parameters of optical orthogonal codes
obtained from Proposition 6 with their sizes (A) and the upper bound from the
Johnson bound (B). It seems to be that the number of codewords obtained from
Proposition 6 asymptotically attains the upper bound. In fact, the upper bound F of

the number of codewords in ðq3 þ q2 þ q þ 1; q þ 1; 2Þ-OOCs satisfies, from
inequality (1),

Fp
1

q þ 1

q3 þ q2 þ q

q

q3 þ q2 þ q � 1

q � 1

� �� �� �

¼ q3 þ 2q2 þ 4q þ 1 ðwhen q43Þ:
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The ratio of this number with the number of codewords obtained from Proposition 6
is asymptotically equal to 1 as q-N:

Corollary 8. The optical orthogonal codes obtained from Proposition 6 are

asymptotically optimal.
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Table 1

ðn;w; 2Þ-OOCs obtained from Proposition 6 for some prime power q

q n w # codewords (A) Johnson bound (B) (A)/(B)

3 40 4 21 61 0.344262

4 85 5 52 113 0.460177

5 156 6 105 196 0.535714

7 400 8 301 470 0.640426

8 585 9 456 673 0.677563

9 820 10 657 928 0.707974

11 1464 12 1221 1618 0.754635

13 2380 14 2041 2588 0.78864

16 4369 17 3856 4673 0.825166
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