78 research outputs found

    Logical presentations of domains

    Get PDF
    Bibliography: pages 168-174.This thesis combines a fairly general overview of domain theory with a detailed examination of recent work which establishes a connection between domain theory and logic. To start with, the theory of domains is developed with such issues as the semantics of recursion and iteration; the solution of recursive domain equations; and non-determinism in mind. In this way, a reasonably comprehensive account of domains, as ordered sets, is given. The topological dimension of domain theory is then revealed, and the logical insights gained by regarding domains as topological spaces are emphasised. These logical insights are further reinforced by an examination of pointless topology and Stone duality. A few of the more prominent categories of domains are surveyed, and Stone-type dualities for the objects of some of these categories are presented. The above dualities are then applied to the task of presenting domains as logical theories. Two types of logical theory are considered, namely axiomatic systems, and Gentzen-style deductive systems. The way in which these theories describe domains is by capturing the relationships between the open subsets of domains

    Thinking Things Through

    Get PDF
    A Photcopy of Thinking Things Through, Princeton Univeresity Press, 198

    Quantifier elimination and other model-theoretic properties of BL-algebras

    Get PDF
    This work presents a model-theoretic approach to the study of firstorder theories of classes of BL-chains. Among other facts, we present several classes of BL-algebras, generating the whole variety of BL-algebras whose firstorder theory has quantifier elimination. Model-completeness and decision problems are also investigated. Then we investigate classes of BL-algebras having (or not having) the amalgamation property or the joint embedding property and we relate the above properties to the existence of ultrahomogeneous models. © 2011 by University of Notre Dame.Peer Reviewe

    Topological set theories and hyperuniverses

    Get PDF
    We give a new set theoretic system of axioms motivated by a topological intuition: The set of subsets of any set is a topology on that set. On the one hand, this system is a common weakening of Zermelo-Fraenkel set theory ZF, the positive set theory GPK and the theory of hyperuniverses. On the other hand, it retains most of the expressiveness of these theories and has the same consistency strength as ZF. We single out the additional axiom of the universal set as the one that increases the consistency strength to that of GPK and explore several other axioms and interrelations between those theories. Hyperuniverses are a natural class of models for theories with a universal set. The Aleph_0- and Aleph_1-dimensional Cantor cubes are examples of hyperuniverses with additivity Aleph_0, because they are homeomorphic to their hyperspace. We prove that in the realm of spaces with uncountable additivity, none of the generalized Cantor cubes has that property. Finally, we give two complementary constructions of hyperuniverses which generalize many of the constructions found in the literature and produce initial and terminal hyperuniverses
    corecore