4,811 research outputs found

    The extremal spectral radii of kk-uniform supertrees

    Full text link
    In this paper, we study some extremal problems of three kinds of spectral radii of kk-uniform hypergraphs (the adjacency spectral radius, the signless Laplacian spectral radius and the incidence QQ-spectral radius). We call a connected and acyclic kk-uniform hypergraph a supertree. We introduce the operation of "moving edges" for hypergraphs, together with the two special cases of this operation: the edge-releasing operation and the total grafting operation. By studying the perturbation of these kinds of spectral radii of hypergraphs under these operations, we prove that for all these three kinds of spectral radii, the hyperstar Sn,k\mathcal{S}_{n,k} attains uniquely the maximum spectral radius among all kk-uniform supertrees on nn vertices. We also determine the unique kk-uniform supertree on nn vertices with the second largest spectral radius (for these three kinds of spectral radii). We also prove that for all these three kinds of spectral radii, the loose path Pn,k\mathcal{P}_{n,k} attains uniquely the minimum spectral radius among all kk-th power hypertrees of nn vertices. Some bounds on the incidence QQ-spectral radius are given. The relation between the incidence QQ-spectral radius and the spectral radius of the matrix product of the incidence matrix and its transpose is discussed

    Approximating Spectral Impact of Structural Perturbations in Large Networks

    Full text link
    Determining the effect of structural perturbations on the eigenvalue spectra of networks is an important problem because the spectra characterize not only their topological structures, but also their dynamical behavior, such as synchronization and cascading processes on networks. Here we develop a theory for estimating the change of the largest eigenvalue of the adjacency matrix or the extreme eigenvalues of the graph Laplacian when small but arbitrary set of links are added or removed from the network. We demonstrate the effectiveness of our approximation schemes using both real and artificial networks, showing in particular that we can accurately obtain the spectral ranking of small subgraphs. We also propose a local iterative scheme which computes the relative ranking of a subgraph using only the connectivity information of its neighbors within a few links. Our results may not only contribute to our theoretical understanding of dynamical processes on networks, but also lead to practical applications in ranking subgraphs of real complex networks.Comment: 9 pages, 3 figures, 2 table

    The Hidden Convexity of Spectral Clustering

    Full text link
    In recent years, spectral clustering has become a standard method for data analysis used in a broad range of applications. In this paper we propose a new class of algorithms for multiway spectral clustering based on optimization of a certain "contrast function" over the unit sphere. These algorithms, partly inspired by certain Independent Component Analysis techniques, are simple, easy to implement and efficient. Geometrically, the proposed algorithms can be interpreted as hidden basis recovery by means of function optimization. We give a complete characterization of the contrast functions admissible for provable basis recovery. We show how these conditions can be interpreted as a "hidden convexity" of our optimization problem on the sphere; interestingly, we use efficient convex maximization rather than the more common convex minimization. We also show encouraging experimental results on real and simulated data.Comment: 22 page

    Perturbation of the Eigenvectors of the Graph Laplacian: Application to Image Denoising

    Full text link
    The original contributions of this paper are twofold: a new understanding of the influence of noise on the eigenvectors of the graph Laplacian of a set of image patches, and an algorithm to estimate a denoised set of patches from a noisy image. The algorithm relies on the following two observations: (1) the low-index eigenvectors of the diffusion, or graph Laplacian, operators are very robust to random perturbations of the weights and random changes in the connections of the patch-graph; and (2) patches extracted from smooth regions of the image are organized along smooth low-dimensional structures in the patch-set, and therefore can be reconstructed with few eigenvectors. Experiments demonstrate that our denoising algorithm outperforms the denoising gold-standards

    Spectral convergence of non-compact quasi-one-dimensional spaces

    Full text link
    We consider a family of non-compact manifolds X_\eps (``graph-like manifolds'') approaching a metric graph X0X_0 and establish convergence results of the related natural operators, namely the (Neumann) Laplacian \laplacian {X_\eps} and the generalised Neumann (Kirchhoff) Laplacian \laplacian {X_0} on the metric graph. In particular, we show the norm convergence of the resolvents, spectral projections and eigenfunctions. As a consequence, the essential and the discrete spectrum converge as well. Neither the manifolds nor the metric graph need to be compact, we only need some natural uniformity assumptions. We provide examples of manifolds having spectral gaps in the essential spectrum, discrete eigenvalues in the gaps or even manifolds approaching a fractal spectrum. The convergence results will be given in a completely abstract setting dealing with operators acting in different spaces, applicable also in other geometric situations.Comment: some references added, still 36 pages, 4 figure
    corecore