3 research outputs found

    One Quantifier Alternation in First-Order Logic with Modular Predicates

    Get PDF
    Adding modular predicates yields a generalization of first-order logic FO over words. The expressive power of FO[<,MOD] with order comparison x<yx<y and predicates for x≡imod  nx \equiv i \mod n has been investigated by Barrington, Compton, Straubing and Therien. The study of FO[<,MOD]-fragments was initiated by Chaubard, Pin and Straubing. More recently, Dartois and Paperman showed that definability in the two-variable fragment FO2[<,MOD] is decidable. In this paper we continue this line of work. We give an effective algebraic characterization of the word languages in Sigma2[<,MOD]. The fragment Sigma2 consists of first-order formulas in prenex normal form with two blocks of quantifiers starting with an existential block. In addition we show that Delta2[<,MOD], the largest subclass of Sigma2[<,MOD] which is closed under negation, has the same expressive power as two-variable logic FO2[<,MOD]. This generalizes the result FO2[<] = Delta2[<] of Therien and Wilke to modular predicates. As a byproduct, we obtain another decidable characterization of FO2[<,MOD]

    The half-levels of the FO2 alternation hierarchy

    Get PDF
    © 2016, Springer Science+Business Media New York. The alternation hierarchy in two-variable first-order logic FO 2 [ < ] over words was shown to be decidable by Kufleitner and Weil, and independently by Krebs and Straubing. We consider a similar hierarchy, reminiscent of the half levels of the dot-depth hierarchy or the Straubing-Thérien hierarchy. The fragment Σm2 of FO 2 is defined by disallowing universal quantifiers and having at most m−1 nested negations. The Boolean closure of Σm2 yields the m th level of the FO 2 -alternation hierarchy. We give an effective characterization of Σm2, i.e., for every integer m one can decide whether a given regular language is definable in Σm2. Among other techniques, the proof relies on an extension of block products to ordered monoids
    corecore