133 research outputs found

    Privacy via the Johnson-Lindenstrauss Transform

    Full text link
    Suppose that party A collects private information about its users, where each user's data is represented as a bit vector. Suppose that party B has a proprietary data mining algorithm that requires estimating the distance between users, such as clustering or nearest neighbors. We ask if it is possible for party A to publish some information about each user so that B can estimate the distance between users without being able to infer any private bit of a user. Our method involves projecting each user's representation into a random, lower-dimensional space via a sparse Johnson-Lindenstrauss transform and then adding Gaussian noise to each entry of the lower-dimensional representation. We show that the method preserves differential privacy---where the more privacy is desired, the larger the variance of the Gaussian noise. Further, we show how to approximate the true distances between users via only the lower-dimensional, perturbed data. Finally, we consider other perturbation methods such as randomized response and draw comparisons to sketch-based methods. While the goal of releasing user-specific data to third parties is more broad than preserving distances, this work shows that distance computations with privacy is an achievable goal.Comment: 24 page

    Improved Differentially Private Euclidean Distance Approximation

    Get PDF

    Private Incremental Regression

    Full text link
    Data is continuously generated by modern data sources, and a recent challenge in machine learning has been to develop techniques that perform well in an incremental (streaming) setting. In this paper, we investigate the problem of private machine learning, where as common in practice, the data is not given at once, but rather arrives incrementally over time. We introduce the problems of private incremental ERM and private incremental regression where the general goal is to always maintain a good empirical risk minimizer for the history observed under differential privacy. Our first contribution is a generic transformation of private batch ERM mechanisms into private incremental ERM mechanisms, based on a simple idea of invoking the private batch ERM procedure at some regular time intervals. We take this construction as a baseline for comparison. We then provide two mechanisms for the private incremental regression problem. Our first mechanism is based on privately constructing a noisy incremental gradient function, which is then used in a modified projected gradient procedure at every timestep. This mechanism has an excess empirical risk of ≈d\approx\sqrt{d}, where dd is the dimensionality of the data. While from the results of [Bassily et al. 2014] this bound is tight in the worst-case, we show that certain geometric properties of the input and constraint set can be used to derive significantly better results for certain interesting regression problems.Comment: To appear in PODS 201

    Differential Private POI Queries via Johnson-Lindenstrauss Transform

    Full text link
    © 2013 IEEE. The growing popularity of location-based services is giving untrusted servers relatively free reign to collect huge amounts of location information from mobile users. This information can reveal far more than just a user's locations but other sensitive information, such as the user's interests or daily routines, which raises strong privacy concerns. Differential privacy is a well-acknowledged privacy notion that has become an important standard for the preservation of privacy. Unfortunately, existing privacy preservation methods based on differential privacy protect user location privacy at the cost of utility, aspects of which have to be sacrificed to ensure that privacy is maintained. To solve this problem, we present a new privacy framework that includes a semi-trusted third party. Under our privacy framework, both the server and the third party only hold a part of the user's location information. Neither the server nor the third party knows the exact location of the user. In addition, the proposed perturbation method based on the Johnson Lindenstrauss transform satisfies the differential privacy. Two popular point of interest queries, -NN and Range, are used to evaluate the method on two real-world data sets. Extensive comparisons against two representative differential privacy-based methods show that the proposed method not only provides a strict privacy guarantee but also significantly improves performance

    MVG Mechanism: Differential Privacy under Matrix-Valued Query

    Full text link
    Differential privacy mechanism design has traditionally been tailored for a scalar-valued query function. Although many mechanisms such as the Laplace and Gaussian mechanisms can be extended to a matrix-valued query function by adding i.i.d. noise to each element of the matrix, this method is often suboptimal as it forfeits an opportunity to exploit the structural characteristics typically associated with matrix analysis. To address this challenge, we propose a novel differential privacy mechanism called the Matrix-Variate Gaussian (MVG) mechanism, which adds a matrix-valued noise drawn from a matrix-variate Gaussian distribution, and we rigorously prove that the MVG mechanism preserves (ϵ,δ)(\epsilon,\delta)-differential privacy. Furthermore, we introduce the concept of directional noise made possible by the design of the MVG mechanism. Directional noise allows the impact of the noise on the utility of the matrix-valued query function to be moderated. Finally, we experimentally demonstrate the performance of our mechanism using three matrix-valued queries on three privacy-sensitive datasets. We find that the MVG mechanism notably outperforms four previous state-of-the-art approaches, and provides comparable utility to the non-private baseline.Comment: Appeared in CCS'1

    Random Projections For Large-Scale Regression

    Full text link
    Fitting linear regression models can be computationally very expensive in large-scale data analysis tasks if the sample size and the number of variables are very large. Random projections are extensively used as a dimension reduction tool in machine learning and statistics. We discuss the applications of random projections in linear regression problems, developed to decrease computational costs, and give an overview of the theoretical guarantees of the generalization error. It can be shown that the combination of random projections with least squares regression leads to similar recovery as ridge regression and principal component regression. We also discuss possible improvements when averaging over multiple random projections, an approach that lends itself easily to parallel implementation.Comment: 13 pages, 3 Figure
    • …
    corecore