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Abstract

This work shows how to privately and more accurately estimate Euclidean distance between
pairs of vectors. Input vectors x and y are mapped to differentially private sketches x′ and y′, from
which one can estimate the distance between x and y. Our estimator relies on the Sparser Johnson-
Lindenstrauss constructions by Kane & Nelson (Journal of the ACM 2014), which for any 0 < α, β <
1/2 have optimal output dimension k = Θ(α−2 log(1/β)) and sparsity s = O(α−1 log(1/β)). We
combine the constructions of Kane & Nelson with either the Laplace or the Gaussian mechanism
from the differential privacy literature, depending on the privacy parameters ε and δ. We also
suggest a differentially private version of Fast Johnson-Lindenstrauss Transform (FJLT) by Ailon
& Chazelle (SIAM Journal of Computing 2009) which offers a tradeoff in speed for variance for
certain parameters. We answer an open question by Kenthapadi et al. (Journal of Privacy and
Confidentiality 2013) by analyzing the privacy and utility guarantees of an estimator for Euclidean
distance, relying on Laplacian rather than Gaussian noise. We prove that the Laplace mechanism
yields lower variance than the Gaussian mechanism whenever δ < βO(1/α). Thus, our work poses
an improvement over the work of Kenthapadi et al. by giving a more efficient estimator with lower
variance for sufficiently small δ. Our sketch also achieves pure differential privacy as a neat side-effect
of the Laplace mechanism rather than the approximate differential privacy guarantee of the Gaussian
mechanism, which may not be sufficiently strong for some settings.

Our main result is a special case of more general, technical results proving that one can generally
construct unbiased estimators for Euclidean distance with a high level of utility even under the
constraint of differential privacy. The bulk of our analysis is proving that the variance of the estimator
does not suffer too much in the presence of differential privacy.

1 Introduction

The well-known Johnson-Lindenstrauss Lemma [26] is a fundamental tool in dimensionality reduction
and has applications in a variety of fields. The lemma allows for significant speed-ups in applications
such as nearest-neighbor search [2, 24], computational geometry [10], document comparison [43], data
streams [23], clustering [6, 13], graph sparsification [41], low-rank approximation [12], numerical linear
algebra [46, 11, 16] and many more. The Johnson-Lindenstrauss Lemma, or JL lemma for short, states
that for any 0 < α, β < 1/2 and input dimension d > 0, there exists a random k× d-projection matrix S
such that S preserves Euclidean norm of any input vector x ∈ Rd up to a factor (1±α) with probability
at least 1 − β. Classic examples of projections satisfying the lemma include the constructions from
[24, 2, 1, 14, 28]. Jayram & Nelson [25], and later Kane et al. [27], proved the remarkable result
that the optimal output dimension k is independent of the input dimension d. In particular, they
showed that k = Θ(α−2 log(1/β)) is optimal. In the case where n input vectors are known in advance,
the Johnson-Lindenstrauss Flattening Lemma states that there exist projections preserving Euclidean
distance for all pairs of these vectors within a factor (1 ± α), simultaneously. We concern ourselves
with a distributed setting, where data is held by several parties and may not be present at the same
time. Hence, in our setting the length preserving projection S must be public, so any party holding
input vector x ∈ Rd can compute and release Sx. For inputs x, y ∈ Rd held by different parties, one
can estimate the Euclidean distance as ∥Sx − Sy∥22 = ∥S(x − y)∥22. By the Johnson-Lindenstrauss
Lemma, this estimate is within a factor (1 ± α) of ∥x − y∥22 with high probability. We henceforth
use transform and projection interchangeably and refer to random projections satisfying the Johnson-
Lindenstrauss Lemma as Johnson-Lindenstrauss projections, or simply JL projections. We will even
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misuse this convention slightly, as we also use this name for projections that preserve Euclidean norm in
expectation, as defined in Definition 4.

As the input x may contain sensitive information, the released projection of x must preserve privacy
to prevent third parties from learning the input x. Privacy has often been obtained through simple
anonymization by removing obvious identifiers, but several cases have shown that this approach is in-
sufficient [3, 15, 36, 42]. Due to its stringent definition and provable guarantees, we concern ourselves
with differential privacy [18], which is usually achieved by perturbing the result of a query, to obfuscate
the true result slightly. Thus, we analyze the privacy and utility guarantees when adding noise to the
projection Sx. That is, for a noise distribution D and noise vectors η, µ ∈ Dk, we analyze whether we can
privately and accurately estimate ∥x− y∥22 from Sx+ η and Sy+ µ. The main questions of interest are:
How much noise do we need to add? and What utility guarantees can we achieve? We define differential
privacy and mention common choices for noise distribution D in Section 3.2.

1.1 Differentially Private Random Projections

This work improves on the work of Kenthapadi et al. [29], in which it was shown how to construct an
(ε, δ)-differentially private version of a JL transform allowing for high accuracy estimators for squared
Euclidean distance. The idea applied by Kenthapadi et al. is simple: Let P be the i.i.d. normally
distributed JL transform where each entry is drawn from the standard Normal distribution. For input
vector x ∈ [0, 1]d, add Gaussian noise to each entry of Px.

Kenthapadi et al. prove Theorems 1 and 2. We remark that these results extend naturally to x, y ∈ Rd.

Theorem 1 ([29]). Let P be a k × d-projection matrix with i.i.d. entries from the standard Normal
distribution

and let x, y ∈ [0, 1]d be input vectors. Let η, µ ∼ N (0, σ2)k be noise vectors. If σ ≥ 4/ε
√

log(1/δ),
ε < ln(1/δ) and k > 2(ln(d) + ln(2/δ)), then Px+ η is (ε, δ)-differentially private.

Note 1. Kenthapadi et al. show that for k > 2 ln(d) + 2 ln(1/δ′), the ℓ2-sensitivity of P is greater than
2 with probability at most δ′. We will assume that the ℓ2-sensitivity of P is computed exactly in an
initializing step, as discussed in Section 2.1.1, and hence avoid this assumption on k. From [25, 27] we
know that for any α, β ∈ (0, 1/2) k = Θ

(
α−2 log(1/β)

)
is optimal in the non-private case. We use this

value of k and discuss the optimal k for the noisy construction in Section 6.2.1. We also remark that the
σ in Theorem 1 can be exchanged with σ ≥ ∆2ε

−1
√
2 log(1.25/δ) by a later result from [19] (See Lemma

2), where ∆2 is the (exact) ℓ2-sensitivity of P .

Theorem 2 ([29]). Let P be a k× d-projection matrix with i.i.d. entries from the standard Normal dis-
tribution and x, y ∈ [0, 1]d be input vectors. Let η, µ ∼ N (0, σ2)k be noise vectors, where σ is independent
of the realization of P . Define

Êiid := ∥(Px+ η)− (Py + µ)∥22 − 2kσ2.

Then

1. Êiid is an unbiased estimator for ∥x− y∥22.

2. Var
[
Êiid

]
= 2

k∥x− y∥42 + 8σ2∥x− y∥22 + 8σ4k.

Note 2. Letting σ be independent of the realization of P might lead to complete loss of privacy if the
ℓ2-sensitivity of P is much higher than 1, as argued in Section 2.1.1. Hence, we let σ be a function of
the exact ℓ2-sensitivity of P , ∆2, as discussed in Note 1.

1.2 New Contributions

An immediate idea to achieve a speed-up is to apply the techniques of Kenthapadi et al. to a JL transform,
which is faster than the i.i.d. normally distributed JL transform. We show such a result for a private
Fast Johnson-Lindenstrauss Transform (FJLT) [2] in Section 5.2, but remark that the privacy issue of
Kenthapadi et al. mentioned in Note 2 carries over, if we simply exchange the i.i.d. normally distributed
JL transform for the FJLT. We discuss how to address this issue in Section 5 to obtain a differentially

2



private version of FJLT, where σ does not depend on the ℓ2-sensitivity of the transform (which could
be very large). Kenthapadi et al. leave open the question of whether we can obtain better results with
Laplacian noise. We answer this question by proving that we can indeed obtain an ε-differentially private
estimator for squared Euclidean distances, which has better variance for certain parameters. Specifically,
we show the following main theorem:

Theorem 3. For any 0 < α, β < 1/2 and any integer d > 0 there exists a random k × d-projection S
for k = Θ

(
α−2 log(1/β)

)
with sparsity s = O

(
α−1 log(1/β)

)
and a distribution D over R such that for

any x, y ∈ Rd and η, µ ∼ Dk we define:

ÊSJLT := ∥(Sx+ η)− (Sy + µ)∥22 −
2ks

ε2
.

Then

1. ÊSJLT is an unbiased estimator for ∥x− y∥22.

2. Var
[
ÊSJLT

]
≤ 2

k∥x− y∥42 +O
(

s
ε2 ∥x− y∥22 + s2

ε4 k
)
.

3. The sketch (S, Sx+ η) is ε-differentially private.

4. For a data stream, we can update the sketch (S, Sx+ η) in time O(s).

5. Sx+ η can be computed in time O(s∥x∥0 + k). Given Sx+ η and Sy+ µ, ÊSJLT can be computed
in time O (k).

The noise distribution D will depend on the sparsity of S but it is crucial that D is otherwise
independent of S. We state our improvements over the work of Kenthapadi et al. [29]:

• Recall that the projection P of Kenthapadi et al. has constant ℓ2-sensitivity with high probability.
Under this assumption, we combine Theorems 1, 2 and Note 1 to see that

Var[Êiid] =
2

k
∥x− y∥42 +O

(
log(1/δ)

ε2
∥x− y∥22 +

log2(1/δ)

ε4
k

)
,

and so ÊSJLT improves over Êiid in terms of variance whenever δ < e−s = βO(1/α) (see Section 7).
In the case where P has higher sensitivity, our results give an even better improvement.

• Kenthapadi et al. have an additional initialization cost of O(dk) to compute the sensitivity of the
projection matrix. We refer the reader to Section 2.1.1 for a detailed discussion.

• Our estimator ÊSJLT is more efficient as the update time, i.e., time to compute Sx + η, is
O(s∥x∥0 + k) rather than O(k∥x∥0 + k) for s = o(k).

• Rather than approximate differential privacy, which may be insufficient for some applications, we
achieve pure differential privacy.

Our improved efficiency in Theorem 3 relies on the sparsity of the Sparser JL transforms by Kane &
Nelson [28], henceforth referred to as the SJLT. We remark that the results of Kenthapadi et al. extend
naturally to these JL transforms, and thus they would obtain the same efficiency for δ > βO(1/α). We do,
although, give the analysis proving that these transforms can indeed be used. Using a SJLT instead of
the i.i.d. normally distributed transform, the work of Kenthapadi et al. would also avoid the initialization
cost.

Related to our analysis for the SJLT, we remark that our main result is, in fact, a special case of
an even more general result: we give a class of length preserving linear transformations that allow for
efficient, private estimators for Euclidean distance with a high level of utility. The FJLT and SJLT are
merely examples of such linear transformations. We define what is meant by length preserving in section
3.3 and prove our general, technical results in Section 4. In Section 5 we give two differentially private
versions of FJLT and in Section 6, we prove Theorem 3 by applying the technical results to the SJLT
with noise from the Laplace distribution. Finally, we compare the work of Kenthapadi et al. with our
private FJLT and SJLT in Section 7.
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2 Related Work

Differential privacy is usually achieved by adding random noise to the output of a query to obfuscate
the exact result, before publishing the result. This idea is easily extended to vector outputs by simply
adding noise to each entry of the output vector. This technique has been studied extensively in previous
work, see for example [33, 38, 22, 31].

We consider a distributed setting, where party i adds noise ηi ∼ Dk to the projection Sxi of input
vector xi and releases the noisy projection Sxi + ηi for future distance estimation. All parties must use
the same randomized matrix S and noise drawn from the same distribution D. It is crucial that the
projection matrix is public, and only the noise be kept secret.

2.1 Versions of Johnson-Lindenstrauss Transformations

We refer to the classical JL transform by Indyk & Motwani [24] as the i.i.d. normally distributed JL
transform. As the name suggests, the random projection matrix consists of i.i.d. entries from the
standard Normal distribution.

The sparsity of the random projection, i.e., the number of non-zero entries per column is an important
tool in speeding up dimensionality reduction. Ailon & Chazelle [2] presented a JL transform with a sparser
projection matrix with a mixture of normally distributed entries and 0s. This transform is commonly
known as The Fast Johnson-Lindenstrauss Transform or in short, FJLT. We describe the transform in
detail in Section 5.1.

The sparsity not only affects the sensitivity of the transformation (see Section 3.2.1 for the definition
of sensitivity), but also the time required to compute the projection of an input vector x. For a random
projection S with sparsity s, we can compute Sx in time O(s∥x∥0). Kane & Nelson [28] show that
the JL transform of Dasgupta et al. [14] requires sparsity s = Ω̃(α−1 log2(1/β)), and Nelson & Nguyen
showed that this sparsity is optimal up to a factor O(log(1/α)) [37]. Kane & Nelson [28] also give two
sparser constructions with s = Θ(α−1 log(1/β)) for embedding into k = Θ(α−2 log(1/β)) dimensions.
These transformations are commonly known as The Sparser JL Transforms and we will henceforth refer
to them as SJLT. We describe SJLT in Section 6.1.

2.1.1 Differentially Private JL Construction

Kenthapadi et al. [29], which was also discussed in Section 1.1, give a private estimator for Euclidean
distance relying on the i.i.d. normally distributed JL transform. A drawback of their construction is that
the ℓ2-sensitivity is only 1 in expectation, so the sensitivity might not be small. This is the case if the
random projection has even a single very large entry. The authors suggest drawing noise calibrated to a
low sensitivity projection matrix independently of the actual projection matrix P . However, with a small
probability, P does not have low sensitivity, in which case the noise is not ensured to provide differential
privacy. Kenthapadi et al. ”hide” the probability of drawing a high-sensitivity projection under δ, but
for a fixed P , either the noise provides privacy, or certain inputs would always be distinguishable, even
in the presence of noise calibrated to low sensitivity. An alternative solution is to compute the sensitivity
of the fixed P and calibrate the noise to the actual sensitivity. Hence, initialization requires time O(dk).
Kenthapadi et al. state without proof that their results extend to the JL transformations from [1, 14].
Xu et al. [47] extend the work of [29] with experimental comparisons with JTree [9], PrivBayes [48],
PriView [39] and PrivateSVM [40].

2.2 Differentially Private Linear Transformations

Mir et al. (PODS11) [33] suggest a general framework for generating pan-private linear transformations
by initializing with noise from the exponential mechanism. The work argues how to create a ε-pan
private estimator for (squared) Euclidean distance with multiplicative error (1 + γ) and additive error
poly(log d, ε−1, γ−1, log(q−1)) + O(Z), with probability at least 1 − q, where Z is an upper bound on
the entries of the input vector. The technique used by Mir et al. can be used for private dimensionality
reduction, but is computationally inefficient as the sketch relies on the exponential mechanism for noise
addition.
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In an earlier (unpublished) version of the same work, [32], Mir et al. analyze the cropped second

moment for a parameter τ , defined for input vector x ∈ Zd as
∑d

i=1 min{x2
i , τ}. In this work, Mir et

al. show a 2ε-differentially private estimator with additive error Oε(τ
√
d) with high probability. Dif-

ferential privacy is achieved by an application of Randomized Response [45]. As our error depends on
∥x− y∥2 and

√
k <

√
d, we see an improvement when x and y are sparse. The problems are not directly

comparable as the cropped second moment of Mir et al. applies to integer inputs, whereas we consider
inputs over the reals.

2.3 When Data is Known in Advance

If input data is known in advance, there are other techniques to achieve differential privacy. A central unit
with access to all data can compute the exact distances (up to the error incurred by the JL embedding)
and add noise specifically calibrated to this distance. This technique often incurs less noise, but is not
applicable in our setting, as data is split among several parties and may not all be available at once.

Blocki et al. [5] show that, as long as the projection matrix is kept secret, the i.i.d. normally dis-
tributed JL transform allows for differentially private estimates of distances with the accuracy guarantees
from the Johnson-Lindenstrauss Lemma. Upadhyay [44] proves that this technique does not generally
work to preserve privacy for sparser JL projections. As we consider a distributed setting, keeping the
projection matrix secret is unattainable. Bhaskar et al. [4] introduce noiseless privacy where the output
is always exact, rather than a noisy approximation. The privacy guarantees are of a similar form as
differential privacy but rely on assumptions about the distribution of the data and auxiliary information,
whereas differential privacy aims for a higher level of generality.

2.3.1 Representing Noise from Continuous Noise Distributions

We will assume that noise is drawn from either the continuous Laplace or Gaussian distribution, which,
however, may introduce practical issues. Mironov [34] described how privacy may be lost due to floating-
point error when sampling noise from a continuous distribution. As an alternative to the continuous
Laplace distribution, Mironov suggests the Snapping mechanism, which incurs an additional error of
approximately ∆1/ε compared to noise from Lap(∆1/ε), where ∆1 is the ℓ1-sensitivity of the query.

[20] improve over the Snapping Mechanism, by drawing noise from a discrete distribution, differing

from the Laplace distribution by at most a factor (1 + 1+2/ε
2k

) for a fixed integer k, which controls the
accuracy of the discretization. It suffices to use k ∈ [10, 45]Z.

A discrete, ”hole-free” alternative to the Gaussian distribution, requiring only expected constant time
is suggested in [20]. The distribution builds on the Binomial distribution with parameters n and p = 1/2
and the work of [7] to give a distribution which for large n differs from the Gaussian distribution by at
most O(log1.5(n)/

√
n).

In a very recent work, Canonne et al. [8] describe a discretization of the Gaussian distribution sup-
ported on Z whose variance is at most that of the corresponding continuous Gaussian distribution, and
hence allows for identical or slightly better utility. Simultaneously, the discretization has sub-Gaussian
tails compared to the corresponding continuous Gaussian distribution and essentially the same privacy
guarantees. We refer to the discussion in [8] for further reading on discretizations of the Laplace and
Gaussian distributions.

2.4 Lower bounds

McGregor et al. [30] show that any protocol for estimating Hamming distance (and so for inner product,
which again leads to a protocol for estimating squared Euclidean distance) of two binary k-dimensional
vectors in a differentially private manner incurs an additive error of Ω̃(

√
k), which is contrasted by

the observation that simple Randomized Response [45] allows for error O(
√
k). The error lower bound

implies a Ω̃(k) lower bound for the variance of the noisy estimator. In contrast, our variance of the noise
added (we may disregard the variance introduced by the JL projection, as this error occurs even in the
non-private version) depends on ∥x− y∥22 ≤ d and k (for binary input vectors).

Independently from the work of McGregor et al., Mir et al. [33] show a similar lower bound of additive
error Ω(

√
k) for estimating inner product for binary vectors in a pan-private setting. The lower bound

by McGregor et al. implies a lower bound for pan-private algorithms, which is weaker than the lower
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bound of Mir et al. in the case of single-pass algorithms and dynamic data. Hardt & Talwar [21] show
that an ε-differentially private algorithm for the second frequency moment F2 requires an additive error
factor of Ω(1/ε), which is comparable to our result (up to polynomial and logarithmic factors).

3 Preliminaries

3.1 Notation

Let x ∈ Rd be an input vector. For a k × d-matrix S, let Sx be the linear transformation of x under
S. Let η ∼ Dk for a noise distribution D. We denote by Sx + η the noisy counter-part to Sx and let
η∗ ∼ D denote a random variable drawn according to D. We use transformation of x and projection of x
interchangeably as our main focus will be on random projections. Unless otherwise specified projection
always refers to a random projection.

Denote by ∥x∥p the ℓp-norm of x and let 1[p] denote the indicator variable for predicate p.

3.2 Differential Privacy

Intuitively, differential privacy guarantees that one cannot (confidently) distinguish between whether an
output is the result generated from a specific input vector or from a neighboring vector:

Definition 1 (Neighboring inputs). Vectors x, y ∈ Rd are called neighboring, sometimes also adjacent,
if

∥x− y∥1 ≤ 1.

We remark that this definition is a generalization of the natural attribute-level privacy for binary
input vectors, where privacy is preserved for a single bit-flip. For user-level privacy, we suppose that the
contribution of a single user affects the ℓ1-norm of the input vector by at most 1. This is the case when
we consider example histograms. More general user-level privacy is out of scope of this work.

Definition 2 (Differential Privacy [18, 17]). A randomized mechanism M preserves (ε, δ)-differential
privacy, or approximate differential privacy, if for any neighboring input vectors x and y, and for all
subsets S ⊂ Range(M), we have

Pr[M(x) ∈ S] ≤ eε Pr[M(y) ∈ S] + δ.

where the probability is over the random choices of M. If δ = 0 we say that M preserves ε-differential
privacy or pure differential privacy.

A common interpretation of approximate differential privacy is that we get pure differential privacy
except with probability δ [35].

3.2.1 Sensitivity

Dwork et al. showed that we can obtain differential privacy by adding noise calibrated to the sensitivity
of a function [18]. We define the sensitivity of a linear transformation:

Definition 3 (ℓp-sensitivity of transformation [29]). For p ≥ 1, the ℓp-sensitivity of a linear transfor-
mation S : Rd → Rk is

∆p(S) = max
x,y∈Rd

∥x−y∥1≤1

∥Sx− Sy∥p = max
1≤j≤d

(
k∑

i=1

|Si,j |p
)1/p

= max
1≤j≤d

∥S·,j∥p

where S·,j is the jth column of S.

Note 3. The definition follows from the observation that any vector of ℓ1-norm 1 (which is the case for
neighboring vectors) can be represented as a convex linear combinations of basis vectors.
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3.2.2 Techniques In Differential Privacy

We present two fundamental techniques in differential privacy that we use extensively in our analysis.

Lemma 1 (Laplace Mechanism [18]). For linear transformation S ∈ Rk×d and input x ∈ Rd, the Laplace
Mechanism with parameter b outputs Sx + η for η ∼ Lap(0, b)k. Let ∆1 be the ℓ1-sensitivity of S. The
Laplace Mechanism with parameter ∆1ε

−1 preserves ε-differential privacy.

Lemma 2 (Gaussian Mechanism [17, 19]). For linear transform S ∈ Rk×d and input x ∈ Rd, the
Gaussian Mechanism with parameter σ outputs Sx + η for η ∼ N (0, σ2)k. Let ∆2 be the ℓ2-sensitivity
of S. The Gaussian Mechanism with parameter σ ≥ ∆2ε

−1
√
2 log(1.25/δ) preserves (ε, δ)-differential

privacy.

3.3 Length Preserving Property

Our technical results in Section 4 rely on linear transforms with the Length Preserving Property (LPP):

Definition 4 (Length Preserving Property (LPP)). A random k × d-projection S satisfies the Length
Preserving Property if for any x ∈ Rd we have

ES

[
∥Sx∥22

]
= ∥x∥22.

Note that if S satisfies LPP, then S also preserves Euclidean distances and inner products, as ⟨x, y⟩ =
∥x∥2

2+∥y∥2
2−∥x−y∥2

2

2 .

4 Technical Results

We now show our general, technical lemmas which will be useful for proving Theorem 3. Let S be a
random k × d-matrix with LPP as defined in Definition 4 and let x, y ∈ Rd. Let D be a zero-mean
distribution and η, µ ∼ Dk noise vectors. Let η∗ ∼ D. We define

Êgen := ∥(Sx+ η)− (Sy + µ)∥22 − 2kED[η
2
∗].

Our technical results are as follows:

Lemma 3. We have

1. Êgen is an unbiased estimator for ∥x− y∥22.

2. The variance of Êgen is

Var
[
Êgen

]
= Var

[
∥Sx− Sy∥22

]
+ 8ED[η

2
∗]∥x− y∥22 + 2kED[η

4
∗] + 2kED[η

2
∗]

2

Proof. See Appendix A.

Hence, the variance of Êgen is close to the variance of the non-private estimator, but has an additional
noise term depending on the output dimension k and the Euclidean distance of the input vectors. The
following result describes the privacy guarantees of Êgen:

Lemma 4. Let ∆1 and ∆2 be the ℓ1- and ℓ2-sensitivities of S, respectively. Let δ > 0 be given and
define

m := min
{
∆1,∆2

√
ln (1/δ)

}
.

There is a distribution D such that

1. The sketch (S, Sx+ η) is differentially private.

2. Var
[
Êgen

]
= Var

[
∥Sx− Sy∥22

]
+O

(
m2

ε2 ∥x− y∥22 + m4

ε4 k
)
.
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3. Given Sx and Sy, the estimate Êgen can be computed in time O(k).

Proof. We show that it suffices to let D be either the Normal or Laplace distribution for well-chosen
parameters. We start with the following useful note:

Note 4. Let n!! be the product of the numbers 1, ..., n that have the same parity as n. For L ∼ Lap(b)
and G ∼ N (0, σ2), we have

∀n ∈ N : ED[L
n] =

n!

(b−1)n

for even n: ED[G
n] = (n− 1)!!σn.

By Lemma 2, the noisy projection Sx + η is (ε, δ)-differentially private for D = N (0, σ2) with σ ≥
∆2

ε

√
2 ln (1.25/δ). By the post-processing property of differential privacy, Êgen is also (ε, δ)-differentially

private. From Lemma 3 and Note 4

Var
[
Êgen

]
= Var

[
∥Sx− Sy∥22

]
+O

(
∆2

2 ln
(
1
δ

)
ε2

∥x− y∥22 +
∆4

2 ln
2
(
1
δ

)
ε4

k

)
. (1)

Similarly, by Lemma 1 Êgen is ε-differentially private for D = Lap(∆1/ε), and from Lemma 3 and
Note 4 we get

Var
[
Êgen

]
= Var

[
∥Sx− Sy∥22

]
+O

(
∆2

1

ε2
∥x− y∥22 +

∆4
1

ε4
k

)
. (2)

Finally, we can draw noise from the Laplace or the Normal distribution in constant time.

Note 5. As seen in the proof of Lemma 4, letting D = Lap(∆1/ε) gives m = ∆1 and letting D =
N (0, σ2) for σ ≥ ∆2ε

−1
√
2 ln(1.25/δ) gives m = ∆2

√
ln(1/δ). We wish to choose the D which minimizes

Var[Êgen]. Ignoring constants, (2) is upper bounded by (1) when

∆1 < ∆2

√
ln(1/δ) ⇔ δ < e−∆2

1/∆
2
2 . (3)

Hence, when (3) is satisfied, we use D = Lap(∆1/ε) and otherwise let D = N (0, σ2) with σ ≥
∆2ε

−1
√
2 log(1.25/δ).

5 Private Fast Johnson-Lindenstrauss Transform

We now discuss a private version of the Fast Johnson-Lindenstrauss transform (FJLT) by Ailon &
Chazelle [2]. We first remind the reader of the non-private transform in Section 5.1 and then give two
private versions in Section 5.2.

5.1 Description of (non-private) Fast Johnson-Lindenstrauss Transform (FJLT)

We are concerned only with the transform preserving ℓ2-distances, but refer the reader to [2] for the
transform preserving ℓ1-distances as well as the analysis for the transforms.

FJLT is a random distribution of linear mappings Φ : Rd → Rk with k = O(log(1/β)/α2), such that
for α, β ∈ (0, 1/2), with probability at least 1− β

(1− α)k∥x∥22 ≤ ∥Φx∥22 ≤ (1 + α)k∥x∥22.

For given values of d, α, β, we describe how to obtain the random mapping Φ as the product of three
real valued matrices, P,H and D:

• D is a random d×d-diagonal matrix with Djj drawn independently from {−1,+1} with probability
1/2.
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• H is a d× d-normalized Hadamard matrix such that for f, j ∈ [d]

Hfj =
1√
d
(−1)⟨f−1,j−1⟩

where ⟨f, j⟩ is the dot-product between vectors expressing f and j in binary representation.

• P is a random k × d-matrix whose entries are independently either normally distributed or 0.
Specifically, for

q = min

{
Θ

(
log2(1/β)

d

)
, 1

}
we let Pif be drawn (independently) fromN (0, q−1) with probability q and Pif = 0 with probability
1− q for i ∈ [k] and f ∈ [d].

The transform Φ is defined as
Φ := PHD.

To formalize, we get the following lemma:

Lemma 5 (Lemma 2.1 from [2]). Let α, β ∈ (0, 1/2) and let Φ be a random k × d-projection matrix as
described above. Let x ∈ Rd. With probability at least 1− β, the following two events occur:

• (1− α)k∥x∥22 ≤ ∥Φx∥22 ≤ (1 + α)k∥x∥22.

• The mapping Φ : Rd → Rk requires time

O

(
d log d+ dq

log(1/β)

α2

)
for q = min

{
Θ
(

log2(1/β)
d

)
, 1
}
.

Proof. See [2].

We will henceforth concern ourselves with the normalized FJLT, 1/
√
k · Φ, such that

(1− α)∥x∥22 ≤ 1/k∥Φx∥22 ≤ (1 + α)∥x∥22.

Lemma 6. The normalized FJLT satisfies LPP (see Definition 4).

Proof. See Appendix B.2.

Lemma 7. Let x, y ∈ Rd and let Φ be the FJLT as described above. Then

Var[1/k∥Φx− Φy∥22] ≤
3

k
∥x− y∥42.

Proof. The proof follows directly from Lemma 11 in Appendix B.3.

5.2 Private FJLT

In this section, we argue how to construct a differentially private version of FJLT by adding Gaussian
noise to the input.

If we simply exchange the i.i.d. normally distributed JL transform for FJLT in the work of Kenthapadi
et al. [29], we get the following result. Note that the ℓ2-sensitivity of the (normalized) projection is
concentrated around 1, which justifies the choice of Gaussian noise.

Corollary 1. Let Φ be a random k × d-FJLT and let x, y ∈ Rd be input vectors. Let ∆2 be the ℓ2-
sensitivity of Φ and let η, µ ∼ N (0, σ2)k for σ ≥ ∆2ε

−1
√

2 log(1.25/δ) be noise vectors. Define

ÊFJLTo :=
1

k
∥(Φx+ η)− (Φy + µ)∥22 − 2kσ2

9



• ÊFJTLo
is an unbiased estimator for ∥x− y∥22.

• The estimator has variance

Var
[
ÊFJLTo

]
≤ 3

k
∥x− y∥42 +O

(
kσ4 + σ2∥x− y∥22

)
.

• The sketch (Φ,Φx+ η) is (ε, δ)-differentially private.

• The sketch Φx+ η can be computed in time

O

(
max

{
d log d,

dq log(1/β)

α2

})
for q = min{Θ(log2(1/β)/d), 1}.

Proof. That the estimator is unbiased and the variance follow from Lemmas 3, 6 and 7. Privacy follows
from Lemmas 2 and 4. Running time follows from Lemmas 5 and 4.

Note 6. Although the ℓ2-sensitivity of the normalized FJLT is concentrated around 1, the sensitivity of
Φ could (with a small probability) be very large, so the sketch Φx+ η suffers from the same initialization
cost as the work of Kenthapadi et al. (see Section 2.1.1).

We now introduce a private version of FJLT, where we perturb the input. This version avoids the
issue described in Note 6, but will inevitably introduce error depending on the input size.

Lemma 8. Let Φ be a random k × d-FJLT and let x, y ∈ Rd be input vectors. Let η, µ ∼ N (0, σ2)d for
σ ≥ ε−1

√
2 log(1.25/δ) be noise vectors. Define

ÊFJLTi
:=

1

k
∥Φ(x+ η)− Φ(y + µ)∥22 − 2dσ2

• ÊFJTLi
is an unbiased estimator for ∥x− y∥22.

• The estimator has variance

Var
[
ÊFJLTi

]
≤ 3

k
∥x− y∥42 +O

(
d2σ4

k
+ dσ2∥x− y∥22

)
.

• The sketch (Φ,Φ(x+ η)) is (ε, δ)-differentially private.

• The sketch Φ(x+ η) can be computed in time

O

(
max

{
d log d,

dq log(1/β)

α2

})
for q = min{Θ(log2(1/β)/d), 1}.

Proof. For proofs that the estimator is unbiased and for the variance, see Appendix C.1. We remark
that the factor d on the last term in the variance is a by-product of applying Φ to the noise. Privacy
follows directly from the Gaussian mechanism (see Lemma 2), as the ℓ2-sensitivity is at most 1 (clearly,
as we perturb the input vectors). As noise can be added in time O(d), the time required to compute the
sketch follows from Lemma 5.

Note 7. By spherical symmetry of the Normal distribution, Φ(x+ η) and Φx+ Pη, where P is defined
in Section 5.1, are identically distributed. Hence, one could add the same amount of noise after the
Hadamard transform to get a differentially private sketch, that is, compute P (HDx + η). Thus, for a
given projection P , suppose column j is all zeros, then we can immediately set ηj = 0. This way, we
may save a bit of randomness.
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6 Private Sparser Johnson-Lindenstrauss Transform

In this section, we turn to the question of perturbation using Laplacian noise rather than Gaussian noise.
We present and analyze a private sketch based on the SJLT, and conclude Theorem 3 in Section 6.2.3.
The main observation about this sketch is that we perturb the output vectors rather than the input
vectors while avoiding the initialization cost that was inherent to the work of Kenthapadi et al. as well
as Corollary 1. We compare the work of Kenthapadi et al., our private FJLT from Lemma 8 and our
private SJLT from Theorem 3 in Section 7.

Theorem 3 is proven by combining the technical Lemmas 3 and 4 with the SJLT. Due to their
sparsity, these transforms are more efficient than the suggestions from [29]. We remark that this is just
one example of linear transformations that our results can be applied to. It should also be noted that the
results of Kenthapadi et al. are directly transferable to the SJLT, although the results were only proven
for the i.i.d. normally distributed JL transform, whereas we give the analysis here.

6.1 Description of (non-private) Sparser Johnson-Lindenstrauss Transforms
(SJLT)

We first describe the SJLT from [28]. We focus on the c)-construction and remark that similar arguments
applies for the b)-construction. Let k = Θ(α−2 log n) and let x ∈ Rd be an input vector. Let h1, ..., hs :
[d] → [k/s] and φ1, ..., φs : [d] → {−1,+1} be independent, random hash functions from O(log(1/β))-
wise independent families. Define ξri(j) = 1[hr(j) = i]. Then E[ξri(j)

2] = E[ξri(j)] =
s
k . The projection

matrix S is defined by

S(i,r),j =
1√
s
φr(j)ξri(j)

for i = 1, ..., k/s and r = 1, ..., s. Hence, entry i′ = i · r ∈ [k] in the resulting embedding Sx can be
described as

(Sx)i′ = (Sx)(i,r) =
1√
s

d∑
j=1

φr(j)ξri(j)xj .

We can think of Sx as a vector consisting of s blocks, each of length k/s. The ith block describes the
projection of x under hi and φi.

Lemma 9. The SJLT as described above satisfy LPP from Definition 4.

Proof. The proof is a simple calculation and can be found in Appendix D.1.

Lemma 10. Let x, y ∈ Rd and let S be the SJLT as described above. Then

Var
[
∥Sx− Sy∥22

]
≤ 2

k
∥x− y∥42.

Proof. The proof can be found in Appendix D.2.

6.2 Private SJLT

We now turn to proving our main theorem, Theorem 3. Combining Lemmas 3, 9 and 10, we obtain the
following corollary.

Corollary 2. Let S be a random k × d-SJLT and let x, y ∈ Rd be input vectors. Let η, µ ∼ Dk be noise
vectors where each entry is drawn from a zero-mean distribution D. Then

ÊSJLTD := ∥(Sx+ η)− (Sy + µ)∥22 − 2kED[η
2
∗]

is an unbiased estimator for ∥x− y∥22 with variance

Var
[
ÊSJLTD

]
≤ 2

k
∥x− y∥42 + 8ED

[
η2∗
]
∥x− y∥22 + 2k

(
ED[η

4
∗] + ED

[
η2∗
]2)

. (4)

We have yet to choose D to ensure differential privacy of this estimator as well as argue about the
efficiency. We first discuss the value of k.

11



6.2.1 Optimal Projection Dimension

For the non-private SJLT, the optimal projection dimension is k = Θ
(
α−2 log(1/β)

)
. One may ask what

k is optimal in the private case. The analysis and our optimal k are very similar to the findings in [29]:

we see that the variance in (4) is minimized for k = Θ

(
∥x−y∥2

2√
E[η4

∗]+E[η2
∗]

2

)
. By the same argument as in

[29], generally, no fixed value of k will be optimal for the entire input domain, although there might be
exceptions, when certain properties of the data are known. As in the work of Kenthapadi et al., if we
have input domain X, then we may let ν = maxx∈X{∥x∥22} to obtain k = Θ(νε2/∆2

1) for D = Lap(∆1/ε).
Note that k might not be optimal for all input vectors. We assume that ν is unknown and may be very
large – in particular, we consider vectors over the reals – and thus proceed with k = Θ(α−2 log(1/β)).

6.2.2 Efficiency

Let S be a SJLT with sparsity s = O
(
α−1 log(1/β)

)
and let input x ∈ Rd be given. The embedding Sx

can be computed in time O(s∥x∥0). Assuming that we sample fromN (0, σ2) and Lap(b) in constant time,
random noise vector η ∼ D for D = Lap(∆1/ε) or D = N (0, σ2) for σ ≥ ∆2ε

−1
√
2 log(1.25/δ) can be

added in time O(k) to give Sx+η. From [20] we know that we can at least sample from discretizations in
expected constant time, so this assumption seems reasonable. For given Sx+η and Sy+µ, the estimator
ÊSJLT can be computed in time O(k).

6.2.3 Summing Up

The SJLT as described in Section 6.1, where k = Θ(α−2 log(1/β)) and s = O(α−1 log(1/β)), has ℓ1-
sensitivity ∆1 =

√
s and ℓ2-sensitivity ∆2 = 1. Hence, consider Corollary 2 with D = Lap(

√
s/ε).

Lemma 1 ensures that ÊSJLT is ε-differentially private. Combining with Section 6.2.2 finishes the proof
of Theorem 3. If instead we let D = N (0, σ2) for σ ≥ ε−1

√
2 ln(1.25/δ) in Corollary 2, ÊSJLT is

(ε, δ)-differentially private and achieves the same variance as the work of Kenthapadi et al., while we
gain a speed-up as well as avoid the initialization cost. Finally, we remark that by Note 5, we minimize
the variance of ÊSJLT by letting D = Lap(

√
s/ε) whenever δ < e−s.

7 Comparison

We now compare Lemma 8 and Theorem 3 with the work of Kenthapadi et al.
We first compare the running times to see for what parameters the private FJLT is faster than the

private SJLT and then compare the variances for the two methods to get the speed-variance trade-off.
Finally, we compare to the results of Kenthapadi et al.

Recall that our private FJLT can be computed in time

O

(
max

{
d log d,

log3(1/β)

α2

})
,

and the private SJLT can be computed in time bounded by O(sd) (for dense vectors) where s =
O
(
log(1/β)α−1

)
. Observing that

O(sd) > O(d log d) ⇔ d < eO(s) =
1

βO(1/α)

and

O(sd) > O

(
log3(1/β)

α2

)
⇔ d > O

(
log2(1/β)

α

)
,

we conclude that our private FJLT is indeed faster than the private SJLT whenever

O

(
log2(1/β)

α

)
< d <

1

βO(1/α)
. (5)
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We now turn to comparing the variances of the private versions of FJLT and SJLT: Recall from
Lemma 8 that the private FJLT has variance

Var
[
ÊFJLTi

]
≤ 3

k
∥x− y∥42 +O

(
dσ2∥x− y∥22 +

d2σ4

k

)
.

while, as seen in Theorem 3, the private SJLT has variance

Var
[
ÊSJLT

]
≤ 2

k
∥x− y∥42 +O

(
s

ε2
∥x− y∥22 +

s2

ε4
k

)
.

For the sake of simplicity, we will disregard the variance incurred by the transforms and limit ourselves
to considering the terms incurred by the noise addition. The private SJLT (in particular) achieves a
better variance than the private FJLT whenever

O

(
d2σ4

k

)
= O

(
d2 log2(1/δ)

ε4k

)
> O

(
s2k

ε4

)
and

O
(
dσ2∥x− y∥22

)
= O

(
d log(1/δ)

ε2
∥x− y∥22

)
> O

( s

ε2
∥x− y∥22

)
.

Treating each of the inequalities separately, we analyze for what values of δ this is the case:

O

(
d2 log2(1/δ)

ε4k

)
> O

(
s2k

ε4

)
⇔ log(1/δ) > O

(
sk

d

)
⇔ 1

eO(sk/d)
> δ

and

O

(
d log(1/δ)

ε2
∥x− y∥22

)
> O

( s

ε2
∥x− y∥22

)
⇔ log(1/δ) > O

( s
d

)
⇔ 1

eO(s/d)
> δ.

Hence, in particular, the private SJLT has smaller variance than the private FJLT whenever

δ < min
{
1/eO(s/d), 1/eO(sk/d)

}
= 1/eO(sk/d) = 1/e

O

(
log2(1/β)

α3d

)
= βO( log(1/β)

α3d
).

The variance of the estimator from Theorem 2 by Kenthapadi et al. was

Var[Êiid] =
2

k
∥x− y∥42 +O

(
σ2∥x− y∥22 + σ4k

)
.

An argument similar to the one above proves that the variance of our private SJLT improves over the
variance of Kenthapadi et al. when δ < e−s = βO(1/α). Clearly, Kenthapadi et al. always achieves better
variance than our private FJLT, due to the dependence on d which was inherent from perturbing the
input rather than the output, and we may assume k < d.

Hence, we see a trade-off in running time versus variance, for certain values of input dimension d.
To sum up the above discussion, suppose that δ < βO(1/α). Then the private SJLT obtains the best

variance out of all the methods. If d satisfies (5), then the private FJLT achieves the best running time,
and otherwise, the private SJLT improves over the private FJLT in terms of both variance and running
time.
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A Omitted Proofs for Technical Lemmas

Lemma 3. We have

1. Êgen is an unbiased estimator for ∥x− y∥22.

2. The variance of Êgen is

Var
[
Êgen

]
= Var

[
∥Sx− Sy∥22

]
+ 8ED[η

2
∗]∥x− y∥22 + 2kED[η

4
∗] + 2kED[η

2
∗]

2

16



Proof. We start by showing 1). For simpler notation, we define z := x− y. By independence and since
ED[ηi] = 0 for all i,

ES,D

[∥∥(Sx+ η)− (Sy + µ)
∥∥2
2

]
= ES,D

[
k∑

i=1

((Sx+ η)i − (Sy + µ)i)
2

]

= ES,D

[
k∑

i=1

(
(Sz)2i + (ηi − µi)

2 + 2(ηi − µi)(Sz)i
)]

= ES

[
k∑

i=1

(Sz)2i

]
+ 2

k∑
i=1

ED
[
η2∗
]
= ∥z∥22 + 2kED

[
η2∗
]

where we in the last step used that S has the LPP. So clearly, re-inserting z = x− y

ES,D

[∥∥(Sx+ η)− (Sy + µ)
∥∥2
2
− 2kED

[
η2∗
] ]

= ∥x− y∥22.

We turn to proving 2):

Var
[
Êgen

]
= ES,D

[
Ê2

gen

]
− ES,D

[
Êgen

]2
= ES,D

[
Ê2

gen

]
− ∥x− y∥42, (6)

so we analyze the first term:

ES,D

[
Ê2

gen

]
= ES,D

[(∥∥(Sx+ η)− (Sy + µ)
∥∥2
2
− 2kED

[
η2∗
])2]

= ES,D

[∥∥(Sx+ η)− (Sy + µ)
∥∥4
2

]
+ 4k2 ED

[
η2∗
]2

− 4kED
[
η2∗
]
ES,D

[∥∥(Sx+ η)− (Sy + µ)
∥∥2
2

] (7)

The last term in (7) equals

4kED
[
η2∗
] (

∥x− y∥22 + 2kED
[
η2∗
])

= 4kED
[
η2∗
]
∥x− y∥22 + 8k2 ED

[
η2∗
]2

(8)

The first term in (7) equals

ES,D

[∥∥(Sx+ η)− (Sy + µ)
∥∥4
2

]
= ES

[
∥S(x− y)∥42

]
+ 4(k + 2)ED

[
η2∗
]
∥x− y∥22 + 2kED[η

4
∗]

+ 2k(1 + 2k) ED
[
η2∗
]2

The proof of the claim straightforward but tedious and thus left out here. It is proven formally in
Appendix A.0.1.

Inserting (8) and Claim A into (7), we get

ES,D

[
Ê2

gen

]
= ES,D

[(∥∥(Sx+ η)− (Sy + µ)
∥∥2
2
− 2kED

[
η2∗
])2]

= ES

[
∥S(x− y)∥42

]
+ 4(k + 2)ED

[
η2∗
]
∥x− y∥22 + 2kED[η

4
∗] + 2k(1 + 2k) ED

[
η2∗
]2

+ 4k2 ED
[
η2∗
]2 − 4kED

[
η2∗
]
∥x− y∥22 − 8k2 ED

[
η2∗
]2

= ES

[
∥S(x− y)∥42

]
+ 8ED

[
η2∗
]
∥x− y∥22 + 2kED[η

4
∗] + 2kED

[
η2∗
]2

.

Inserting this expression into (6) proves that the variance is

Var
[
Êgen

]
= ES

[
∥S(x− y)∥42

]
+ 8ED

[
η2∗
]
∥x− y∥22 + 2kED[η

4
∗] + 2kED

[
η2∗
]2 − ∥x− y∥42

= Var
[
∥S(x− y)∥22

]
+ 8ED

[
η2∗
]
∥x− y∥22 + 2kED[η

4
∗] + 2kED

[
η2∗
]2

,

again using that S satisfies LPP.
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A.0.1 Proof of Claim A

We repeat the claim for convenience: The first term in (7) equals

ES,D

[∥∥(Sx+ η)− (Sy + µ)
∥∥4
2

]
= ES

[
∥S(x− y)∥42

]
+ 4(k + 2)ED

[
η2∗
]
∥x− y∥22 + 2kED[η

4
∗]

+ 2k(1 + 2k) ED
[
η2∗
]2

Proof. For a simpler notation, we define z := x− y. By simply unfolding the expression, we see that

=

k∑
i,ℓ=1

ES

[
(Sz)2i (Sz)

2
ℓ

]
+

k∑
i,ℓ=1

(
ED
[
η2i
]
+ ED

[
µ2
i

])
ES

[
(Sz)2ℓ

]
+ 0 +

k∑
i,ℓ=1

ES

[
(Sz)2i

] (
ED
[
η2ℓ
]
+ ED

[
µ2
ℓ

])
+

k∑
i=1

ED
[
(ηi − µi)

4
]
+
∑
i ̸=ℓ

ED
[
(ηi − µi)

2
]
ED
[
(ηℓ − µℓ)

2
]

+ 2

k∑
i=1

ES [(Sz)i] ED
[
(ηi − µi)

3
]
+ 0 + 2

k∑
ℓ=1

ED
[
(ηℓ − µℓ)

3
]
ES [(Sz)ℓ] + 4

k∑
i=1

ED
[
(ηi − µi)

2
]
ES

[
(Sz)2i

]
+ 4

∑
i̸=ℓ

ED [(ηi − µi)(ηℓ − µℓ)]︸ ︷︷ ︸
=0

ES [(Sz)i(Sz)ℓ]

where we used that E[ηi] = E[µi] = 0 for all i = 1, ..., k and that the noise is drawn independently of S.
Recalling that ED[η

2
i ] = ED[µ

2
i ] = ED[η

2
∗] for all i, we obtain

=

k∑
i,ℓ=1

ES

[
(Sz)2i (Sz)

2
ℓ

]
+ 4kED

[
η2∗
]
∥z∥22 + k

(
2ED[η

4
∗] + 6ED[η

2
∗]

2
)
+
∑
i ̸=ℓ

4ED
[
η2∗
]2

+ 2

k∑
i=1

ES [(Sz)i]
(
ED
[
η3∗
]
− ED

[
η3∗
])

+ 2

k∑
ℓ=1

ES [(Sz)ℓ]
(
ED
[
η3∗
]
− ED

[
η3∗
])

+ 4

k∑
i=1

2ED
[
η2∗
]
ES

[
(Sz)2i

]
which simplifies to

= ES

[
∥Sz∥42

]
+ 4kED

[
η2∗
]
∥z∥22 + 2kED[η

4
∗] + 6kED[η

2
∗]

2 + 4(k2 − k) ED
[
η2∗
]2

+ 8ED
[
η2∗
]
∥z∥22

= ES

[
∥Sz∥42

]
+ 4(k + 2)ED

[
η2∗
]
∥z∥22 + 2kED[η

4
∗] + 2k(1 + 2k) ED

[
η2∗
]2

Re-inserting z = x− y, we conclude that

ES,D

[∥∥(Sx+ η)− (Sy + µ)
∥∥4
2

]
= ES

[
∥S(x− y)∥42

]
+ 4(k + 2)ED

[
η2∗
]
∥x− y∥22 + 2kED[η

4
∗]

+ 2k(1 + 2k) ED
[
η2∗
]2

.

B Omitted Proofs for FJLT

B.1 Primitives

This section will give some primitives that will be useful in the next section. Non-trivial arguments can
be found in Section B.1.1. We let Φ = PHD be the FJLT transform as described in Section 5.1 and
x, y ∈ Rd be any real vectors. Let X ∼ N (0, q−1). Then for any i, n ∈ [k] and j, ℓ ∈ [d]

EP [Pij ] = 0, EP

[
P 2
ij

]
= q · EX

[
X2
]
= 1
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EP

[
P 4
ij

]
= q · EX

[
X4
]
= q · 3q−2 =

3

q
.

ED[Djj ] = 0, ED[D2
jj ] = D2

jj = 1.

E[Φij ] =

d∑
f=1

EP [Pif ]Hfj ED [Djj ] = 0

EΦ[ΦijΦnℓ] =


EΦ[Φij ] EΦ[Φnℓ] = 0, i ̸= n, j ̸= ℓ

EP [(PH)ij ] EP [(PH)nj ] = 0, i ̸= n, j = ℓ

EΦ[Φij ] EΦ[Φiℓ] = 0, i = n, j ̸= ℓ

EΦ[Φ
2
ij ] = 1, i = n, j = ℓ

EΦ[Φ
2
ijΦ

2
nℓ] =


1, i ̸= n
3
qd + 1− 3

d , i = n, j ̸= ℓ
3
qd + 3− 3

d , i = n, j = ℓ

(9)

EΦ[ΦijΦiℓΦnvΦnw] =


EΦ[Φ

2
ijΦ

2
nv], j = ℓ, v = w

EΦ[Φ
2
ijΦ

2
iℓ], i = n, (j = v, ℓ = w) ∨ (j = w, ℓ = v)

0, otherwise

EΦ[(Φx)i(Φy)n] =

d∑
j,ℓ=1

xjyℓ EΦ[ΦijΦnℓ] =

{
0, i ̸= n∑d

j=1 xjyj , i = n

EΦ[(Φx)
2
i (Φy)

2
n] = ∥x∥22∥y∥22, i ̸= n (10)

EΦ[(Φx)
2
i (Φy)

2
i ] =

3

d

(
d

3
+

(
1

q
− 1

))(
∥x∥22∥y∥22 + 2⟨x, y⟩2

)
− 6

d

(
1

q
− 1

) d∑
j=1

x2
jy

2
j (11)

B.1.1 Arguments for Primitives

Argument for (9)

We use that

EΦ[Φ
2
ijΦ

2
nℓ] =

d∑
f,g,h,s=1

EP [PifPigPnhPns]HfjHgjHhℓHsℓ ED[D2
jjD

2
ℓℓ]

and so for i ̸= n
d∑

f,h=1

EP

[
P 2
if

]
EP

[
P 2
nh

]
H2

fjH
2
hℓ = 1

and for i = n
d∑

f,g,h,s=1

EP [PifPigPnhPns]HfjHgjHhℓHsℓ =

d∑
f=1

EP [P
4
if ]H

2
fjH

2
fℓ +

d∑
f ̸=h=1

EP [P
2
if ] EP [P

2
ih]H

2
fjH

2
hℓ

+ 2

d∑
f ̸=ℓ=1

EP [P
2
if ] EP [P

2
ig]HfjHgjHfℓHgℓ

= EP [P
4
if ]/d+ (d2 − d)/d2 + 2(⟨Hj , Hℓ⟩2 − 1/d)

= EP [P
4
if ]/d+ 1− 3/d+ 2⟨Hj , Hℓ⟩2

=

{
EP [P

4
if ]/d+ 1− 3/d, j ̸= ℓ

EP [P
4
if ]/d+ 3− 3/d, j = ℓ
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because ⟨Hj , Hℓ⟩ =

{
0, j ̸= ℓ

1, j = ℓ.

Argument for (10) and (11)

We used that

EΦ[(Φx)
2
i (Φy)

2
n] =

d∑
j,v=1

x2
jy

2
v EΦ[Φ

2
ijΦ

2
nv] + 2

d∑
j ̸=ℓ=1

x2
jy

2
ℓ EΦ[ΦijΦiℓΦnjΦnℓ]

where we for i ̸= n get ∥x∥22∥y∥22 and for i = n get

d∑
j=1

x2
jy

2
j EΦ[Φ

4
ij ] +

d∑
j ̸=v=1

x2
jy

2
v EΦ[Φ

2
ijΦ

2
iv] + 2

d∑
j ̸=ℓ=1

xjxℓyjyℓ EΦ[Φ
2
ijΦ

2
iℓ]

=

d∑
j=1

x2
jy

2
j

(
3

qd
+ 3− 3

d

)
+

d∑
j ̸=v=1

x2
jy

2
v

(
3

qd
+ 1− 3

d

)
+ 2

d∑
j ̸=ℓ=1

xjxℓyjyℓ

(
3

qd
+ 1− 3

d

)

=

d∑
j=1

x2
jy

2
j

(
3

qd
+ 3− 3

d

)
+

∥x∥22∥y∥22 −
d∑

j=1

x2
jy

2
j

( 3

qd
+ 1− 3

d

)
+ 2

⟨x, y⟩2 −
d∑

j=1

x2
jy

2
j

( 3

qd
+ 1− 3

d

)

=
3

d

(
d

3
+

(
1

q
− 1

))(
∥x∥22∥y∥22 + 2⟨x, y⟩2

)
− 6

d

(
1

q
− 1

) d∑
j=1

x2
jy

2
j

B.2 Proof of FJLT Satisfying LPP

Lemma 6. The normalized FJLT satisfies LPP (see Definition 4).

Proof. Applying the primitives from Appendix B.1, we get

EΦ

[
1

k
∥Φx∥22

]
=

1

k
EΦ

[
k∑

i=1

(Φx)2i

]
=

1

k

k∑
i=1

d∑
j,ℓ=1

EΦ [ΦijΦiℓ]xjxℓ =
1

k

k∑
i=1

d∑
j=1

EΦ

[
Φ2

ij

]
x2
j = ∥x∥22.

B.3 Variance under FJLT

For convenience, we prove the following result, as it will be useful in this form for several other proofs.
Note that Lemma 7 follows directly from Lemma 11.

Lemma 11. Let k×d-matrix Φ = PHD, where Pij is N (0, q−1) with probability q and and 0 otherwise.
For input vector η ∼ Dd for a real-valued distribution D:

Var[∥Φη∥22] ≤
3

k
Eη

[
∥η∥22

]
.

For x ∈ Rd, we get

Var[∥Φx∥22] ≤
3

k
∥x∥22.
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Proof.

Var[∥Φη∥22] = EΦ,η[∥Φη∥42]− EΦ,η[∥Φη∥22]2 =

k∑
i,n=1

EΦ,η

[
(Φη)2i (Φη)

2
n

]
− k2 Eη

[
∥η∥42

]
=

k∑
i=1

EΦ,η

[
(Φη)4i

]
+

k∑
i̸=n=1

EΦ

[
(Φη)2i (Φη)

2
n

]
− k2 Eη

[
∥η∥42

]
=

9k

d

(
d

3
+

(
1

q
− 1

))
Eη

[
∥η∥42

]
− 6k

d

(
1

q
− 1

)
Eη

[
∥η∥44

]
− k2 Eη

[
∥η∥42

]
= 3k

(
2

3
+

3

d

(
1

q
− 1

))
Eη

[
∥η∥42

]
− 6k

d

(
1

q
− 1

)
Eη

[
∥η∥44

]
.

which again implies

Var

[
1

k
∥Φη∥22

]
=

3

k

(
2

3
+

3

d

(
1

q
− 1

))
Eη

[
∥η∥42

]
− 6

dk

(
1

q
− 1

)
Eη

[
∥η∥44

]
≤

3Eη

[
∥η∥42

]
k

(
2

3
+

3

d

(
1

q
− 1

))
≤ 3

k
Eη

[
∥η∥42

]
when q ≥ 1

d/9+1 .

C Omitted Proofs for Private FJLT

C.1 Estimator and Variance for Private FJLT

Lemma 12. We have

1. ÊFJLTi
is an unbiased estimator for ∥x− y∥22.

2. Var[ÊFJLTi ] ≤ 3
k∥x− y∥42 +O

(
d2σ4

k + dσ2∥x− y∥22
)
.

Proof. We repeatedly apply the primitives of Section B.1 and Section B.3.
We start by proving 1). Observe that

E
[
∥Φ(x+ η)− Φ(y + µ)∥22

]
= E

[
∥Φ(x− y) + Φ(η − µ)∥22

]
= E

[
∥Φ(x− y)∥22

]
+ E

[
∥Φ(η − µ)∥22

]
= k∥x− y∥22 + kEη,µ

[
∥η − µ∥22

]
Since η, µ ∼ N (0, σ2)d, we have η − µ ∼ N (0, 2σ2)d and so

Eη

[
∥η − µ∥22

]
=

d∑
j=1

Eη,µ[(ηj − µj)
2] = 2dσ2.

We conclude that
ÊFJLTi

= 1/k∥Φ(x+ η)− Φ(y + µ)∥22 − 2dσ2

is an unbiased estimator for ∥x− y∥22.
We turn to proving 2). Note that

Var
[
1/k∥Φ(x− y) + Φ(η − µ)∥22 − 2dσ2

]
=

1

k2
Var

[
∥Φ(x− y) + Φ(η − µ)∥22

]
,

so it suffices to consider the RHS. For readability, we will do the analysis for x and η, and eventually
substitute x for x− y and η for η − µ, recalling that if η ∼ N (0, σ2), then η − µ ∼ N (0, 2σ2).
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For any x, η ∈ Rd

EΦ,η

[
∥Φx+Φη∥22

]2
=
(
EΦ

[
∥Φx∥22

]
+ EΦ

[
∥Φη∥22

])2
= EΦ

[
∥Φx∥22

]2
+ EΦ

[
∥Φη∥22

]2
+ 2EΦ

[
∥Φx∥22

]
EΦ

[
∥Φη∥22

]
By the triangle inequality, we see that

EΦ,η

[
∥Φx+Φη∥42

]
= EΦ,η

[(
∥Φx+Φη∥22

)2]
≤ EΦ,η

[(
∥Φx∥22 + ∥Φη∥22 + 2∥Φx∥2∥Φη∥2

)2]
= EΦ

[
∥Φx∥42

]
+ EΦ,η

[
∥Φη∥42

]
+ 6EΦ,η

[
∥Φx∥22∥Φη∥22

]
Where the last equality follows from the zero-meaned η leading to a several terms cancelling out.

Hence, the variance is bounded by

Var
[
∥Φx+Φη∥22

]
≤ EΦ

[
∥Φx∥42

]
+ EΦ,η

[
∥Φη∥42

]
+ 6EΦ,η

[
∥Φx∥22∥Φη∥22

]
− EΦ

[
∥Φx∥22

]2 − EΦ,η

[
∥Φη∥22

]2
− 2EΦ

[
∥Φx∥22

]
EΦ,η

[
∥Φη∥22

]
which again implies

Var
[
1/k∥Φx+Φη∥22

]
≤ VarΦ

[
1/k∥Φx∥22

]
+VarΦ,η

[
1/k∥Φη∥22

]
+

6

k2
EΦ,η

[
∥Φx∥22∥Φη∥22

]
− 2

k2
EΦ

[
∥Φx∥22

]
EΦ,η

[
∥Φη∥22

] (12)

For the last term we have

EΦ

[
∥Φx∥22

]
EΦ,η

[
∥Φη∥22

]
= 2k2∥x∥22 Eη[∥η∥22] = 2k2dσ2∥x∥22

and for the second to last term we get:

EΦ,η

[
∥Φx∥22∥Φη∥22

]
=

k∑
i,n=1

EΦ,η[(Φx)
2
i (Φη)

2
n] =

k∑
i=1

EΦ,η[(Φx)
2
i (Φη)

2
i ] +

k∑
i ̸=n=1

EΦ,η[(Φx)
2
i (Φη)

2
n]

=
3k

d

(
d

3
−
(
1− 1

q

))(
∥x∥22 E

[
∥η∥22

]
+ 2E

[
⟨x, η⟩2

])
+

6k

d

(
1− 1

q

) d∑
j=1

x2
j E
[
η2j
]

+ (k2 − k)∥x∥22 Eη[∥η∥22]

=
3k

d

(
d

3
−
(
1− 1

q

))(
∥x∥22 E

[
∥η∥22

]
+ 2∥x∥22 Eη[η

2
∗]
)
+

6k

d

(
1− 1

q

)
∥x∥22 E

[
η2∗
]

+ (k2 − k)∥x∥22 Eη[∥η∥22]

= k

(
k − 3

d

(
1− 1

q

))
∥x∥22dσ2 + 2k∥x∥22σ2

= k∥x∥22σ2

(
kd+ 2− 3

(
1− 1

q

))
Inserting into (12) and applying Section B.3, we see that

Var[1/k∥Φx+Φη∥22] ≤
3

k
∥x∥42 +O

(
d2σ4

k

)
+

6

k
∥x∥22σ2

(
kd+ 2− 3

(
1− 1

q

))
− 4dσ2∥x∥22

=
3

k
∥x∥42 +O

(
d2σ4

k

)
+

2

k
∥x∥22σ2

(
kd+ 6 + 9

(
1

q
− 1

))
Substituting x for x− y and η for η − µ proves that

Var[1/k∥Φ(x+ η)− Φ(y + µ)∥22 − 2dσ2] ≤ 3

k
∥x− y∥42 +O

(
d2σ4

k
+ dσ2∥x∥22 +

σ2

qk
∥x∥22

)
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Recalling that q = min
{
Θ
(

log k
d

)
, 1
}
we get

3

k
∥x− y∥42 +O

(
d2σ4

k
+ dσ2∥x∥22

)
concluding the proof.

D Omitted Proofs for SJLT

D.1 Proof of SJLT Satisfying LPP

Lemma 9. The SJLT as described above satisfy LPP from Definition 4.

Proof. We show the result here for the c)-construction. A similar proof shows the result for the b)-
construction.

ES

[
∥Sx∥22

]
= ES

k/s∑
i=1

s∑
r=1

(Sx)2(i,r)

 =
1

s
Eh,φ

k/s∑
i=1

s∑
r=1

 d∑
j=1

φr(j)ξri(j)xj

2


=
1

s
ES

k/s∑
i=1

s∑
r=1

d∑
j,ℓ=1

φr(j)φr(ℓ)ξri(j)ξri(ℓ)xjxℓ


=

1

s

d∑
j=1

x2
j

k/s∑
i=1

s∑
r=1

Eh [ξri(j)] = ∥x∥22

because φr(j) and φr(ℓ) are independent for j ̸= ℓ and Eφ[φr(j)] = 0.

D.2 Proof of Variance of (non-private) SJLT

The following lemma will be useful throughout this appendix. The proof is immediate from the definition
of ξ.

Lemma 13.

Eξ[ξri(j)ξtn(ℓ)] =



Eξ[ξri(j)] Eξ[ξtn(ℓ)], j ̸= ℓ

Eξ[ξri(j)
2], r = t, i = n, j = ℓ

Eξ[ξri(j)] Eξ[ξti(j)], r ̸= t, i = n, j = ℓ

0, r = t, i ̸= n, j = ℓ

Eξ[ξri(j)] Eξ[ξtn(j)], r ̸= t, i ̸= n, j = ℓ

=



s2/k2, j ̸= ℓ

s/k, r = t, i = n, j = ℓ

s2/k2, r ̸= t, i = n, j = ℓ

0, r = t, i ̸= n, j = ℓ

s2/k2, r ̸= t, i ̸= n, j = ℓ

where we recalled that
hr(j) = i ∧ hr(j) = n, ⇔ i = n.

We now prove Lemma 10. We state it here for convenience.

Lemma 10. Let x, y ∈ Rd and let S be the SJLT as described above. Then

Var
[
∥Sx− Sy∥22

]
≤ 2

k
∥x− y∥42.
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Proof. Throughout the proof, we will apply Lemma 13 without further comment. By linearity of S and
since S satisfies LPP, it is sufficient to show that for x ∈ Rd

Var
[
∥Sx∥22

]
= ES

[
∥Sx∥42

]
−
(
ES

[
∥Sx∥22

])2
= ES

[
∥Sx∥42

]
− ∥x∥42 ≤ 2

k
∥x∥42.

We will consider the first term:

ES

[
∥Sx∥42

]
= ES


k/s∑

i=1

s∑
r=1

(Sx)2(i,r)

2
 = ES


k/s∑

i=1

s∑
r=1

 d∑
j=1

1√
s
xjφr(j)ξri(j)

2


2
=

1

s2
ES


k/s∑

i=1

s∑
r=1

d∑
j,ℓ=1

xjxℓφr(j)φr(ℓ)ξri(j)ξri(ℓ)

2
 (13)

Letting

a =

k/s∑
i=1

s∑
r=1

d∑
j=1

x2
jξri(j)

and

b =

k/s∑
i=1

s∑
r=1

∑
j ̸=ℓ

xjxℓφr(j)φr(ℓ)ξri(j)ξri(ℓ).

we can express (13) as

1

s2
ES

[
(a+ b)

2
]
=

1

s2
ES

[
a2 + b2 + 2ab

]
(14)

The proofs of the following claims are straightforward but tedious and thus we leave them out here.
They can be found in Appendix D.2.1.

ES

[
a2
]
= s2∥x∥42.

ES

[
b2
]
=

2s2

k

(
∥x∥42 − ∥x∥44

)
.

2ES [ab] = 0

Inserting Claims D.2-D.2 into (14), we conclude that

ES

[
∥Sx∥42

]
= ∥x∥42 +

2

k

(
∥x∥42 − ∥x∥44

)
finally proving that

Var
[
∥Sx∥22

]
=

2

k

(
∥x∥42 − ∥x∥44

)
≤ 2

k
∥x∥42.

D.2.1 Proof of Claims

Throughout this section, we apply Lemma 13 repeatedly without further comment.

ES

[
a2
]
= s2∥x∥42.
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Proof.

Eh


k/s∑

i=1

s∑
r=1

d∑
j=1

x2
jξri(j)

2
 =

k/s∑
i,n=1

s∑
r,t=1

d∑
j,ℓ=1

x2
jx

2
ℓ Eh [ξri(j)ξtn(ℓ)]

=

k/s∑
i,n=1

s∑
r,t=1

d∑
j=1

x4
j Eh [ξri(j)ξtn(j)] +

k/s∑
i,n=1

s∑
r,t=1

d∑
j ̸=ℓ=1

x2
jx

2
ℓ Eh [ξri(j)ξtn(ℓ)]

=

k/s∑
i=1

s∑
r=1

d∑
j=1

x4
j

s

k
+

k/s∑
i=1

s∑
r ̸=t=1

d∑
j=1

x4
j

s2

k2
+

k/s∑
i ̸=n=1

s∑
r=1

d∑
j=1

x4
j · 0

+

k/s∑
i ̸=n=1

s∑
r ̸=t=1

d∑
j=1

x4
j

s2

k2
+

k/s∑
i,n=1

s∑
r,t=1

d∑
j ̸=ℓ=1

x2
jx

2
ℓ

s2

k2

= s∥x∥44 +
s(s2 − s)

k
∥x∥44 +

(
1− s

k

)
(s2 − s)∥x∥44 + s2

(
∥x∥42 − ∥x∥44

)
= s2∥x∥42

ES

[
b2
]
=

2s2

k

(
∥x∥42 − ∥x∥44

)
.

Proof.

Eh,φ


k/s∑

i=1

s∑
r=1

∑
j ̸=ℓ

xjxℓφr(j)φr(ℓ)ξri(j)ξri(ℓ)

2
 =

k/s∑
i,n=1

s∑
r,t=1

∑
j ̸=ℓ
v ̸=w

xjxℓxvxw Eφ [φr(j)φr(ℓ)φt(v)φt(w)]

· Eh [ξri(j)ξri(ℓ)ξtn(v)ξtn(w)]

We remark that, as j ̸= ℓ, we have

Eφ [φr(j)φr(ℓ)φt(v)φt(w)] =

{
1, r = t ∧ ((j = v ∧ ℓ = w) ∨ (j = w ∧ ℓ = v))

0, otherwise.

This leaves us with

2

k/s∑
i,n=1

s∑
r=1

∑
j ̸=ℓ

x2
jx

2
ℓ Eh [ξri(j)ξri(ℓ)ξrn(j)ξrn(ℓ)] = 2

k/s∑
i=1

s∑
r=1

∑
j ̸=ℓ

x2
jx

2
ℓ Eh

[
ξri(j)

2
]
Eh

[
ξri(ℓ)

2
]

= 2

k/s∑
i=1

s∑
r=1

∑
j ̸=ℓ

x2
jx

2
ℓ

s2

k2
=

2s2

k

(
∥x∥42 − ∥x∥44

)
where we used that Eh[ξri(j)ξrn(j)] = 0 if i ̸= n.

2 ES [ab] = 0

Proof. Observe that

ES [ab] =

k/s∑
i,v=1

s∑
r,t=1

d∑
j=1
v ̸=w

x2
jxvxw Eφ [φt(v)φt(w)] Eh [ξri(j)ξtn(v)ξtn(w)] = 0.

because the signs are independent.
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