3 research outputs found

    Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications

    Get PDF
    Surface acoustic waves (SAWs) are the guided waves that propagate along the top surface of a material with wave vectors orthogonal to the normal direction to the surface. Based on these waves, SAW sensors are conceptualized by employing piezoelectric crystals where the guided elastodynamic waves are generated through an electromechanical coupling. Electromechanical coupling in both active and passive modes is achieved by integrating interdigitated electrode transducers (IDT) with the piezoelectric crystals. Innovative meta-designs of the periodic IDTs define the functionality and application of SAW sensors. This review article presents the physics of guided surface acoustic waves and the piezoelectric materials used for designing SAW sensors. Then, how the piezoelectric materials and cuts could alter the functionality of the sensors is explained. The article summarizes a few key configurations of the electrodes and respective guidelines for generating different guided wave patterns such that new applications can be foreseen. Finally, the article explores the applications of SAW sensors and their progress in the fields of biomedical, microfluidics, chemical, and mechano-biological applications along with their crucial roles and potential plans for improvements in the long-term future in the field of science and technology

    The Investigation of a SAW Oxygen Gas Sensor Operated at Room Temperature, Based on Nanostructured ZnxFeyO Films

    No full text
    In this paper, we report a wireless gas sensor based on surface acoustic waves (SAW). For room temperature detection of oxygen gas, a novel nanostructured ZnxFeyO gas-sensitive film was deposited on the surface of a SAW resonator by an oblique magnetron co-sputtering method. The measurements of X-ray diffraction (XRD) and a scanning electron microscope (SEM) showed that the crystal phase composition and the microstructures of ZnxFeyO films were significantly affected by the content of Fe. The experimental results showed that the sensors had a good response to O2 at room temperature. The max frequency shift of the sensors reached 258 kHz as the O2 partial pressure was 20%. Moreover, X-ray photoelectron spectroscopy (XPS) was performed to analyze the role of Fe in the sensitization process of the ZnxFeyO film. In addition, the internal relationship between the Fe content of the film and the sensitivity of the sensor was presented and discussed. The research indicates that the nanostructured ZnxFeyO film has a good potential for room temperature O2 gas detection applications
    corecore