6,068 research outputs found

    The spectrum and toughness of regular graphs

    Full text link
    In 1995, Brouwer proved that the toughness of a connected kk-regular graph GG is at least k/λ2k/\lambda-2, where λ\lambda is the maximum absolute value of the non-trivial eigenvalues of GG. Brouwer conjectured that one can improve this lower bound to k/λ1k/\lambda-1 and that many graphs (especially graphs attaining equality in the Hoffman ratio bound for the independence number) have toughness equal to k/λk/\lambda. In this paper, we improve Brouwer's spectral bound when the toughness is small and we determine the exact value of the toughness for many strongly regular graphs attaining equality in the Hoffman ratio bound such as Lattice graphs, Triangular graphs, complements of Triangular graphs and complements of point-graphs of generalized quadrangles. For all these graphs with the exception of the Petersen graph, we confirm Brouwer's intuition by showing that the toughness equals k/(λmin)k/(-\lambda_{min}), where λmin\lambda_{min} is the smallest eigenvalue of the adjacency matrix of the graph.Comment: 15 pages, 1 figure, accepted to Discrete Applied Mathematics, special issue dedicated to the "Applications of Graph Spectra in Computer Science" Conference, Centre de Recerca Matematica (CRM), Bellaterra, Barcelona, June 16-20, 201

    Minimizing the number of independent sets in triangle-free regular graphs

    Get PDF
    Recently, Davies, Jenssen, Perkins, and Roberts gave a very nice proof of the result (due, in various parts, to Kahn, Galvin-Tetali, and Zhao) that the independence polynomial of a dd-regular graph is maximized by disjoint copies of Kd,dK_{d,d}. Their proof uses linear programming bounds on the distribution of a cleverly chosen random variable. In this paper, we use this method to give lower bounds on the independence polynomial of regular graphs. We also give new bounds on the number of independent sets in triangle-free regular graphs

    A graph partition problem

    Full text link
    Given a graph GG on nn vertices, for which mm is it possible to partition the edge set of the mm-fold complete graph mKnmK_n into copies of GG? We show that there is an integer m0m_0, which we call the \emph{partition modulus of GG}, such that the set M(G)M(G) of values of mm for which such a partition exists consists of all but finitely many multiples of m0m_0. Trivial divisibility conditions derived from GG give an integer m1m_1 which divides m0m_0; we call the quotient m0/m1m_0/m_1 the \emph{partition index of GG}. It seems that most graphs GG have partition index equal to 11, but we give two infinite families of graphs for which this is not true. We also compute M(G)M(G) for various graphs, and outline some connections between our problem and the existence of designs of various types
    corecore