1,946 research outputs found

    Bayesian statistical analysis of ground-clutter for the relative calibration of dual polarization weather radars

    Get PDF
    A new data processing methodology, based on the statistical analysis of ground-clutter echoes and aimed at investigating the stability of the weather radar relative calibration, is presented. A Bayesian classification scheme has been used to identify meteorological and/or ground-clutter echoes. The outcome is evaluated on a training dataset using statistical score indexes through the comparison with a deterministic clutter map. After discriminating the ground clutter areas, we have focused on the spatial analysis of robust and stable returns by using an automated region-merging algorithm. The temporal series of the ground-clutter statistical parameters, extracted from the spatial analysis and expressed in terms of percentile and mean values, have been used to estimate the relative clutter calibration and its uncertainty for both co-polar and differential reflectivity. The proposed methodology has been applied to a dataset collected by a C-band weather radar in southern Italy

    Feature Selection for Text and Image Data Using Differential Evolution with SVM and Naïve Bayes Classifiers

    Get PDF
    Classification problems are increasing in various important applications such as text categorization, images, medical imaging diagnosis and bimolecular analysis etc. due to large amount of attribute set. Feature extraction methods in case of large dataset play an important role to reduce the irrelevant feature and thereby increases the performance of classifier algorithm. There exist various methods based on machine learning for text and image classification. These approaches are utilized for dimensionality reduction which aims to filter less informative and outlier data. Therefore, these approaches provide compact representation and computationally better tractable accuracy. At the same time, these methods can be challenging if the search space is doubled multiple time. To optimize such challenges, a hybrid approach is suggested in this paper. The proposed approach uses differential evolution (DE) for feature selection with naïve bayes (NB) and support vector machine (SVM) classifiers to enhance the performance of selected classifier. The results are verified using text and image data which reflects improved accuracy compared with other conventional techniques. A 25 benchmark datasets (UCI) from different domains are considered to test the proposed algorithms.  A comparative study between proposed hybrid classification algorithms are presented in this work. Finally, the experimental result shows that the differential evolution with NB classifier outperforms and produces better estimation of probability terms. The proposed technique in terms of computational time is also feasible

    Feature selection using correlation analysis and principal component analysis for accurate breast cancer diagnosis

    Get PDF
    Breast cancer is one of the leading causes of death among women, more so than all other cancers. The accurate diagnosis of breast cancer is very difficult due to the complexity of the disease, changing treatment procedures and different patient population samples. Diagnostic techniques with better performance are very important for personalized care and treatment and to reduce and control the recurrence of cancer. The main objective of this research was to select feature selection techniques using correlation analysis and variance of input features before passing these significant features to a classification method. We used an ensemble method to improve the classification of breast cancer. The proposed approach was evaluated using the public WBCD dataset (Wisconsin Breast Cancer Dataset). Correlation analysis and principal component analysis were used for dimensionality reduction. Performance was evaluated for well-known machine learning classifiers, and the best seven classifiers were chosen for the next step. Hyper-parameter tuning was performed to improve the performances of the classifiers. The best performing classification algorithms were combined with two different voting techniques. Hard voting predicts the class that gets the majority vote, whereas soft voting predicts the class based on highest probability. The proposed approach performed better than state-of-the-art work, achieving an accuracy of 98.24%, high precision (99.29%) and a recall value of 95.89%

    Data mining for heart failure : an investigation into the challenges in real life clinical datasets

    Get PDF
    Clinical data presents a number of challenges including missing data, class imbalance, high dimensionality and non-normal distribution. A motivation for this research is to investigate and analyse the manner in which the challenges affect the performance of algorithms. The challenges were explored with the help of a real life heart failure clinical dataset known as Hull LifeLab, obtained from a live cardiology clinic at the Hull Royal Infirmary Hospital. A Clinical Data Mining Workflow (CDMW) was designed with three intuitive stages, namely, descriptive, predictive and prescriptive. The naming of these stages reflects the nature of the analysis that is possible within each stage; therefore a number of different algorithms are employed. Most algorithms require the data to be distributed in a normal manner. However, the distribution is not explicitly used within the algorithms. Approaches based on Bayes use the properties of the distributions very explicitly, and thus provides valuable insight into the nature of the data.The first stage of the analysis is to investigate if the assumptions made for Bayes hold, e.g. the strong independence assumption and the assumption of a Gaussian distribution. The next stage is to investigate the role of missing values. Results found that imputation does not affect the performance as much as those records which are initially complete. These records are often not outliers, but contain problem variables. A method was developed to identify these. The effect of skews in the data was also investigated within the CDMW. However, it was found that methods based on Bayes were able to handle these, albeit with a small variability in performance. The thesis provides an insight into the reasons why clinical data often causes problems. Even the issue of imbalanced classes is not an issue, for Bayes is independent of this

    Intensive pre-processing of KDD Cup 99 for network intrusion classification using machine learning techniques

    Get PDF
    © 2019, International Association of Online Engineering. Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanism that used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity and availability of the services. The speed of the IDS is very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The techniques J48, Random Forest, Random Tree, MLP, Naïve Bayes and Bayes Network classifiers have been chosen for this study. It has been proven that the Random forest classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type (DOS, R2L, U2R, and PROBE)
    corecore