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ABSTRACT 

Clinical data presents a number of challenges including missing data, class 

imbalance, high dimensionality and non-normal distribution. A motivation for this 

research is to investigate and analyse the manner in which the challenges affect the 

performance of algorithms. The challenges were explored with the help of a real life heart 

failure clinical dataset known as Hull LifeLab, obtained from a live cardiology clinic at 

the Hull Royal Infirmary Hospital. A Clinical Data Mining Workflow (CDMW) was 

designed with three intuitive stages, namely, descriptive, predictive and prescriptive. The 

naming of these stages reflects the nature of the analysis that is possible within each stage; 

therefore a number of different algorithms are employed. Most algorithms require the 

data to be distributed in a normal manner. However, the distribution is not explicitly used 

within the algorithms. Approaches based on Bayes use the properties of the distributions 

very explicitly, and thus provides valuable insight into the nature of the data. 

 The first stage of the analysis is to investigate if the assumptions made for Bayes 

hold, e.g. the strong independence assumption and the assumption of a Gaussian 

distribution. The next stage is to investigate the role of missing values. Results found that 

imputation does not affect the performance as much as those records which are initially 

complete. These records are often not outliers, but contain problem variables. A method 

was developed to identify these. The effect of skews in the data was also investigated 

within the CDMW. However, it was found that methods based on Bayes were able to 

handle these, albeit with a small variability in performance. The thesis provides an insight 

into the reasons why clinical data often causes problems. Even the issue of imbalanced 

classes is not an issue, for Bayes is independent of this.  
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NOTATIONS 
 

𝑋𝑋 =  Dataset 

= �𝑥𝑥𝑖𝑖,�, 𝑖𝑖 = 1, 2, 3, … , 𝑛𝑛 ; 𝑗𝑗 = 1, 2, 3, … ,𝑚𝑚  

= (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁) 

= 𝑋𝑋𝑖𝑖 ∈ 𝑋𝑋 ⊆ ℝ𝑛𝑛; 𝑖𝑖 = 1, …𝑛𝑛 

𝑥𝑥𝑖𝑖,𝑗𝑗 = each data object, each data element 

𝜇𝜇𝑖𝑖𝑗𝑗 = mean of each variable 

𝜎𝜎𝑖𝑖𝑗𝑗 = standard deviation of each variable 

𝜎𝜎2
𝑖𝑖𝑗𝑗 = variance of each variable 

𝑛𝑛 =  Number of dataset attribute 

𝑁𝑁 = Number of records or samples 

𝑃𝑃(. )  = Probability 

𝑓𝑓(𝑥𝑥) = Probability density function 

𝑥𝑥 = a representation of a reduced subset of feature 

𝑌𝑌 =  outcome of fully observed data 

∞ =  Infinite 

𝐷𝐷𝑡𝑡  =  Distance 
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CHAPTER 1-INTRODUCTION  

1.1 Motivation and research problem 

The wealth of electronic data available has made it almost impossible to collect, sift 

through, analyse and gain knowledge from Electronic Health Records (EHRs) 

(Blumenthal and Tavenner, 2010, Noteboom et al., 2014). This makes it challenging for 

clinicians to capture a patient’s entire clinical history, especially if it is spread out over a 

number of different healthcare systems. A study (Arch-int and Arch-int, 2011) proposed 

an architecture of semantic information integration for Electronic Patient Records 

(EPRs), using ontology and web service models to safely allow interoperability between 

EPR systems. This enables one to rapidly discover patient information dispersed over 

different healthcare systems, thereby enhancing care coordination between clinicians 

(Burton et al., 2004) and thus improving patient care. The term EPRs, EHR and Electronic 

Medical Records (EMRs) are interchangeable synonyms used in healthcare informatics, 

each with a slightly different definition (Boonstra and Broekhuis, 2010). However EHR 

will be used in this thesis. EHRs have extensively presented their ‘meaningful use’ 

(Kapoor and Kleinbart, 2012) from decision making to achieving specified improvement 

in care delivery. However, there is also a lack of acceptance and adoption of EHRs in the 

healthcare domain. A recent study (Gajanayake et al., 2013) presents the contributing 

factors, categorised into eight types namely; financial, technical, time, psychological, 

social, legal, organisational and change process (Boonstra and Broekhuis, 2010). As 

clinicians have a great impact on the overall use and acceptance level of EHRs, it is 

required that they actively support and apply EHRs to benefit from them while 

considering these factors. 

The presence of this quantity of data requires tools in order to discover relationships 

and new knowledge. Data mining methods allow for this to happen. This is a process of 
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extracting and discovering meaningful knowledge from large quantities of data. Data 

mining consists of the main components: Classification, Clustering and Association rule 

learning (Kesavaraj and Sukumaran, 2013, Batra et al., 2013, Han and Kamber, 2006, 

Larose, 2014). Data mining has assisted clinicians in both medical decisions and in 

creating a framework for evidence-based medicine, for example in providing valuable 

insights into how to detect a particular disease early and thus make the clinical process 

more efficient. This has a further advantage in that care can be tailored to the specific 

needs of patients with the following set of aims: 

• To improve quality of life and clinical outcomes by involving patients in their 

care, for example, patients using instruments at home that do not necessarily 

require specialised or expert skills; in this way unplanned hospital admissions will 

be reduced.  

• To develop predictive models that will help in the design of personalised care and 

the planning of care. 

• To discover new knowledge, useful and lifesaving information to improve 

treatments. 

However, its application to clinical data is very challenging (Batra et al., 2013).  

The effective use of data mining methods for rapid clinical decision making requires 

the availability of high quality clinical data (Shahriar and Anam, 2008, Lu and Su, 2010). 

In this thesis, the data is obtained from a live cardiology clinic at the Hull Royal Infirmary 

Hospital. This data poses a number of challenges, which create problems for developing 

appropriate classification and prediction algorithms. Thus the motivation for this research 

is not only to develop a methodology for mining this rich source of data, but also to 

explore and investigate the challenges posed by such real life clinical data while 

improving the performance of classification algorithms (El Ayadi and Plataniotis, 2010, 
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Guo, 2010, Naidu et al., 2014, Kanj et al., 2012). This would involve an exploration of 

the underlying properties of the data such as errors, and variability in the data. These 

factors which accumulate over a period of time and across large number of patients, often 

contribute towards the challenges of clinical data. The challenges are; missing data 

(Farooq et al., 2013), high dimensionality (Xue-min et al., 2011), class imbalance (Li et 

al., 2010) and non-normal distribution (Korkusuz et al., 2011). Numerous methods have 

been both highlighted and implemented in literature to handle these challenges (Moore et 

al., 2014, Moore and Kambhampati, 2013, Poolsawad et al., 2012, Poolsawad et al., 

2014b, Zhang et al., 2012, Poolsawad et al., 2011, Bohacik et al., 2013b, Poolsawad et 

al., 2014a, Bohacik et al., 2013a) 

In general, classification methods such as Bayes classifier (Moore and Kambhampati, 

2013, Moore et al., 2014, Hani et al., 2010) are often employed to classify the data and 

develop prediction algorithms. However, an investigation of the data found that the 

primary assumption made for Bayes, namely, that the continuous values associated with 

each class are in a Gaussian distribution, is not satisfied by the real life clinical data 

available. Hence, there is a great interdependency between the challenges, the methods 

applied and the final result. Bayes also delivers results based on a strong independence 

(Frank et al., 2002, Zhang, 2004) assumption, where variables (in the remainder of the 

thesis, variables, features and attributes will be interchangeably used) are conditionally 

independent of each other given the class (McCallum and Nigam, 1998). However, a 

significant amount of research has been conducted on relaxing the Bayes independence 

assumption in order to improve its performance. Friedman and co-authors (Friedman et 

al., 1997) present methods such as Tree Augmented Naïve Bayesian (TAN) classifier and 

Averaged One-Dependence Estimation (AODE) (Webb et al., 2002) that achieves this by 

estimating dependences or increasing the number of parameters that are estimated. An 
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advantage is that the independence assumption allows parameters for each variable to be 

learned separately, mainly when the number of variables is large. In addition, relaxing the 

assumption allows relevant correlations to be captured and thus improves classification 

accuracy.  

In this thesis, the underlying processes of the Bayes algorithm allow the data to be 

explored in greater detail. Furthermore, literature suggests that Bayes classifier is robust 

and less sensitive to missing data and high dimensionality (Peng et al., 2005, Lei et al., 

2005, Blomberg and Ruiz, 2013, Shi and Liu, 2011, Tillander, 2012, Tillander, 2013). 

This is evident from results in literature and those shown later in this thesis (in the case 

of missing data), where evaluating the effect of different imputation approaches on 

classification finds that imputation methods could improve the accuracy of the classifier. 

An exploration and investigation of the classification performance presented on a 

confusion matrix (Costa et al., 2007, Lalkhen and McCluskey, 2008, Eriksen et al., 2003) 

are carried out to understand the properties and data space of the real life clinical data.  

1.2 Clinical dataset 

There are two drivers behind the development of computer based clinical diagnostics 

aids. One is the change in demographics towards a more aging population, and the other 

is the prevalence of chronic ailments such as heart failure. Numerous models exist to 

estimate the risk of patients with heart failure (Cleland et al., 1999), for example, the 

Seattle Heart Failure Model (SHFM) (Levy et al., 2006), its application in clinical 

practice to improve the prediction of heart failure (Jong et al., 2012), and Shelton and 

colleagues (Shelton et al., 2010) proposed risk score method to predict the occurrence of 

persistent atrial fibrillation in patients with heart failure. The key feature of SHFM is that 

it collects data regularly without the need for experts. However, Cleland and co-authors 

(Cleland et al., 1999) state that during the Framingham heart study (Ho et al., 1993) the 
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prognosis of heart failure had not improved between 1975 and 1988. Cleland and 

colleagues present the Hull LifeLab dataset (Pearson and Cowie, 2005), which serves the 

purpose of improving and understanding diagnosis, treatment, delivery of care to patients, 

natural history, and the mechanism and markers of heart failure (Bohacik et al., 2014, 

Jacobs et al., 2014).  

Hull LifeLab is a large, epidemiologically representative, information-rich clinical 

dataset consisting of patients with possible heart failure referred to a cardiology out-

patient clinic. The dataset is from a clinic which serves a mixed urban/rural community 

of about 550,000 people in Kingston-Upon-Hull and East Riding of Yorkshire between 

2000 and 2012. All referred patients were invited to participate in the study and 98% gave 

informed consent for their information to be retained and used for research purposes. 

Consenting patients received a comprehensive clinical assessment and those found to 

have heart failure were followed up with further outpatient assessments at regular 

intervals (typically every 4-6 months). The dataset is composed of 463 continuous and 

categorical variables and 2,032 patient records including quality of life. This thesis 

considers 61 important variables associated with blood chemistry. The reason for 

considering blood chemistry is that the other variables are either well understood or are 

essentially categorical, whose values are subjective and dependent on the interpretation 

of the patients’ record by either the nurse or a clinician. These additional variables are 

also prone to having missing data greater than 20%. 

 1944 patient records are considered from the live dataset, as the remainder had 

variables where more than 20% (Acuña and Rodriguez, 2004) was missing. These 1944 

patient records were collected at four different time points for example at 3, 6 12 and 18 

months. After 18 months, 1459 patients had no record of death and had attended an 

outpatient clinic therefore classed as alive. The remainder were classed as dead (485) as 
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there was a record of death present for each one of those patient. The classes will be 

referred to as alive and dead class in the following chapters. 

1.2.1 Missing data 

Missing data are ubiquitous in datasets, particularly in clinical datasets (Cismondi et 

al., 2013) due to different ways of collecting the data, for example the transfer of data 

from diverse health care systems and the transcript of data from EHRs. As a result clinical 

datasets contain noise, missing data and outliers during data recording or entry due to 

incorrect measures and mixed variable types (Weitschek et al., 2013). In addition, in cases 

where clinical data are collected as part of a clinical trial, the medical report pro forma 

allows certain variables to be left blank. This is usually due to the ailment being treated 

or perhaps the patient may not wish to disclose certain information, such as whether he 

or she is a smoker (Zhang et al., 2012).  

In order to understand the nature of the data which is missing, it helps to categorise 

these into three types of missing data, namely (a) Missing Completely at Random 

(MCAR), (b) Missing at Random (MAR), and (c) Missing Not at Random (MNAR) 

(Dziura et al., 2013, Blomberg and Ruiz, 2013, Pérez et al., 2002, Little and Rubin, 1987) 

as shown in table 1.2. 

 

 

 

 

 

 



7 

 

Missing 
mechanism 

Examples 

MCAR The missing data type does not depend on observed and 

unobserved data from the dataset. Data that are MCAR do not exist 

or are not recorded. This is usually due to a random failure of an 

experimental instrument or a dropped test tube in the laboratory 

which may lead to missing data. 

MAR MAR depends only on some other observed data from the dataset 

caused by the variable of the study design. For example an 

individual’s gender is recorded as male and the variable 

‘pregnancy’ is left blank. 

MNAR A variable with MNAR depends on the non-observation of the 

target variable. Examples are cases where the patient may be too 

ill for clinicians to collect the remaining sample for a specific test 

or a patient is not responding to treatment or may have dropped 

out because they believe the treatment is not effective. 

Table 1.2: Examples of the three missing data mechanisms 

Some data mining methods such as Bayes classifier and decision tree are tolerant to 

missing data (John and Langley, 1995, Kohavi, 1995). However, a number of methods 

require a complete dataset. Missing data imputation methods can be implemented to 

achieve the latter. Imputation methods are a key pre-processing step in modelling missing 

data and are an important data preparation task for data mining applications. Following 

are some well-known missing data imputation methods: Concept Most Common value 

Imputation (CMCI), Most Common value Imputation (MCI) (Grzymala-Busse and Hu, 

2001), Expectation Maximisation Imputation (EMI) (Gupta and Chen, 2011), Fuzzy k-

Means clustering Imputation (FKMI) (Li et al., 2004), K-Means clustering Imputation 

(KMI) (Patil et al., 2010), K-Nearest Neighbour Imputation (KNNI) (Zhang, 2012, Silva 
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and Hruschka, 2013), and Support Vector Machine Imputation (SVMI) (Yang et al., 

2012).  

1.2.2 High dimensionality 

Clinical data are accumulated with hundreds to thousands of variables (Guyon and 

Elisseeff, 2003, Balakrishnan et al., 2008, Xiaoyan et al., 2008). High dimensionality in 

clinical datasets presents the issue of diverse features, such as data containing too many 

or irrelevant variables. These prevent common data organization strategies from being 

efficient and thus affect the application of data mining methods. The ‘curse of 

dimensionality’ refers to numerous phenomena that occur when performance depends on 

model and computational complexity, data dimensional space and interrelationship 

among sample size (Clarke et al., 2008). The ‘curse of dimensionality’ in high 

dimensional data analysis is addressed through the application of data pre-processing 

methods, such as feature selection and feature extraction (Lee et al., 2013, Balakrishnan 

et al., 2008, Clarke et al., 2008), for example, the backward search approach 

(Balakrishnan et al., 2008) and Principal Component Analysis (PCA) (Bishnu and 

Bhattacherjee, 2012) respectively. Selecting a small number of variables has been shown 

to be beneficial for classification tasks such as in building prediction models and 

improving predictive accuracy (Balakrishnan et al., 2008). Dimensionality reduction of 

data has the advantage, that while reducing dimensionality, the data complexity is also 

reduced and thus predictive accuracy and the integrity of the data are maintained (Houle 

et al., 2010). 

1.2.3 Class imbalance 

Class imbalance is among the leading challenges that reduce the performance of 

classification and prediction algorithms. Class imbalance occurs when the number of 
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instances of one class is heavily under-represented (minority class) relative to another 

class (majority class), resulting in an unequal number of observation of classes. Almost 

all classification algorithms (learning or otherwise) require an even balance of classes in 

order to be able to identify models and thus increase the performance of the algorithms 

(Menardi and Torelli, 2014). Class imbalance can also be reflected in the skewed 

distributions (Shuo and Xin, 2012, Longadge and Dongre, 2013, García et al., 2007) of 

variables. Hence a key challenge would be to develop a classifier that can provide good 

accuracy for the minority class prediction as instances are more likely to be misclassified 

than the majority class instances.  

Strategies for dealing with class imbalance have been proposed in literature, such as 

over sampling and under sampling (Xiaoyuan et al., 2011). Both techniques are known 

to re-sample the training dataset so that during classification the classifier algorithm 

receives an equal share of instances per class (Orriols et al., 2005). A recent review 

(Longadge et al., 2013) suggests that misclassification of a case can result in a major 

problem particularly in medical and clinical application. For example, in a case of heart 

failure based on two classes; high risk and low risk, misclassifying the high risk group to 

low risk group may lead to some additional clinical testing. However, misclassifying low 

risk as high risk leads to stress and anxiety of the patient as well as a re-evaluation of the 

application of the classification method. 

1.2.4 Non-normal distribution 

Clinical data often suffers from non-normal distribution and therefore it is extremely 

important to consider the degree of non-normality. When faced with data containing non-

normal distribution (and skewed), two actions should be considered: (a) identify the cause 

of non-normality and (b) address non-normality by attempting to transform the data into 
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a normal distribution or applying non-parametric inferential statistical analysis. Non-

normality is caused by various factors, for example: 

• Outliers (Fleishman, 1978); are usually represented as too many extreme values 

in the dataset resulting in skewed distributions or a small proportion of the data 

having a variance greater than the remainder of the population.  

• Overlap of two or more processes; for example in the case of medical/clinical 

settings healthcare practitioners may overlap more than one data during data entry 

or two or more frequent values. 

• Data values close to zero or a natural limit; this causes the data distribution to 

skew to the left or right. 

Often practitioners reach a point in research where the need to adequately perform 

statistical analyses requires normally distributed data. Common methods of 

transformation can be applied, such as; logarithmic, square root, reciprocal 

transformations and Box Cox (Counsell et al., 2011). These methods have the benefit of 

reducing skewness and introducing equal spreads in the distribution. Also a skewness 

value of zero indicates a symmetric (normal) distribution and thus the tails on both sides 

of the mean balance out (Li, 1999). 

1.3 Research aim and objectives 

The challenges present in clinical datasets have been briefly described above. These 

challenges affect the outcomes of the algorithms, and also if used within a decision 

support system could lead to a change of care. Thus the primary aim of this thesis is to 

investigate the challenges of real life clinical data, including missing data, high 

dimensionality, class imbalance, and non-normal distribution. A secondary aim is to 

determine the manner in which the challenges affect classification algorithms in order to 

improve performance. 
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1.3.1 Objectives 

1. To identify challenges associated with a real life clinical dataset as applied to 

clinical practice and the most appropriate set of algorithms for the dataset. This 

would include the following: 

i Investigate and identify methods for handling missing data 

ii Investigate the relationship between methods for missing data with a 

view to develop prediction models and improve classification 

performance 

iii Develop an integrated solution using Bayes methods for missing data.  

2.     Investigate ways of improving classifiers to enhance performance for better 

clinical prediction models and decision support systems.  

The aims and objectives will be assessed through the application of performance 

evaluation measures (see chapter 4 for the detailed metrics for comparison and 

performance evaluation) to determine their success and failure. 

1.4 Thesis overview 

This thesis will present data mining methods to investigate the challenges of a real life 

dataset with a main focus on missing data and distribution of the data. These challenges 

will be dealt with within the next seven chapters of this thesis. Chapter 2 introduces and 

discusses a Clinical Data Mining Workflow (CDMW) tailored to real life clinical data. 

This workflow consist of six steps namely, 1) raw clinical dataset, 2) data exploration, 3) 

data preparation, 4) Modelling, 5) Evaluation and 6) CDM. The workflow also consists 

of three stages, namely, descriptive, predictive and prescriptive. Chapter 3 discusses the 

first stage, the descriptive stage. This stage involves exploring the descriptive statistics of 

the data such as the distribution and statistical measures of the original data and imputed 

data. The data is imputed with seven different missing data imputation methods, namely, 
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Concept Most Common value Imputation (CMCI), Expectation Maximisation Imputation 

(EMI), Fuzzy k-Means clustering Imputation (FKMI), k-Means clustering Imputation 

(KMI), k-Nearest Neighbour Imputation (KNNI), Most Common value Imputation (MCI) 

and Support Vector Machine Imputation (SVMI). Chapter 4 considers the information 

learnt about the data to predict future outcomes of the heart failure data. This chapter 

presents the different types of performance metrics used by naïve Bayes and TAN 

classifiers to present the classification performance of the original dataset and imputed 

data. Based on these results, chapter 5 assesses the different classes using the different 

imputation methods and then combines them into one dataset known as a hybrid imputed 

dataset e.g. SVM and EM. The class data record and posterior probabilities are explored 

to understand why misclassification occurred. Euclidean distance is also applied to 

determine the similarity in the data records and what variable is contributing the most. In 

chapter 6, other classification algorithms such as Bayes classifier based on Kernel Density 

Estimation (KDE), beta distribution based Bayes classifier, decision tree (C4.5) and 

Multilayer Perceptron (MLP) are discussed and implemented. The algorithms will be 

applied on the original data and SVM and EM hybrid imputed data for comparative 

analysis. The classification outcome in both types of data will be discussed and an 

explanation offered as to why these algorithms were not initially considered. The thesis 

is concluded in chapter 7 with a summary of the main contribution of the thesis and 

suggestions for future work. All experiments carried out in this thesis were performed 

using software provided within MATLAB (MathWorks, 2005) and WEKA (Hall et al., 

2009, Witten and Frank, 2005). 
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CHAPTER 2-FRAMEWORKS FOR MINING DATA 

2.1 Introduction  

The cornerstone for successfully mining data to gather more and new information is 

the ability to collect data. The more data that is available the better. However, the 

exponential growth of data often comes with a number of challenges (as discussed in 

chapter 1). Given these challenges, mining the data is often performed within a 

framework, which consists of a cyclical sequence of steps, namely (a) data pre-

processing, (b) modelling and (c) prediction (d) evaluation and decision making. Often 

these four steps are a collection of smaller sub-steps. Depending on the nature of the 

problem and the various sub-steps a number of different frameworks have been developed 

such as Cross Industry Standard Process for Data Mining  (CRISP-DM) (Wirth and Hipp, 

2000) and Sample, Explore, Modify, Model and Assess (SEMMA) (Obenshain, 2004, 

Cerrito, 2006). 

This chapter will outline these steps and also discuss some of the more important 

frameworks for data mining. However, these frameworks deal more with business 

oriented problems and data, which is not applicable to the clinical problem. Thus these 

are modified for the application at hand. This modification results in a Clinical Data 

Mining Workflow (CDMW) more suited for clinical data gathered from live clinics. This 

workflow consists of six steps, namely, 1) raw clinical dataset, 2) data exploration, 3) data 

preparation, 4) modelling, 5) evaluation and 6) Clinical Decision Making (CDM). From 

the discussion it can be seen that most frameworks have three broad stages: descriptive, 

predictive and prescriptive (Hand et al., 2001, Lejeune, 2001, Delen and Demirkan, 2013, 

Kaisler et al., 2013). These are intuitive stages, and most frameworks often use and follow 

these stages with varying degrees of detail or methodology within them. 
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2.2 Data mining frameworks 

Data mining frameworks provide a methodology not only to deal with challenges 

posed by the data, but also to develop a deeper understanding of the domain of application 

through machine learning methods (Han and Kamber, 2006). In this section two popular 

frameworks are discussed, namely, CRISP-DM and SEMMA. These standards have been 

selected as they define the process of data mining for knowledge discovery in various 

topics (Potamias and Moustakis, 2001, Huifang and Ding, 2010, Bosnjak et al., 2009)  

2.2.1 CRISP-DM 

The Cross Industry Standard Process for Data Mining (CRISP-DM) is a 

comprehensive process model for carrying out data mining projects. The process model 

aims to make large data mining projects cost effective, faster, reliable, repeatable and 

manageable. Studies report that the CRISP-DM process model is not only beneficial but 

also provides an overview of the life cycle of a data mining project applicable in many 

industry sectors (Wirth and Hipp, 2000). Recent studies suggest that there has been 

limited application within the healthcare domain (McGregor et al., 2012, Huang et al., 

2014). However, successful mining applications have been implemented in the healthcare 

field, three of which are: hospital infection control, ranking hospitals and identifying 

high-risk patients (Obenshain, 2004).  

CRISP-DM is presented as a cyclical process that comprises of six steps (fig 2.1) 

(Chapman et al., 2000), namely,1) business understanding, 2) data understanding, 3) data 

preparation, 4) modelling, 5) evaluation and 6) deployment. These steps define the inputs, 

outputs and general strategies to be applied in each step. The following steps are explained 

in detail.
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Figure 2.1 Steps of the CRISP-DM process model 

1) Business understanding: focuses on firstly understanding the objectives and 

requirements of the project from a business perspective and secondly, using this 

knowledge to determine data mining goals and lastly propose a project plan to 

achieve the set objectives. 

2) Data understanding: This step involves and considers data requirements such as 

the initial data collection, description, exploration and quality of the data, for 

example using descriptive modelling such as clustering to identify the data quality 

and discover insights into the data.  

3) Data preparation: Data cleaning, variable selection, data integration and 

transformation are performed in this step; this is to successfully feed the data into 

modelling tools. 
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4) Modelling: Various predictive modelling (Weiss, 1998) techniques could be 

selected and applied in this stage. Some models have specific requirements on the 

form of data; therefore the analyst may often re-visit the data preparation stage if 

necessary. The models are then applied to analyse and predict the probability of a 

desired outcome. 

5) Evaluation: This step is the review process and evaluation of results, for example 

data mining results and models are assessed to be certain that the model properly 

achieved the business objectives. The stage also includes the application of 

predictive modelling where the decision and actions of the evaluated 

results/models are also expressed by taking advantage of the predictions made.  

6) Deployment: The knowledge gained from the data needs to be organised and 

presented in a way that is beneficial to the consumer, i.e. healthcare practitioners. 

In order to achieve this, firstly a deployment plan is created, which includes 

necessary steps and how to perform them; secondly the final report is produced. 

The tasks follow each other as a sequence of steps, but within this main stream, many 

iterative cycles can be observed. This can be explained by the fact that the output of each 

phase influences the next methodological step. For example, after the data understanding 

step, the user often has to return to the business understanding and reconsider the aims, 

objectives and reasons for Knowledge Discovery in Data (KDD) (Bosnjak et al., 2009). 

Similarly, after the data modelling step, a new data pre-processing may be required in the 

data preparation step in order to improve the data models and develop additional ones.
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2.2.2 SEMMA 

SEMMA is a methodology oriented process that clarifies the data mining process 

through an analysis cycle. SEMMA was developed by the SAS Institute Inc. (Cerrito, 

2006, Obenshain, 2004, Azevedo and Santos, 2008, SAS).  The acronym SEMMA 

represent Sample, Explore, Modify, Model, Assess which are the five data mining 

processing steps. Figure 2.2 shows the SEMMA steps in the SEMMA analysis cycle 

(Obenshain, 2004) and these steps can be performed iteratively as needed.  

 

 

 

 

 

 

 

 

 

Figure 2.2 The SEMMA analysis cycle 

 

1) Sample: This step involves the sampling of the data; extraction of a large portion 

of the data that contains significant information but yet small enough to compute.  

2) Explore: Exploration of the data involves searching for trends, patterns and 

anomalies in order to gain deeper understanding and idea, for example descriptive 

modelling such as clustering methods to group observations for better knowledge. 
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3) Manipulate: Data quality is essential for data mining; data records with 

underlying challenges such as missing data for one or more variables could 

obstruct some of the patterns.  Therefore data modification is paramount; this 

involves creating, selecting and transforming the variables to focus the model 

selection process. 

4) Model: This step involves using predictive modelling (Hand et al., 2001)such as 

analytical tools, for example neural network and decision tree to search for 

patterns that predict a desired outcome. 

5) Assess: This is a prescriptive modelling step that involves the evaluation of the 

usefulness and reliability of findings from the data mining process. This step 

allows the user to assess the performance of the model. This is commonly 

executed by applying the model to a different dataset and repeating steps 2, 3 4 

and 5, if the model is valid, it will work for the data as well as for the sample data 

used to construct the model. However, if the model does not work, the user can 

repeat the entire process again, starting with sampling. 

The SEMMA process provides an easy to understand process, allowing adequate 

development and maintenance of data mining projects.  In contrast to the CRISP-DM 

process, SEMMA also allows the user to return to previous steps in the process and focus 

mostly on the application to exploratory statistical and visualization-based data mining 

techniques (Bellazzi and Zupan, 2008).  

2.2.3 Clinical Data Mining Workflow   

CRISP-DM and SEMMA present solutions to business problems and achieve 

business goals. However, in order to be applicable within a clinical setting, they both have 

to be tailored and thus a clinical workflow has been developed. Although the inspiration 

behind the workflow is due to the objectives and challenges outlined in chapter 1, this 
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workflow is generic and is well suited to most clinical applications, e.g. home tele-

monitoring and in situations where data is streamed fast and in reasonable quantities. 

Figure 2.3 shows an iterative data mining process for implementing machine learning 

methods on the Hull LifeLab dataset in order to support CDM for personalised care. As 

mentioned earlier the frameworks are often developed to present a cyclical set of steps. 

This is a natural consequence of the manner in which the performance of the various 

components of the framework is tested. This result in sets of concentric steps presented 

below. The six steps in the workflow can be categorised into the following stages: (a) 

Descriptive, where exhaustive exploration of the data is carried out, (b) Predictive, where 

modelling of the data is carried out through the use of predictive models and (c) 

Prescriptive, where the full methodology is evaluated and then modifications are made to 

either the data or the modelling strategy. These are further discussed in the next section 

when the three stages are compared on the frameworks and workflow.
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Figure 2.3 Clinical Data Mining Workflow (CDMW) 

1) Raw clinical dataset: The first step of the workflow is to sample the related data 

from the available sources. The raw clinical dataset is sampled from a live clinical 

data provided by clinicians and healthcare providers based in Castle Hill Hospital, 

East Riding of Yorkshire, United Kingdom. The term ‘raw’ and ‘original’ data are 

interchangeably used in this thesis. The clinical data is real time data, which 

includes blood chemistry and categorical variables and the various acronyms used 

in the data. A large portion of the data containing the significant information was 

extracted from live clinical data and irrelevant variables were removed, such as 

patient personal information, for example, patient id, gender and a blood 

chemistry variable, namely, NT-proBNP. This was because the majority of the 

data for this particular variable was missing; as a result the variable was 

eliminated. Gender was a simple binary 0, 1 and as a result we were told by the 
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clinicians not to consider this. However, the main goal is to generate a population 

risk model and not a risk prediction based on gender. This step is similar to the 

‘sample’ step of SEMMA. 

2) Data exploration:  This step is similar to the ‘explore’ step of SEMMA and ‘data 

understanding’ step of CRISP-DM.  The data is explored to observe 

characteristics of the dataset such as those discussed in chapter 1: missing data, 

high dimensionality, class imbalance and non-normal distribution. The 

descriptive stage is applied to gain better insight of the properties of the dataset, 

for example, exploring the data distribution such as the different types of 

distribution represented in the data and the number of missing data present. 

3) Data preparation: The task of this step shares a similarity with the ‘manipulate’ 

step of SEMMA and ‘data preparation’ step of CRISP-DM. Pre-processing is the 

main process for addressing the challenges of the dataset, such as those identified 

during the data exploration step, for example, the application of missing data 

imputation and feature selection methods to impute the missing data variables and 

to select relevant variables in order to improve classification accuracy. 

4) Modelling: Once the data is prepared, a predictive model is constructed to explain 

patterns and extract useful knowledge from the data in order to predict future 

outcomes. This step is a common and crucial step in data mining frameworks as 

it is also present in SEMMA and CRISP-DM to predict outcomes in business 

projects. The development of the model is dependent on the data exploration and 

data preparation steps. For example other challenges that were not explored during 

the data exploration step may contribute to the performance of the model and as a 

result another pre-processing technique will be required to tackle the challenge. 

In this step of the workflow, a classification approach such as Bayes classifier can 

then be applied to the pre-processed data. Classification is a fundamental issue in 
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machine learning and data mining that classifies a set of given observations into 

existing classes (Kesavaraj and Sukumaran, 2013).  

5) Evaluation: Involves assessing the classification model to present an optimal 

performance of the classification task through the use of evaluation metrics, for 

instance a confusion matrix which is  a table layout that assesses accuracy, 

precision, characterises errors and aids to refine statistical measures for 

classification test (Foody, 2002). The task of this step is equivalent to the task of 

the ‘assess’ step of SEMMA and the ‘evaluation’ step of CRISP-DM.  

6) Clinical Decision Making (CDM): This step involves the presentation of the 

entire data mining process to clinicians and healthcare practitioners in order to 

successfully support them in the CDM process. This involves a strategic plan of 

the outcome of each step and how each step has influenced the final result and its 

benefit for personalised care. This step shares a similar task to that of the 

‘deployment’ step of CRISP-DM, which requires a plan in order to organise and 

present the findings and the purpose they serve for business. 
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2.3 Comparison of the data mining frameworks 

It can be seen above that all three frameworks, CRISP-DM, SEMMA frameworks and 

CDMW employ the three stages: descriptive, predictive and prescriptive. Although some 

of the steps do not share an identical title, however their task is very similar. For example, 

the ‘data understanding’ step of CRISP-DM, the ‘explore’ of SEMMA and the ‘data 

exploration’ step of CDMW all share the same task and represent the descriptive stage. 

Figure 2.4 presents the differences between the three business analytic stages (Delen and 

Demirkan, 2013) and table 2.1 shows where the three stages are represented in the 

frameworks. 

 

 

 

 

 

 

 

 

 

Figure 2.4 The three stages of business analytics
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CRISP-DM SEMMA CDMW 
Step Stage Step Stage Step Stage 
Business  
understanding  

Descriptive Explore Descriptive Data  
exploration  

Descriptive 

Data 
understanding 

Descriptive Model Predictive Data  
preparation 

Descriptive 

Modelling Predictive Assess Prescriptive Modelling Predictive 
Evaluation Prescriptive  - - Evaluation Prescriptive 

Table 2.1:  Comparison of the three stages in CRISP-DM, SEMMA 

and CDMW 

The descriptive stage allows the data analyst to investigate the important aspects that 

represent and describe the data by answering the question of ‘what is happening and/or 

current in the data?’ It includes data warehousing and business intelligence to outline and 

identify problems of the data and thus assist in understanding the data. Types of strategies 

applied in the descriptive stages include models describing the relationship between 

variables, such as cluster analysis and segmentation (Hand et al., 2001).  

The predictive stage uses statistical analysis and data mining techniques such as 

classification and regression to discover trends and patterns representing the relationships 

between data inputs and outputs to predict future outcomes and ‘what will happen’.  

The prescriptive stage evaluates the full methodology to determine the beast course of 

action and then further modifications are made to support better decision making and 

outcomes. This involves contribution from decision modelling, expert knowledge and 

systems to answer the question, ‘what should happen or what should I do?’  

2.4 Summary 

CRISP-DM, SEMMA and CDMW frameworks make data mining more effective and 

efficient for CDM. The frameworks follow the intuitive stages shown in fig 2.4. However, 

what is different is the relationship between the three stages, which are often tailored for 

the application and nature of data. In contrast there are two key challenges involved in 
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data mining steps: 1) agreeing on a data preparation method such as a data cleaning or 

pre-processing technique so that data mining methods are successfully implemented and 

2) agreeing on a predictive model to predict future outcomes. In spite of this, the main 

goal of the frameworks consists of a particular course of action, to understand, evaluate 

and compare data which are mainly intended to achieve a result. Many other frameworks 

exist to achieve the same goals, such as Knowledge Acquisition and Documentation 

Structuring (KADS)  (Wielinga et al., 1992), Knowledge Discovery in Databases (KDD) 

(Azevedo and Santos, 2008) and Predictive Data Mining Markup Language (PMML) 

(Bellazzi and Zupan, 2008). 
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CHAPTER 3-THE DESCRIPTIVE STAGE 

3.1 Introduction 

As discussed in chapter 2, frameworks and workflow for mining of data comprise 

three stages namely; (a) descriptive, (b) predictive and (c) prescriptive (see figure 2.4). 

The following chapters of this thesis will use these stages to discuss the challenges in 

mining clinical datasets. Thus this chapter will focus on the descriptive stage. The 

descriptive stage consists of two steps: 1) data exploration and 2) data preparation. The 

data exploration step explores the data to find key information on the space occupied by 

the data, e.g. mean, standard deviations, median and skews of the variable. On the other 

hand, the data preparation step is more active, in that dependent on the methods used for 

preparation, some of the properties mentioned earlier can change. Essentially this step 

comprises pre-processing methods such as missing data imputation to impute missing 

data. The key to this step is to ensure that the properties of the data distribution such as 

the mean and standard deviation are not altered significantly.      

3.2 Data exploration 

The Hull Lifelab dataset applied in this thesis consist of 463 variables comprising 

categorical, continuous and the clinicians’ summarisation of patients’ past records. 

However, not all variables are applicable to the problem at hand; as a result 60 variables 

(continuous) are considered. The 60 variables are shown in table 3.1. These variables are 

recommended by clinicians and are a summation of the variables in the Seattle heart 

failure dataset (Levy et al., 2006), the Framingham heart study (Tsuji et al., 1994, Ho et 

al., 1993) and the Mid-Atlantic Group of Interventional Cardiology (MAGIC) congenital 

heart disease (Everett et al., 2006).   

The statistical measures of the data are presented to capture and understand the 

properties of the data distribution. In addition, the minimum (min) and maximum (max) 
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values, percentage of missing data (% of MD), mean (𝜇𝜇), standard deviation (𝜎𝜎), median 

and skew values of the variables are presented.  

No. Variable No. Variable 
1 Age (years) 31 MR-proADM 
2 Sodium (mmol/L) 32 CT-proET1 
3 Potassium (mmol/L) 33 CT-proAVP 
4 Chloride (mmol/L) 34 PCT 
5 Bicarbonate (mmol/L) 35 ECG (bpm) 
6 Urea (mmol/L) 36 QRS width msec) 
7 Creatinine (umol/L) 37 QT (msec) 
8 Calcium (mmol/L) 38 LVEDD (cm) 
9 Adj Calcium (mmol/L) 39 LVEDD (Hgt indexed) 
10 Phosphate (mmol/L) 40 BSA (m2) 
11 Bilirubin (umol/L) 41 Aortic Root (cm) 
12 Alkaline Phosphatase (iu/L) 42 Left Atrium (cm) 
13 ALT (iu/L) 43 Left Atrium (BSA Indexed) 
14 Total protein (g/L) 44 Left Atrium (Hgt indexed) 
15 Albumin (g/L) 45 Aortic Velocity (m/s) 
16 Uric acid (mmol/L) 46 E 
17 Glucose (mmol/L) 47 Height (m) 
18 Cholesterol (mmol/L) 48 Weight (kg) 
19 Triglycerides (mmol/L) 49 BMI (kg/m2) 
20 Haemoglobin (g/dL) 50 Pulse (bpm) 
21 White Cell Count (109/L) 51 Systolic BP (mmHg) 
22 Platelets (109/L) 52 Diastolic BP (mmHg) 
23 MCV (fL) 53 Pulse BP (mmHg) 
24 Hct (fraction) 54 FEV1 (L) 
25 Iron (umol/L) 55 FEV1 Predicted (L) 
26 Vitamin B12 (ng/L) 56 FEV1 Predicted (%) 
27 Ferritin (ug/L) 57 FVC (L) 
28 CRP (mg/L) 58 FVC Predicted (L) 
29 TSH (mU/L) 59 FVC Predicted (%) 
30 MR-proANP 60 PEFR (L) 

Table 3.1: Variables of the Hull LifeLab dataset. 
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3.2.1 Distributions of clinical dataset 

Data distribution describes the characteristics of data. Understanding the 

characteristics of the data provides a deeper understanding of how missing data 

imputation methods affect the distribution and thus performance of the classifier.  

The distributions of data for all the variables were looked at, and in what follows are 

three key variables (sodium, creatinine and uric acid). The distribution of the full set can 

be seen in Appendix I. The three variables are used by clinicians in diagnosing heart 

failure (Schrier, 2008, Ochiai et al., 2005, Chamorro et al., 2002, Shelton et al., 2010, 

Zamora et al., 2007, Cowie et al., 2000). 
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Figure 3.1 Distributions of the data and classes for sodium, creatinine and uric acid variables. 
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The graphs in figure 3.1 show the distribution of the overall data, dead class and alive 

class for the sodium, creatinine and uric acid variables. It can be seen that the sodium and 

creatinine variables show the most spread in their distribution for all three data groups 

(overall data, dead and alive class) whereas uric acid presents a more compact 

distribution. This could be due to the values of the variable, where the values of uric acid 

are almost identical or similar and often within a small narrow range. The alive class 

shows a tighter distribution in sodium and creatinine when compared to the overall data 

and dead class, whereas the dead class shows a large spread and variation. The reason for 

this could be due to the class imbalance present, where the alive class is represented by 

more records (1459) than the dead class (485); hence, the distribution for the alive class 

is much tighter than that of the dead class. The skew values are also larger in the alive 

class (table 3.2) due to the large representative of samples. Thus the distributions for the 

alive class data   will lean towards the overall data distributions. Creatinine and uric acid 

also show extreme values, i.e. outliers in their distributions see appendix I, indicated by 

arrows. These outliers are particularly identifiable in uric acid due to the compactness of 

the distribution. 
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Overall data 
Variables Min Max % of 

MD 
𝝁𝝁 𝝈𝝈  Median Skew 

value 
Sodium  123 148 3 138.81 3.16 139 -0.88 
Creatinine  37 561 3 108.45 46.03 98 3.27 
Uric acid  0.13 12.3 18 0.42 0.39 0.39 22.68 

Dead class 
Variables Min Max % of 

MD 
𝝁𝝁 𝝈𝝈  Median Skew 

value 
Sodium   125 148 2 138.45 3.56 139 -0.71 
Creatinine  37 561 2 128.22 62.99 112 2.65 
Uric acid  0.17 5.7 14 0.45 0.29 0.43 13.67 

Alive class 
Variables Min Max % of 

MD 
𝝁𝝁 𝝈𝝈  Median Skew 

value 
Sodium  123 148 4 138.93 3.00 139 -0.93 
Creatinine  38 512 4 101.75 36.30 94 3.09 
Uric acid  0.13 12.3 19 0.42 0.41 0.38 23.34 

Table 3.2: Statistical measures of sodium creatinine and uric acid for 

the overall data, dead class and alive class. 

Table 3.2 presents the statistical measures of the overall dataset, dead and alive class. 

It can be seen that the skew value is dominant in the alive class for all three variables 

except creatinine of the overall dataset. The alive skew values are also similar to those of 

the overall data this could be due to the class imbalance problem as mentioned previously. 

The alive statistical measures also lean towards the overall data. Uric acid shows the 

highest skew value in all three groups of data, particularly in the alive. This is reflected 

and visually seen from the graphs shown in figure 3.1, where the distribution is shown to 

be very compact and thus highly skewed. This is also reflected in the low 𝜇𝜇 and 𝜎𝜎 values 

shown, where the dead class has a 𝜎𝜎 value of 0.29. This indicates a lack of variation and 

dispersion in the variable, whereas creatinine shows a relatively high 𝜎𝜎 value in all three 

groups of data.   

Previous studies (von Hippel, 2005, Sematech, 2006) have applied the relationship 

of the mean and median to show how negative and positive skew distributions can be 
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identified. Where the mean is greater than or to the right of the median, it is known as 

positive skew while negative skew is indicated when the mean is less than or to the left 

of the median. Sematech (Sematech, 2006) further states that the distribution is symmetric 

if the mean is equal to the median. These characteristics have been applied here to show 

what type of distribution the variables represent. Table 3.3 shows a comparison of the 

skew distribution types in the three groups of data. 

 

Table 3.3:  Comparison of skew distribution types 

It can be seen that creatinine and uric acid are both positively skewed in all three 

groups of data with the mean values greater than the median values while sodium is 

negatively skewed with the mean values less than the median value.  

3.3 Data preparation  

There are a number of methods that can be applied to improve the underlying 

challenges of the clinical dataset for data mining algorithms, for example, missing data 

imputation for handling missing data, feature selection for high dimensionality, under- 

and over sampling for class imbalance and transformation methods for non-normal 

distribution (discussed in chapter 1). Also it has been acknowledged in chapter 1 that 

Bayes classifier is less sensitive to missing data and high dimensionality. However, this 

section and the remainder of this thesis will consider seven different missing data 

imputation methods. Seven imputation methods are implemented to maintain the richness 

of the dataset and as a result given the number of variables present we can get closer to 

Overall data 
 Sodium Creatinine Uric acid 
Skew −0.88 +3.27∗ +22.68 

Dead class 
 Sodium Creatinine Uric acid 
Skew −0.71 +2.65 +13.67 

Alive class 
 Sodium Creatinine Uric acid 
Skew −0.93 +3.09 +23.34 
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the expected mean of the whole population. We could eliminate variables with 10%-20% 

missing data but this would mean discarding important information about the data and 

therefore a poor judgement will be made about the ailment in question. While the focus 

is on missing data, there is a great interdependency between missing data and the other 

challenges such as class imbalance and non-normal distribution, as well as methods 

applied and the final result. This focus will aid in understanding the mechanics of 

incorrect classification of records, the relationships between imputation methods and how 

imputation methods affect the statistical measures (mean, standard deviation, median and 

skew values). Thus the distribution of the data and class problem will be considered. 

There are various missing data imputation methods available; however seven have 

been found to be most useful for clinical data (Zhang et al., 2012). These are: Most 

Common value Imputation (MCI)(Zhang et al., 2012), Concept Most Common value 

imputation (CMCI) (Grzymala-Busse and Hu, 2001), Expectation Maximization 

Imputation (EMI) (Musil et al., 2002, Dempster et al., 1977), k-Nearest Neighbour 

Imputation (KNNI) (Batista and Monard, 2003), k-Means clustering Imputation (KMI) 

(Li et al., 2004, Žalik, 2008), Fuzzy k-Means clustering Imputation (FKMI) (Sarkar and 

Leong, 2001, Liao et al., 2009) and Support Vector Machine Imputation (SVMI) 

(Pelckmans et al., 2005, Gunn, 1998, Honghai et al., 2005). A brief discussion of each 

method will be presented to understand their task. Distributions of the three variables 

(sodium, creatinine and uric acid) after implementation of the missing data imputation 

methods will be shown as well as their statistical measures. 

3.3.1 Most common value imputation 

Most Common value Imputation (MCI) is one of the simplest methods to implement 

amongst existing methods (Zhang et al., 2012). Depending on the attribute data type, 

there are differences in the manner in which MCI replaces missing data. For example, for 
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a nominal attribute MCI imputes missing data with the mode; the most common value 

mode of the attribute, for numerical attributes the missing data is replaced with the mean 

value of the attribute. Whereas for symbolic attributes, every missing attribute value is 

replaced by the most common attribute value (Kantardzic, 2011). A disadvantage of the 

approach is that it can severely distort the distribution for this variable, leading to 

complications with summary measures including, notably, underestimates of the standard 

deviation. Moreover, mean imputation distorts relationships between variables by pulling 

estimates of the correlation toward zero (He, 2010, Little, 1992, Pigott, 2001).  

3.3.2 Concept most common value Imputation 

Concept Most Common value imputation (CMCI) is similar to MCI. However CMCI 

imputes missing data by taking into account the most common value of the attribute but 

uses attributes belonging to the given class instead of applying global most common value 

(Grzymala-Busse and Hu, 2001). In cases where the attribute data type is nominal the 

missing data is replaced by the mode, numerical attributes are replaced by a mean value 

and symbolic attributes are replaced by the most common attribute value that occurs for 

the class. 

3.3.3 Expectation maximization imputation 

Expectation Maximization Imputation (EMI) imputes missing data through two 

iterative steps, namely, the Expectation (E) step and the Maximization (M) step (Gold 

and Bentler, 2000, Dempster et al., 1977). The former step computes the conditional 

expected log likelihood value of the 𝑋𝑋 data using the observed data and the current 

parameter estimates. The expected value of 𝑥𝑥1, given the measurement 𝑦𝑦1 and based upon 

the current parameter estimates, is computed as per Moon (Moon, 1996).
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                                     𝑥𝑥1[𝑘𝑘+1] = 𝐸𝐸[𝑥𝑥1|𝑦𝑦1,𝑝𝑝[𝑘𝑘]]     (3.1) 

where:  

𝑝𝑝[𝑘𝑘], indicate the estimate of 𝑝𝑝 after the 𝑘𝑘𝑘𝑘ℎ iteration, 𝑘𝑘 = 1,2, … 

In the latter step, the expected log likelihood obtained in the E step is maximised by 

maximum likelihood to obtain and update the model parameter estimates (Musil et al., 

2002). This maximised data is used to impute the missing data. Moon (Moon, 1996) 

presents the steps of the EM algorithm for imputing missing data which is outlined in 

figure 3.2. The algorithm is iterated until convergence is achieved in the final step, such 

as when the parameter estimates converge to some criterion (Dempster et al., 1977).  

 

 

 

 

 

 

 

 

 

Figure 3.2 The EM algorithm

Initial: 
• Choose an initial parameter 𝜃𝜃[0] 

• Set 𝑘𝑘 = 0 

E step: 
Estimate unobserved data using 𝜃𝜃[𝑘𝑘] 

M step: 
Compute maximum likelihood estimate 

of parameter 𝜃𝜃[𝑘𝑘+1]using estimated 
data 

𝑘𝑘 = 𝑘𝑘 + 1 
Converged? 
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3.3.4 K-nearest neighbour imputation 

𝑘𝑘-nearest neighbour imputation (KNNI) imputes missing data using values 

calculated from the 𝑘𝑘 nearest neighbours (Jonsson and Wohlin, 2004) . The most similar 

neighbours are found by minimising a distance function such as Euclidean distance 

eq.3.2; however other distances are also used depending on the nature of the attributes. 

            𝐸𝐸(𝑎𝑎, 𝑏𝑏) = �∑ (𝑥𝑥𝑎𝑎𝑖𝑖 − 𝑥𝑥𝑏𝑏𝑖𝑖)2𝑖𝑖∈𝑛𝑛                 (3.2) 

where  

• 𝐸𝐸(𝑎𝑎, 𝑏𝑏) is the distance between the two cases 𝑎𝑎 and 𝑏𝑏 

• 𝑥𝑥𝑎𝑎𝑖𝑖 and 𝑥𝑥𝑏𝑏𝑖𝑖 are the values of attribute 𝑖𝑖 in cases 𝑎𝑎 and 𝑏𝑏 respectively 

• 𝑛𝑛 is the set of attributes without missing data in both cases. 

There are two benefits associated with the use of this approach. One is that KNNI can 

predict the most frequent value among the 𝑘𝑘-nearest neighbour (qualitative attributes) and 

the mean among the 𝑘𝑘-nearest neighbour (quantitative attributes). The other is there is no 

need to create a predictive model for each attribute with missing data (Batista and 

Monard, 2003). The KNN algorithm is robust in that it can be easily adapted to work with 

any attribute as class by simply modifying the attributes to be considered in the distance 

metric. However, the approach has a few drawbacks that limit its use for Knowledge 

Discovery from Databases (KDD). For example the algorithm searches through the entire 

dataset for the most similar instances, making it computationally expensive. Several 

efforts are presented both by Batista and Monard for solving this limitation (Batista and 

Monard, 2003).
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3.3.5 K-means clustering imputation 

The general purpose of clustering is to divide the dataset into groups based on 

similarity of objects and to minimize intra-cluster dissimilarity (Li et al., 2005, Li et al., 

2004). K-Means clustering is a simple and fast method applied in many areas such as data 

analyses, image processing and pattern recognition (Žalik, 2008). Unlike CMCI and 

KNNI, which use some form of a measure of similarity, K-Means clustering Imputation 

(KMI) focuses on dissimilarity. KMI computes the intra-cluster dissimilarity based on the 

summation of distances between the objects 𝑥𝑥𝑡𝑡 (also called input data points) and the 

centroid of the cluster they are assigned to. A cluster centroid (also called cluster centre) 

represents the mean value of the objects in the cluster (Žalik, 2008, Li et al., 2004). Data 

objects that belong to the same cluster are taken to be nearest neighbours of each other, 

and KMI applies a nearest neighbour algorithm to replace missing data in a similar to 

KNNI (Li et al., 2004). 

Numerous forms of the 𝑘𝑘-means algorithm are presented in literature. However, 

Zalik (Žalik, 2008) introduces an efficient version of the algorithm shown in table 3.4 

𝑁𝑁objects 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁 into 𝑘𝑘 disjoint subsets 𝑐𝑐𝑖𝑖 𝑖𝑖 = 1, … ,𝑘𝑘, each containing 𝑛𝑛𝑖𝑖 objects, 

0 < 𝑛𝑛𝑖𝑖 < 𝑁𝑁, minimizes the following Mean Square Error (MSE) cost function: 

   𝐽𝐽𝑀𝑀𝑀𝑀𝑀𝑀 = ∑ ∑ ‖𝑥𝑥𝑡𝑡 − 𝑐𝑐𝑖𝑖‖2𝑥𝑥𝑡𝑡∈𝐶𝐶𝑖𝑖
𝑘𝑘
𝑖𝑖=1      (3.3) 

where: 

• 𝑥𝑥𝑡𝑡 is a vector representing the 𝑘𝑘 − 𝑘𝑘ℎ data point or object in the cluster 𝐶𝐶𝑖𝑖  

• 𝑐𝑐𝑖𝑖 is the geometric centroid of the cluster 𝐶𝐶𝑖𝑖. 

 𝐾𝐾-means algorithm allocates an object 𝑥𝑥𝑡𝑡 into the 𝑖𝑖𝑘𝑘ℎ cluster if the cluster 

membership function 𝐼𝐼(𝑥𝑥𝑡𝑡, 𝑖𝑖) is 1.  
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       𝐼𝐼(𝑥𝑥𝑡𝑡, 𝑖𝑖) = �1 𝑖𝑖𝑓𝑓 𝑖𝑖 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛 ��𝑥𝑥𝑡𝑡 − 𝑐𝑐𝑗𝑗�
2
�  𝑗𝑗 = 1, … ,𝑘𝑘

0 𝑜𝑜𝑘𝑘ℎ𝑒𝑒𝑎𝑎𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
�    (3.4)                       

 𝐾𝐾-means algorithm is divided into three steps. These are shown in table 3.4.  

Step 𝑲𝑲-means clustering algorithm 

1 Use random sampling to select 𝑘𝑘 cluster centres 𝑐𝑐1, 𝑐𝑐2, … , 𝑐𝑐𝑘𝑘 in the input 

dataset 

For each input data point 𝑥𝑥𝑡𝑡 and all 𝑘𝑘 clusters, steps 2 and 3 are repeated 

until all centres converge. 

2 Calculate the cluster membership function eq. (3.6) and decide the 

membership for each input data point in one of the 𝑘𝑘 clusters whose 

cluster centre is closest to that point.  

3 For all 𝑘𝑘 cluster centres, set 𝑐𝑐𝑖𝑖 to be the centre of mass of all points in 
cluster 𝐶𝐶𝑖𝑖 

Table 3.4: The 𝑘𝑘-means algorithm      

 

Although 𝑘𝑘-means is widely applied in various areas, it has two main limitations: 1) The 

number of 𝑘𝑘 clusters must be fixed and known in advance and 2) the results of 𝑘𝑘-means 

algorithm depend on the selected cluster centres. 

3.3.6 Fuzzy k-means clustering imputation 

Fuzzy clustering presents a better tool than the overall objective of clustering and 𝑘𝑘 

means clustering, especially when the clusters overlap and may be trapped in local 

minimum if the initial points are not selected properly (Liao et al., 2009). In fuzzy 𝑘𝑘-

means clustering, each data object 𝑥𝑥𝑖𝑖 uses a membership function to describe the degree 

to which the data object belongs to certain cluster 𝑣𝑣𝑘𝑘, thus making the resulting algorithm 

less susceptible to get stuck in local minimum (García et al., 2015). The membership 

function is defined as eq. (3.5) rather than the 𝑘𝑘-means clustering MSE cost function in 

eq. (3.3).  
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   𝑈𝑈(𝑣𝑣𝑘𝑘, 𝑥𝑥𝑖𝑖) = 𝑑𝑑(𝑣𝑣𝑘𝑘,𝑥𝑥𝑖𝑖)−2(𝑚𝑚−1)

∑ 𝑑𝑑(𝑣𝑣𝑗𝑗,𝑥𝑥𝑖𝑖)−2/(𝑚𝑚−1)𝑘𝑘
𝑗𝑗=1

                 (3.5) 

where: 

𝑚𝑚 > 1 is the fuzzifier 

∑ 𝑈𝑈�𝑣𝑣𝑗𝑗 , 𝑥𝑥𝑖𝑖� = 1 𝑘𝑘
𝑗𝑗=1 for any data object 𝑥𝑥𝑖𝑖(1 ≤ 𝑖𝑖 ≤ 𝑁𝑁) 

The membership degree of each data object is considered to compute the cluster centroid, 

the formula for computation is: 

    𝑣𝑣𝑘𝑘 = ∑ 𝑈𝑈(𝑣𝑣𝑘𝑘,𝑁𝑁
𝑖𝑖=1 𝑥𝑥𝑖𝑖)∗ 𝑥𝑥𝑖𝑖
∑ 𝑈𝑈 (𝑣𝑣𝑘𝑘,𝑁𝑁
𝑖𝑖=1  𝑥𝑥𝑖𝑖)

     (3.6) 

The algorithm comprises three steps, which is outlined below. 

Step Fuzzy 𝒌𝒌-means clustering algorithm  

1 Select evenly distributed 𝐾𝐾centroids to avoid local minimum situation 

2 Update the membership functions and centroids until the overall 

distance meets the user-specified distance threshold 𝜀𝜀. Note that each 

data object is assigned to all 𝐾𝐾 clusters with different membership 

degrees.  

3 Non-reference attributes are imputed for each incomplete data object, 𝑥𝑥𝑖𝑖 

based on the membership degrees and the values of the cluster centroid.  

3.3.7 Support vector machine imputation 

Support vector machine (SVM) imputes missing data through the use of the following 

steps (Honghai et al., 2005). 

1) Select the examples that have no missing data, i.e. the complete examples as the 

training dataset. 
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2) Set the condition attributes (input attribute); whose values are missing as the 

decision attributes (output attribute) and uses the decision attributes as the 

condition attributes.  

3) SVM regression is then used to predict the condition attribute values 

SVM uses the value of the attribute being imputed as the target value rather than the 

original classification value and ignores attributes with missing data when generating the 

new training data. SVMI uses either regression or classification to impute continuous 

attributes (Gunn, 1998). For example in the case of classification, the continuous attribute 

is classified with each of the SVM models and the value corresponding to the SVM that 

classifies the example as positive is selected. If more than one SVM generates a positive 

classification, one value is selected randomly.  

3.4 Distributions after missing data imputation 

This section presents sodium, creatinine and uric acid distributions after the 

application of the seven missing data imputation methods (CMCI, EMI, FKMI, KMI, 

KNNI, MCI, and SVMI) discussed in section 3.3. The mean(𝜇𝜇), standard deviation(𝜎𝜎), 

median and skew values of the original data and after imputation are also presented for 

comparison. 
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Figure 3.3 Original and imputation distributions of the overall dataset 
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Table 3.5: Original and imputation statistical measures of the overall dataset

Overall dataset 

 Sodium Creatinine Uric acid 
Statistical 
measures 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

Original 138.81 3.16 139 -0.88 108.45 46.03 98 3.27 0.42 0.39 0.39 22.68 

CMC 138.81 3.10 139 -0.90 108.35 45.28 98.32 3.33 0.42 0.35 0.40 24.90 

EM 138.80 3.12 139 -0.86 109.32 46.25 98.50 3.15 0.45 0.37 0.41 21.48 

FKM 139.12 3.51 139 -0.29 108.69 45.29 99 3.30 0.42 0.35 0.39 24.92 

KM 138.81 3.10 139 -0.90 109.01 45.54 99 3.24 0.43 0.35 0.41 24.94 

KNN 138.80 3.11 139 -0.89 108.50 45.34 98 3.30 0.42 0.35 0.39 24.89 

MC 138.84 3.11 139 -0.92 107.88 45.38 97 3.33 0.42 0.35 0.39 24.91 

SVM 138.81 3.10 139 -0.90 107.98 45.32 97 3.34 0.52 0.43 0.42 13.63 
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Figure 3.3 presents distribution of the original data and the seven missing data 

imputation methods of the overall dataset and table 3.5 presents the original and after 

imputation statistical measures of the overall dataset. It can be seen that a the 𝜇𝜇, 𝜎𝜎, median 

and skew values of the imputation methods show a similarity or are identical to the 

original statistical measures, with the exception of FKM which shows a subtle increase 

with a 𝜇𝜇 value of 139.12 and 𝜎𝜎 value of 3.51 in the sodium. This can be visually seen 

from the graph in figure 3.3 where there is a shift in the distribution due to the increase 

of the 𝜇𝜇 value and the distribution has a large spread compared to the other imputation 

methods. FKM shows a skew value of -0.29 in the sodium variable. Comparing this to 

the original skew value of -0.88 indicates that this has decreased. EM and SVM skew 

values both in creatinine and uric acid are also reduced compared to the original skew 

values, especially SVM which shows a decrease in value of 13.63 for uric acid. SVM also 

show an increase in 𝜎𝜎 value of 0.43 in uric acid. This is also reflected in figure 3.3 where 

the distribution shows a wider spread, whereas the remaining 𝜎𝜎 values are reduced.
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Figure 3.4 Original and imputation distributions of the dead class
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Table 3.6:  Original and imputation statistical measures of the dead class 

 

Dead class 

 Sodium Creatinine Uric acid 
Statistical 
measures 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

Original 138.45 3.56 139 -0.71 128.22 62.99 112 2.65 0.45 0.29 0.43 13.67 

CMC 138.45 3.53 139 -0.72 128.23 62.34 113 2.68 0.45 0.27 0.43 14.66 

EM 138.45 3.53 139 -0.71 128.70 62.57 113 2.64 0.47 0.30 0.44 11.73 

FKM 138.64 3.78 139 -0.40 127.92 62.39 112 2.69 0.44 0.27 0.41 14.64 

KM 138.45 3.53 139 -0.72 128.20 62.44 112.27 2.67 0.45 0.27 0.43 14.72 

KNN 138.46 3.53 139 -0.72 127.86 62.40 112 2.69 0.44 0.27 0.42 14.63 

MC 138.47 3.53 139 -0.73 127.50 62.55 111 2.68 0.44 0.28 0.41 14.60 

SVM 138.46 3.53 139 -0.72 127.86 62.39 112 2.69 0.45 0.27 0.44 14.71 
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The graph in figure 3.4 presents the original and the seven missing data imputation 

methods distributions for the dead class. It can be seen that creatinine missing data 

imputation distributions all show the same distribution. This is also reflected in the 

statistical measures presented in table 3.6. It can be seen that there are only subtle changes 

in the statistical measure values. FKM (-0.40) and EM (11.733) both show reduced skew 

values in sodium and uric acid respectively when compared to both their original values. 

This reduced skew is reflected in both their distributions as shown in the graph, where 

their distributions look less skewed. However, in general skewness is dominant in uric 

acid, which is visually shown in the graph and the skew values in table 3.6.  FKM in the 

sodium shows a subtle increased 𝜇𝜇 value of 138.64 and 𝜎𝜎 value of 3.78, therefore causing 

a shift in the distribution and a larger spread in the graph shown in figure 3.4. 
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Figure 3.5 Original and imputation distributions of the alive class
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Table 3.7:  Original and after imputation statistical measures of the alive class 

Alive class 

 Sodium Creatinine Uric acid 

Statistical 
measures 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

𝜇𝜇 𝜎𝜎 Median Skew 
value 

Original 138.93 3.00 139 -0.93 101.75 36.30 94 3.09 0.42 0.41 0.38 23.34 

CMC 138.93 2.94 139 -0.95 101.74 35.59 95 3.15 0.42 0.37 0.40 25.84 

EM 138.92 2.96 139 -0.89 102.88 37.22 95 2.93 0.44 0.39 0.41 22.58 

FKM 139.28 3.41 139 -0.20 102.30 35.74 95 3.07 0.41 0.37 0.38 25.84 

KM 138.93 2.94 139 -0.94 102.63 36.15 95 3.00 0.42 0.37 0.41 25.84 

KNN 138.92 2.94 139 -0.93 102.06 35.79 95 3.08 0.41 0.37 0.38 25.83 

MC 138.96 2.94 139 -0.97 101.36 35.71 93 3.15 0.41 0.37 0.38 25.85 

SVM 138.93 2.94 139 -0.95 101.37 35.63 93 3.17 0.54 0.47 0.42 13.00 
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The graph in figure 3.5 presents the original and seven missing data imputation 

methods distributions of the three variables for the alive class while table 3.7 presents the 

original and after imputation statistical measures of the alive class. In table 3.7 FKM 

shows a reduced skew value of -0.20 in sodium while SVM shows a reduced skew value 

of 13.00 in uric acid. FKM, EM and SVM show an increased 𝜎𝜎 value of 3.41, 37.22 and 

0.47 in sodium, creatinine and uric acid respectively. This is also reflected in their 

distributions shown in figure 3.5, where each distribution deviates from the distributions 

of the other imputation methods. It also indicates a large spread and variation in their 

distributions.  

It can also be seen in figure 3.5 that the original distribution of sodium and creatinine 

variables does not hugely deviate from the imputation distributions with the exception of 

FKM and EM respectively. This indicates that CMC, KM, KNN, MC, SVM imputations 

have not had a great effect on the alive class. However, in uric acid the change is marked, 

where all the imputation distributions deviate from the original. However, MC, FKM, 

KM and KNN all show identical distributions. This is reflected in table 3.7 where their 𝜇𝜇 

and 𝜎𝜎 are identical.  

3.5 Summary  

This chapter has discussed the descriptive stage of the proposed workflow, which 

involved two steps: 1) the data exploration step and 2) the data preparation step. Both 

steps entailed the distribution of the overall data, the dead class and the alive class as well 

as their statistical measures such as the mean, standard deviation, median and skew 

values. The statistical measures are important descriptive statistics and provide more 

information in understanding the statistical characteristics and properties of the dataset. 

For example, the relationship between the mean and standard deviation is used to measure 

how far the statistical variation and dispersion are from the mean. A high or low skew 
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value indicates how far the variable distribution deviates from a normal distribution. The 

relationship between the mean and median allows an identification of the distribution type 

the variables and the imputation methods represent. It can be seen that in all three data 

groups (overall data, dead class and alive class), creatinine and uric acid distributions all 

represent a positive skew, as their mean values are greater than their median values, while 

sodium distributions are negatively skewed as their mean values are less than their median 

values.  

The data preparation step involved seven missing data imputation methods which are 

shown to alleviate the missing data issue in clinical data. However, the main purpose is 

to understand their mechanisms and determine their effect on the dataset primarily the 

statistical measures. In all three data groups, FKMI, EMI and SVMI show the most 

change in the distributions and the statistical measures. Ideally the nature of the 

distribution should not change by a large margin as this will change classification 

performance. However, Luengo and co-authors (Luengo et al., 2012) states that MCI, 

KNNI, EMI are commonly used, while FKMI and SVMI are suggested as the best 

methods for imputing missing data and in improving the behaviour of classification. For 

example C4.5 behaves better when missing data is imputed with SVMI while FKMI 

works best, no matter what classification method is chosen (Luengo et al., 2012).  
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CHAPTER 4-THE PREDICTIVE STAGE  

4.1 Introduction 

The previous chapter discussed the descriptive stage of the workflow. This involved 

the exploration of the Hull LifeLab dataset. The distribution of the data for each variable 

was analysed which allowed an investigation of the properties of the data, including 

missing data and the problem of skews in the dataset. Of the challenges posed by such a 

dataset, missing data has a special place. The reason is that an incorrect imputation can 

change the distribution characteristics of the dataset. Most classification techniques that 

are based on probabilistic distribution can cause a dramatic change in distribution and 

have a detrimental effect on the performance of the classifier.  

This chapter discusses the predictive stage of the workflow. The stage involves the 

use of information learned about the data in the descriptive stage of the workflow (chapter 

3), for example, the exploration of the variable distributions and statistical measures of 

the data and the application of seven missing data imputation methods. This chapter uses 

the original and imputed datasets to construct a predictive model in order to extract and 

explain useful knowledge about the data in order to predict future outcomes. The primary 

focus is to predict ‘what will happen’ through the application of Bayes classifier. This 

stage also explores the effect of the classifier on the different datasets, the relationship 

between the imputation methods and how the information can assist clinicians in clinical 

decision making. 

Bayes classifier learns the underlying probabilistic model of the data, i.e. by 

modelling the interactions between the variables and the missing data imputation 

methods. The approach only requires an estimate of a few parameters, therefore having a 

lower variance for the parameter estimates (Hand, 1992). Due to its simplicity, the 

approach has been applied in many studies and produced improved predictive 
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performance (John and Langley, 1995, Friedman et al., 1997, Hand and Yu, 2001, Mani 

et al., 1997), compared to various methods such as Artificial Neural Networks (ANNs) 

(Wang, 2003) that perform equally well and are capable of building predictive models 

from clinical data. Bayes classifier accommodates explanation and model transparency 

while ANN is considered as a ‘black box’ which does not provide thorough understanding 

of the mechanisms that govern the outcome (Bellazzi and Zupan, 2008). 

The following sections will discuss the different types of performance metrics 

applied, Bayes classifier and its classification performance results. This will include the 

naïve Bayes performance of the original clinical data and the seven missing data 

imputation methods discussed in chapter 3. Based on the performance outcome of these 

results, such as if the performance is not good enough, an augmented naïve Bayes will be 

applied, known as Tree Augmented Naïve (TAN) Bayesian classifier (Shi and Huang, 

2002, Friedman and Goldszmidt, 1996, Friedman et al., 1997), to improve classification 

accuracy (Chow and Liu, 1968, Cheng and Greiner, 1999). The time, space and structural 

complexities of both classifiers are also briefly discussed in order to understand how their 

complexities impact classification accuracy.  

4.2 Performance evaluation 

The purpose of performance evaluation is to determine the effectiveness and 

usefulness of any classifier. Most performance evaluation measures such as a confusion 

matrix are used to determine a classifier’s ability to identify classes correctly (Gu et al., 

2009).  

This section will discuss the application of a confusion matrix and the many common 

performance metrics derived from it such as: True Positive (TP), False Positive (FP), 

True Negative (TN) and False Negative (FN). These metrics will be used to illustrate how 

to calculate five evaluation measures and how to use the results for prediction. The 
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evaluation measures estimated are: Positive Predictive Value (PPV), Negative Predictive 

Value (NPV), sensitivity (SEN) also known as recall, specificity (SPEC) and overall 

accuracy (ACC).  

4.2.1 Confusion matrix and evaluation measures 

An objective method for evaluating and assessing the performance of classification 

algorithms is the use of a confusion matrix. This confusion matrix is a table that represents 

the performance of classification and summarises the learning system’s performance 

(Fawcett, 2006, Gu et al., 2009, Powers, 2011, Marschollek et al., 2008, Subasi et al., 

2006, Hess et al., 2006, Karbing et al., 2007, Stehman, 1997) . In this thesis a two by two 

layout is applied as shown in table 4.1. This table shows a confusion matrix of a two class 

problem: positive and negative. The first column presents the true class outcome and the 

first row presents the predicted class outcome. The table consist of four possible predictor 

outcomes; TP, TN, FP and FN (Costa et al., 2007). TP is when instances are correctly 

classified as positive, TN is when instances are correctly classified as negative. FP is the 

number of misclassified negative instances classified as positive while FN is the number 

of misclassified positive instances classified as negative. In the Hull LifeLab dataset, TP 

and TN are considered as alive and dead instances correctly classified as alive and dead 

respectively, while FP and FN are dead and alive instances incorrectly classified as alive 

and dead respectively. 

Performance measure  Predicted 
Positive Negative 

True Positive True Positive 
(TP) 

False Negative 
(FN) 

Negative False Positive 
(FP) 

True Negative 
(TN) 

Table 4.1: Confusion matrix table 

The four outcomes are commonly used by five evaluation measures for determining 

and evaluating the effectiveness of the classifier. The evaluation measures are; Positive 
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Predictive Value (PPV) (equivalent to precision), Negative Predictive Value (NPV), 

sensitivity (SEN) also known as recall, specificity (SPEC) and overall accuracy (ACC). 

Their equations are shown below in equations 4.1 – 4.5 respectively. 

𝑃𝑃𝑃𝑃𝑃𝑃 (𝑝𝑝𝑎𝑎𝑒𝑒𝑐𝑐𝑖𝑖𝑒𝑒𝑖𝑖𝑜𝑜𝑛𝑛) = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

                      4.1 

        𝑁𝑁𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑁𝑁
(𝑇𝑇𝑁𝑁+𝐹𝐹𝑁𝑁)

              4.2 

  𝑆𝑆𝑒𝑒𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑖𝑖𝑣𝑣𝑖𝑖𝑘𝑘𝑦𝑦 (𝑎𝑎𝑒𝑒𝑐𝑐𝑎𝑎𝑟𝑟𝑟𝑟) = 𝑇𝑇𝑇𝑇
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑁𝑁)

              4.3 

   𝑆𝑆𝑝𝑝𝑒𝑒𝑐𝑐𝑖𝑖𝑓𝑓𝑖𝑖𝑐𝑐𝑖𝑖𝑘𝑘𝑦𝑦 = 𝑇𝑇𝑁𝑁
(𝑇𝑇𝑁𝑁+𝐹𝐹𝑇𝑇)

                                               4.4 

  𝐴𝐴𝑐𝑐𝑐𝑐𝐴𝐴𝑎𝑎𝑎𝑎𝑐𝑐𝑦𝑦 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑁𝑁
(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇+𝐹𝐹𝑁𝑁+𝑇𝑇𝑁𝑁)

               4.5 

PPV, NPV, SEN, SPEC and ACC are all measures of accuracy of the Hull LifeLab 

dataset and their percentages will be given. PPV estimates are the percentage of positive 

examples correctly predicted as positive, while NPV are the percentage of negative 

examples correctly predicted as negative. Based on our dataset, the positives are the alive 

class and the negatives are the dead class as the alive class is a representation of a positive 

outcome and the dead class is a representative of a negative outcome in the heart failure 

dataset. Ford and colleagues (Ford et al., 2007) state that in using population-based data 

for risk factor analyses it is important that identified cases are true cases. Therefore, high 

PPV should be achieved. This is also key in this research where PPV and NPV evaluation 

measures are both identified as true positive and negative cases respectively and high 

percentages of both predictions are important. Sensitivity (SEN) is the proportion of 

actual positive examples that are correctly identified as positive. In a clinical context and 

in machine learning, sensitivity is regarded as primary as it aims to identify all real 

positive cases and focuses on how confident the classifier is (Powers, 2007). Specificity 

(SPEC) is the actual negative examples that are correctly identified as negative. Accuracy 



55 

 

(ACC) measures the percentage of the overall accuracy of correct predictions and 

effectiveness of the classifier (Costa et al., 2007, Gu et al., 2009, Powers, 2007). A perfect 

evaluation measure would be described as 100% therefore it is important to achieve a 

high performance so that suitable clinical decisions are made. 

 

Figure 4.1 Relationship of performance indicators 

Figure 4.1 shows the relationship of the performance indicators. It can be seen that 

classification accuracy should be increased in TP and TN rates; this does not mean that 

the accuracy of FP and FN are not important. However the number of misclassified dead 

examples classified as alive (FP) and misclassified alive examples classified as dead (FN) 

should be relatively low. This is crucial for clinical reasons as both outcomes can result 

in false decision making for personalised care. However, chapter 5 of this thesis will only 

consider the number of FP results to be extremely low (Pepe et al., 2004), as a high FP 

prediction may have more serious consequences than a FN prediction. For example, a 

high FP prediction can provoke anxiety, increase costs and cause morbidity. It is also 

important to clinicians to obtain the true healthy individuals from the population during 
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screening. This indicates a successful screening and thus allows better planning for 

personalised care for the sick population. In addition, in other clinical studies such as 

breast cancer, techniques are needed in order to decrease FP results while maintaining 

high sensitivity (Elmore et al., 1998). 

 
Figure 4.2 Relationship between precision and recall value of 

classification 

Figure 4.2 presents the relationship between precision and recall in the target class; 

alive and dead class respectively. It can be seen that precision is required in both classes, 

but especially in the alive class. Precision is a combination of the correct classified 

examples (TP) and the misclassified examples (FP), thus the number of relevant records 

retrieved to the total number of irrelevant and relevant records retrieved. Recall is a 

combination of TP and FN, meaning the number of relevant records retrieved to the 

number of relevant records in the dataset. It is important to distinguish and understand 

the differences between each prediction outcome and evaluation measure so that 

classification performance is interpreted correctly for clinical decision making. 

4.3 Naïve Bayes classifier 

The naïve Bayes approach allows us to capture uncertainty about the assumed 

underlying probabilistic model by determining probabilities of the outcomes. Prior 

knowledge about the data and observed data are both combined in order to provide a 
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useful perspective for understanding and learning the predictive task. For example it is 

applied in clinical settings to solve diagnostic and predictive problems such as a case of 

heart failure where a group of patients are identified either as high risk or low risk; where 

the high risk group represents 485 patients and low risk 1459 patients. If an observed 

patient who is ‘known’ to be low risk has a posterior probability greater than that of the 

high risk posterior probability, the patient will be classified as low risk and if not greater, 

the said patient will be classified as high risk. Thus a naïve Bayes classifier is a simple 

probabilistic approach that presents clear semantics for learning probabilistic knowledge, 

with the independent assumption of variables within each class (Karlık and Öztoprak, 

2012).Two assumptions are made, when using a naïve Bayes classifier.  

Assumption 1: It is assumed that the predictive variable 𝑋𝑋𝑖𝑖 is conditionally 

independent given the class variable 𝐶𝐶 as shown in figure 4.3 (John and Langley, 1995, 

Muhammed, 2012). 

 This is also known as the strong naïve independence assumption between the 

variables. The conditional probability can be determined using Bayes’ theorem thus the 

conditional probability of each class given the observed values is:  

   𝑝𝑝(𝐶𝐶 = 𝑐𝑐|𝑋𝑋 = 𝑥𝑥) = 𝑝𝑝(𝑋𝑋=𝑥𝑥|𝐶𝐶=𝑐𝑐)𝑝𝑝(𝐶𝐶=𝑐𝑐)
𝑝𝑝(𝑋𝑋=𝑥𝑥)

     (4.6) 

where: 

• 𝐶𝐶 is the random variable denoting the class of an instance 

• 𝑋𝑋 is a vector of random variables denoting the observed variable values 

• 𝑐𝑐 represents a particular class label while 𝑥𝑥 represents a particular observed variable 

value vector. 

Assumption 2: Within each class the numeric variables are in a Gaussian (normal) 

distribution.  
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Thus knowing the mean (𝜇𝜇) and standard deviation (𝜎𝜎) allows us to determine the 

distribution for each variable. Further, given that we are interested in the probability given 

a class, the data is separated into classes and for each class the mean and standard 

deviation are estimated. Thus the conditional probability of an observed value is: 

  𝑃𝑃(𝑋𝑋𝑖𝑖|𝐶𝐶 = 𝑐𝑐𝑗𝑗) = 1

�2𝜋𝜋𝜎𝜎𝑖𝑖𝑗𝑗
𝑒𝑒𝑥𝑥𝑝𝑝

�− 
�𝑋𝑋𝑖𝑖−𝜇𝜇𝑖𝑖𝑗𝑗�

2

2𝜎𝜎
2
𝑖𝑖𝑗𝑗

�                   

    (4.7) 

where: 

• 𝜇𝜇𝑖𝑖𝑗𝑗 is the mean of the variable values in 𝑥𝑥𝑖𝑖 associated with class 𝐶𝐶 = 𝑐𝑐𝑗𝑗 

• 𝜎𝜎𝑖𝑖𝑗𝑗 is the standard deviation of the variable values in 𝑥𝑥𝑖𝑖, associated with class 

𝐶𝐶 = 𝑐𝑐𝑗𝑗 

Table 4.2 gives an outline of the naïve Bayes algorithm. 

No. Steps 
0 get 𝑐𝑐𝑗𝑗  

class and 𝑥𝑥𝑖𝑖 feature 
1 Model the Gaussian distribution (4.7) to compute the mean 𝜇𝜇𝑖𝑖 and 

standard deviation 𝜎𝜎𝑖𝑖 for 𝑥𝑥𝑖𝑖 

2 Use the above steps to compute the posterior probabilities (4.7) 

3 Calculate the conditional probabilities 𝑝𝑝(𝑐𝑐|𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) for 𝑥𝑥𝑖𝑖  (4.6) 

Table 4.2: Naïve Bayes classifier algorithm 

In chapter 3, Hull LifeLab clinical dataset was explored and it was found that not all 

variables within the dataset have a classic Gaussian distribution; in other words skew 

distributions are presented. Indeed, this is a characteristic of real life clinical data. As 

discussed earlier (section 4.1), naïve Bayes is applied because it provides an insight into 

the structure of the data space and identifies potential problems associated. In addition, 

as will be seen in this chapter and in later chapters, Bayes processes will enable an 

analysis of the data space in order to answer: (a) Can missing data imputation methods 

improve prediction accuracy of outcome of heart failure and the classifier learned? (b) 
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What are the underlying factors yielding poor performance? (c) How can better 

classification accuracy be achieved? Modelling the true distributions of the data prevents 

the above from being achieved and will change the true nature of the data. However, in 

later chapters (see chapter 6), methods which use the existing data distribution are 

discussed. 

Naïve Bayes has many advantages in that unlike many other classifiers it only requires 

a small amount of training data to perform analysis and at the same time it is 

computationally more efficient. The time complexity of the algorithm is 𝑂𝑂(𝑁𝑁𝑛𝑛), where 

𝑁𝑁 is the number of training instances and 𝑛𝑛 is the number of attributes (Yan et al., 2011). 

During training time, naïve Bayes requires only two tables: one to store the class 

probability estimates and the other to store the conditional attribute-value probability 

estimates. Therefore the resulting space complexity is 𝑂𝑂(𝑁𝑁𝑛𝑛𝜇𝜇𝑖𝑖𝑗𝑗), where 𝜇𝜇𝑖𝑖𝑗𝑗 is the mean 

number of values per attribute (Webb et al., 2005).  

Figure 4.3 presents the graphical structure of naïve Bayes (Liangxiao et al., 2009) 

which indeed is a direct representation of ‘Assumption 1’. Liangxiao and colleagues state 

that naïve Bayes is the simplest form of Bayesian network to construct, where all arcs are 

directed from the class 𝐶𝐶 node as the parent to the predictive variable 𝑥𝑥1 … 𝑥𝑥𝑛𝑛 nodes.  

 

 

 

 

 

Figure 4.3 A naïve Bayes structure in which variables are 

conditionally independent given the class variable.

𝐶𝐶 

𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑛𝑛 𝑥𝑥1 
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4.4 Naïve Bayes performance of clinical data  

The naïve Bayes performance of the original clinical dataset and the dataset imputed 

with seven missing data imputation methods will be presented. A confusion matrix will 

be used to show their classification performances and evaluation measures (PPV, NPV, 

SEN, SPEC and ACC) which will be presented as percentages. 

4.4.1 Naive Bayes performance of original clinical data 

In order to understand the performance of the algorithm and the data structure, the 

naïve Bayes method was first tested on the original dataset. This further enables bench 

marking of the algorithm. 

 Predict Evaluation measure % 
True Alive Dead PPV 85 
Alive 1178TP 281FN NPV 50 
Dead 211FP 274TN SEN 81 
 SPEC 56 

ACC 75 

Table 4.3: Naïve Bayes performance of the original clinical dataset  

Table 4.3 shows the naïve Bayes performance of the original clinical data and it can 

be seen that the PPV and SEN are 85% and 81% respectively. PPV and SEN measure 

different, yet complementary aspects of the performance. PPV measures the number of 

incorrectly classified positives, while SEN measures FN. Thus the naïve Bayes algorithm 

with a PPV of 85% can be interpreted as predicting 15% as being alive when they should 

be classed as dead. Similarly, a SEN of 81% can be interpreted as the algorithm predicting 

19% dead when they should have been predicted as alive. While NPV and SPEC are 50% 

and 56% respectively, these represent the TN result. However both measures are different 

and yet complement each other. NPV measures the number of incorrectly classified 

negatives, while SPEC measures the number of incorrectly classified positives. Therefore 
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it can be interpreted as the algorithm predicting 50% as dead when they should be alive 

and 44% as alive when in fact they should have been predicted as dead.  

4.4.2 Naive Bayes performance of imputation methods 

Table 4.4 presents the naïve Bayes performance of the seven imputation methods.
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Table 4.4: Naïve Bayes performance of the imputation methods

CMC Predict Evaluation 
measure 

% EM Predict Evaluation 
measure 

% 

 True Alive Dead PPV 86  True Alive Dead PPV 85 
Alive 1198TP 261FN NPV 52 Alive 728TP 731FN NPV 33 
Dead 202FP 283TN SEN 82 Dead 132FP 353TN SEN 50 

 SPEC 58  SPEC 73 
ACC 76 ACC 56 

FKM Predict Evaluation 
measure 

% KM Predict Evaluation 
measure 

% 

 True Alive Dead PPV 85  True Alive Dead PPV 85 
Alive 1207TP 252FN NPV 52 Alive 1196TP 263FN NPV 51 
Dead 213FP 272TN SEN 83 Dead 212FP 273TN SEN 82 

 SPEC 56  SPEC 56 
ACC 76 ACC 76 

KNN Predict Evaluation 
measure 

% MC Predict Evaluation 
measure 

% 

 True Alive Dead PPV 85  True Alive Dead PPV 85 
Alive 1201TP 258FN NPV 52 Alive 1201TP 258FN NPV 51 
Dead 211FP 274TN SEN 82 Dead 216FP 269TN SEN 82 

 SPEC 56  SPEC 55 
ACC 76 ACC 76 

SVM Predict Evaluation measure % 
 True Alive Dead PPV 86 

Alive 1204TP 255FN NPV 53 
Dead 196FP 289TN SEN 83 

 SPEC 60 
ACC 77 
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It can be seen that there is a similarity in classification performance in CMC, FKM, KM, 

KNN, MC and SVM imputation methods. The naïve Bayes algorithm presents CMC and 

SVM with PPV of 86%, similarly FKM, KM, KNN and MC shows 85%, which can be 

interpreted as predicting 14% and 15% as being alive when they should be classed as 

dead. The evaluation performance of CMC, KM, KNN and MC also show SEN to be 

similar to PPV, with each imputation method showing SEN of 82%, while FKM and SVM 

show 83%. This means that 18% and 17% respectively are predicted as dead when they 

should have been predicted as alive. The table also shows that CMC, FKM, KM, KNN 

and MC all share the same ACC of 76% while SVM shows a similar ACC of 77%. 

On the contrary, EM presents SEN of 50%. This can be interpreted as predicting 50% 

as being dead when they should be predicted as alive. Similarly this is also shown in NPV 

of CMC, FKM and KNN where NPV is 52%, while KM and MC show 51% and SVM 

53%, which indicates that 48%, 49% and 47% respectively, are incorrectly classified 

negatives and therefore predicted as being dead when they should be classed as alive. The 

algorithm also shows SPEC of 56% in FKM, KM and KNN, 55% in MC while CMC 

shows 58%. It can be interpreted as the algorithm predicting 44%, 45% and 42% 

respectively as alive when they should have been predicted as dead. However NPV and 

SPEC of the EM are 33% and 73% respectively. Since NPV measures the number of 

incorrectly classified negatives (FN), it can be interpreted as the algorithm predicting 67% 

as being dead when they should be alive. Similarly, SPEC can be interpreted as predicting 

27% alive when they should have been predicted as dead. The NPV result shows a poor 

performance as more than half of it shows a large number of the population to be 

incorrectly classified. If, for example, the number of TNs (NPV) increased, thus the 33%, 

this would automatically reduce the portion of the falsely classified results.   
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These similarities in classification performance may be due to the similar task shared 

amongst some of the imputation methods. For example, KM, FKM and KNN all impute 

missing data based on a 𝑘𝑘 number and with CMC all four imputation methods use the in 

class mean for imputation. Although KNN and KM impute missing data based on some 

measure of similarity and dissimilarity respectively, however their task for imputing 

missing data is very similar. For example KM applies a nearest neighbour algorithm to 

replace missing data in a similar way to KNN. CMC is an extension of MC and their task 

is relatively similar in that they both use  mean estimates for imputation (Luengo et al., 

2012). Luengo and colleagues state that FKM and SVM perform best when using Bayes 

classifiers, this is shown in table 4.4 where SVM presents the best classifier, but not by a 

large margin.  

It can also be seen in the table that SEN and SPEC are inversely proportional, 

indicating that as the SEN increases SPEC decreases and vice versa. PPV and NPV are 

related to the prevalence of heart failure in the population; therefore as the percentage of 

PPV increase, NPV decreases. 

The classification performances in table 4.3 and 4.4 are very similar. This suggests 

that despite the challenges present in the data such as missing data, the naïve Bayes 

performance of the original clinical data (table 4.3) is able to produce good results. This 

is an indication that naïve Bayes is not too sensitive to missing data. The similarities in 

performance in table 4.4 also indicate that some of the imputation methods have not 

modified the data space by a large margin. However, the results do indicate that 

improvement can be made, in that the number of FPs and FNs can be reduced. This also 

leads to the associated question, if they cannot be improved upon, what is it in the data 

that is resulting in this lack of improvement? In other words, ideally the aim is to be able 
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to obtain optimal classification accuracy. As a result, TAN will be implemented in the 

next section to achieve this, as well as learn the classification model efficiently. 

4.5 Tree augmented naïve Bayesian network 

TAN is an extension of naïve Bayes that constructs a tree-like structure Bayesian 

network (Friedman et al., 1997). TAN weakens and manipulates the strong conditional 

independence assumption presented by naïve Bayes (Jiang et al., 2012), in order to find 

correlation among attributes. Figure 4.4 presents a TAN Bayesian network structure. The 

dashed arcs are required by the naïve Bayes classifier, with one arc from the class 𝐶𝐶 node 

(as the parent) connecting to all attributes 𝑥𝑥1 … 𝑥𝑥𝑛𝑛, while the solid arcs represent the 

correlation and dependences between attributes, forming an undirected tree making it 

possible to learn the classification model effectively (Friedman et al., 1997). The structure 

has the advantage of preventing over fitting problems (Friedman et al., 1997, Bouhamed 

et al., 2012). However, its disadvantage is that it restricts the number of parents to only a 

single parent (the class node) for each attribute required and at most one other attribute.  

 

 

 

 

 

 

Figure 4.4 A Tree Augmented Naïve Bayesian network 

Table 4.5 shows a four step learning algorithm for constructing a tree Bayesian 

network (Friedman et al., 1997, Jiang et al., 2005, Chow and Liu, 1968). The tree  is 

constructed based on a procedure described by Chow and Liu (Chow and Liu, 1968) 

𝐶𝐶 

𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑛𝑛 𝑥𝑥1 
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which involves implementing mutual information relationships between two features 𝑋𝑋,𝑌𝑌 

which  measures how much information 𝑌𝑌 provides about 𝑋𝑋. The approach finds a tree 

that maximises the likelihood given the data. 

  𝐼𝐼𝑇𝑇�𝐷𝐷(𝑋𝑋;𝑌𝑌) = ∑ 𝑃𝑃�𝐷𝐷(𝑥𝑥,𝑦𝑦 𝑥𝑥,𝑦𝑦) 𝑟𝑟𝑜𝑜𝑎𝑎 𝑇𝑇�𝐷𝐷(𝑥𝑥,𝑦𝑦)
𝑇𝑇�𝐷𝐷(𝑥𝑥)𝑇𝑇�𝐷𝐷(𝑦𝑦)

                      (4.8) 

Step  Learning algorithm for constructing a tree 

 Input: a training dataset 𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 

1 Compute the mutual information 𝐼𝐼𝑇𝑇�𝐷𝐷 �𝑋𝑋𝑖𝑖;  𝑋𝑋𝑗𝑗|𝐶𝐶� between each pair of 

features, 𝑖𝑖 ≠ 𝑗𝑗 defined by eq.4.8 

2 Build a complete undirected tree where nodes are features 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑚𝑚. 

Annotate the weight of an arc connecting 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑗𝑗 by 𝐼𝐼𝑇𝑇�𝐷𝐷�𝑋𝑋𝑖𝑖;  𝑋𝑋𝑗𝑗� 

3 Construct an undirected Maximum Weighted Spanning Tree (MWST). 

An example is shown in fig. 4.5. MWST time complexity is 𝑂𝑂(𝑛𝑛2 log𝑛𝑛), 

𝑛𝑛 is the number of node in the graph (Friedman et al., 1997) . 

4 Transform the undirected tree to a directed tree by choosing a root feature 

and setting the direction of all arcs to be outward from it. For example 𝑥𝑥1 

is chosen as the root node (fig. 4.6) 

Table 4.5: Learning algorithm for constructing a tree 

 

 

 

 

Figure 4.5 An undirected tree 

The Maximum Weighted Spanning Tree (MWST) shown in step 3 is constructed by 

selecting a subset of arcs from a graph which constitute the tree and the sum of weights 

attached to the selected arcs are maximised.   

 

𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑛𝑛 
𝑥𝑥1 
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Figure 4.6 A directed tree 

 

 

 

Table 4.6: Learning algorithm for constructing TAN 

Table 4.6 shows a five step learning algorithm for constructing TAN. The algorithm 

is similar to that of the algorithm for constructing a tree shown in table 4.5 except that 

instead of using the mutual information between two features, it considers conditional 

mutual information between features 𝑋𝑋,𝑌𝑌 given the class variable 𝐶𝐶.  

  𝐼𝐼𝑇𝑇�𝐷𝐷  (𝑋𝑋;𝑌𝑌|𝐶𝐶) = ∑ 𝑃𝑃�𝐷𝐷(𝑥𝑥, 𝑦𝑦, 𝑐𝑐)𝑟𝑟𝑜𝑜𝑎𝑎 𝑇𝑇�𝐷𝐷(𝑥𝑥,𝑦𝑦|𝑐𝑐)
𝑇𝑇�𝐷𝐷(𝑥𝑥|𝑐𝑐)𝑇𝑇�𝐷𝐷(𝑦𝑦|𝑐𝑐)𝑥𝑥,𝑦𝑦,𝑐𝑐   (4.9) 

The time and space complexity is 𝑂𝑂(𝑛𝑛2𝑁𝑁) and 𝑂𝑂(𝑛𝑛2) respectively, where 𝑛𝑛 is the 

number of variables, 𝑁𝑁 is the number of samples in the training set (Friedman et al., 

Step  Learning algorithm for constructing TAN 

 Input: a training dataset 𝑋𝑋1, … ,𝑋𝑋𝑚𝑚 

1 Compute the conditional mutual information 𝐼𝐼𝑇𝑇�𝐷𝐷 �𝑋𝑋𝑖𝑖;  𝑋𝑋𝑗𝑗|𝐶𝐶� between 

each pair of features, 𝑖𝑖 ≠ 𝑗𝑗 defined by eq. 4.9. 

2 Build a complete undirected tree where nodes are features 𝑥𝑥𝑖𝑖 , … , 𝑥𝑥𝑚𝑚. 

Annotate the weight of an arc connecting 𝑥𝑥𝑖𝑖 to 𝑥𝑥𝑗𝑗 by 𝐼𝐼𝑇𝑇�𝐷𝐷�𝑋𝑋𝑖𝑖;  𝑋𝑋𝑗𝑗� 

3 Construct an undirected Maximum Weighted Spanning Tree (MWST). 

An example is shown in fig. 4.5. MWST time complexity is 𝑂𝑂(𝑛𝑛2 log𝑛𝑛), 

𝑛𝑛 is the number of node in the graph (Friedman et al., 1997) . 

4 Transform the undirected tree to a directed tree by choosing a root feature 

and setting the direction of all arcs to be outward from it. For example 𝑥𝑥1 

is chosen as the root node (fig. 4.6) 

5 Build a TAN model by adding a node labelled 𝐶𝐶 and adding the arc from 

𝐶𝐶 to each 𝑋𝑋𝑖𝑖(dashed lines); fig 4.4 

 Output: Returns a naïve Bayes network augmented with a tree (TAN) 

𝑥𝑥2 𝑥𝑥3 𝑥𝑥𝑛𝑛 𝑥𝑥1 
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1997). Construction of the algorithm indicates that its memory requirement is quadratic 

in the number of attributes. Therefore the space requirement is higher than that of naïve 

Bayes. This also makes it unfeasible to apply high dimensional data (Shi and Huang, 

2002). TAN stores the probability estimates for each attribute-value conditioned by the 

parent selected for that attribute, and the class (Webb et al., 2005). A previous study by 

Meila (Meila, 1999) investigates a way of reducing the space requirements by fitting tree 

distributions to high dimensional sparse data. This led to an acceleration of the tree 

learning algorithm, which in turn increases computational complexity.  

4.5.1 Tree augmented naïve Bayes performance of original clinical data 

Table 4.7: Tree augmented naïve Bayes performance of the original clinical 

data 

Table 4.7 presents the TAN Bayes performance of the original clinical dataset. It can 

be seen that although PPV and SEN measures are different, their performance is similar. 

The TAN algorithm with a PPV of 87% can be interpreted as predicting 13% as being 

alive (FP) when they should be classed as dead. Similarly, a SEN of 88% can be 

interpreted as the algorithm predicting 12% dead when they should have been predicted 

as alive. NPV and SPEC show a performance of 62% which can be interpreted as the 

algorithm predicting 38% as FN (dead) and FP (alive) respectively. The algorithm shows 

an overall ACC of 81%. This result shows that there is an improvement when compared 

to the naïve Bayes performance of the original clinical data shown in table 4.3, as TAN 

shows a greater performance than that of naïve Bayes, which shows PPV, NPV, SEN, 

 Predicted Evaluation measures % 
True Alive Dead PPV 87 
Alive 1278TP 181FN NPV 62 
Dead 185FP 300TN SEN 88 
 SPEC 62 

ACC 81 
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SPEC and ACC to be 86%, 52%, 82%, 58% and 76% respectively. The numbers of 

incorrectly classified positives and negatives are also reduced in TAN. For example the 

percentage of FPs (PPV) in naïve Bayes and TAN are 15% and 13% respectively and 

FNs (SEN) are 19% in naïve Bayes and 12% in TAN Bayes.  

4.5.2 Tree augmented naïve Bayes performance of imputation methods 

Table 4.8 shows the TAN performance of the seven missing data imputation methods. It 

can be seen from their evaluation measures that the classification performances have 

improved when compared to that of the naïve Bayes in table 4.4. For example SVM shows 

the most improvement, with a PPV of 96% in TAN and 86% in naïve Bayes. The number 

of FPs is also reduced by a difference of 10%. For example as PPV measures the number 

of incorrectly classified positives (FPs), the TAN Bayes algorithm with a PPV of 96% 

can be interpreted as predicting 4% as being alive when they should be classed as dead, 

while the number of incorrectly classified positives in naïve Bayes is 14%.  

However, the EM imputation shows a low SPEC of 51%, while naïve Bayes shows 

73%. This can also be interpreted as TAN Bayes algorithm predicting 49% as being alive 

therefore increasing the number of FPs when compared to FPs of 27% in naïve Bayes. 

The reason for this could be due to the maximisation relationship shared by the TAN and 

EM algorithms. The maximisation step of the EM algorithm maximises the expected 

maximum likelihood found in the expectation step to impute missing data, while TAN 

maximises the log likelihood in step 3 of the learning algorithm.  

Just like in the naïve Bayes performance FKM, KM, KNN and MC also present 

similar TAN performances and when compared to the TAN performance of the original 

clinical data. For example the imputation methods and original data have a PPV (except 

MC) and ACC of 87% and 81% respectively, similar NPV, SEN and SPEC measures are 

also shown. This indicates that the imputation methods did not change the data space; 
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however there is an improvement when compared to naïve Bayes performance due to the 

difference in their learning algorithm. However CMC performance strays from their 

performance in that CMC shows a better performance where PPV, SEN, NPV, SPEC and 

ACC are 93%, 92%, 77%, 79% and 89% respectively, therefore, predicting 7%, 8%, 23%, 

21% and 11% as FP and FN respectively. The improvement in TAN Bayes is due to the 

augmentation during learning of the algorithm. For example the algorithm relaxes the 

independent assumption in naïve Bayes by estimating the conditional mutual information 

in order to capture correlations between the variables given the class variable. However, 

an advantage is that the independent assumption allows parameters for each variable to 

be learned separately, especially when the number of variables is large.  
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Table 4.8: Tree augmented naïve Bayes performance of the seven imputation methods

CMC Predict Evaluation 
measure 

% EM Predict Evaluation 
measure 

% 

 True Alive Dead PPV 93  True Alive Dead PPV 84 
Alive 1347TP 112FN NPV 77 Alive 1283TP 176FN NPV 58 
Dead 101FP 384TN SEN 92 Dead 238FP 247TN SEN 88 

 SPEC 79  SPEC 51 
ACC 89 ACC 79 

FKM Predict Evaluation 
measure 

% KM Predict Evaluation 
measure 

% 

 True Alive Dead PPV 87  True Alive Dead PPV 87 
Alive 1282TP 177FN NPV 62 Alive 1275TP 184FN NPV 62 
Dead 198FP 287TN SEN 88 Dead 187FP 298TN SEN 87 

 SPEC 59  SPEC 61 
ACC 81 ACC 81 

KNN Predict Evaluation 
measure 

% MC Predict Evaluation 
measure 

% 

 True Alive Dead PPV 87  True Alive Dead PPV 88 
Alive 1267TP 192FN NPV 61 Alive 1277TP 182FN NPV 62 
Dead 186FP 299TN SEN 87 Dead 182FP 303TN SEN 88 

 SPEC 62  SPEC 62 
ACC 81 ACC 81 

SVM Predict Evaluation measure % 
 True Alive Dead PPV 96 

Alive 1389TP 70FN NPV 85 
Dead 60FP 425TN SEN 95 

 SPEC 88 
ACC 93 
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4.6 Summary 

Overall the experiments in this chapter show that TAN outperforms naïve Bayes, 

maintains robustness and improves classification accuracy. The results show that TAN 

Bayes is least sensitive to missing data as the algorithm shows the best performance on 

the seven imputation methods. Out of the seven imputation methods SVM performed the 

best. Although, Bayes is robust in the presence of missing data, and this is shown in this 

chapter, however this is true only to some extent. This chapter has also shown that 

imputation can improve the accuracy of the Bayes classifier and thus the prediction 

accuracy. In addition, the results have also shown and allowed us to understand the 

influence the imputation methods have on the classification model.  

 The requirement for time and space complexity is greater in TAN than in naive 

Bayes. Figures 4.7 and 4.8 shows a section of a graph screen shot of naïve Bayes and 

TAN structures of the original clinical dataset obtained from WEKA. Their structural 

complexities differ in that the structure of naïve Bayes is simply straightforward (fig. 4.7), 

whereas TAN (fig. 8) at first glance may appear intimidating and complicated; however 

this helps learn the TAN model effectively. For example the graph shows correlation 

amongst attributes by measuring how much information one attribute provides about 

another attribute. This is illustrated where C-Reactive Protein (CRP) is dependent on 

albumin and ECG and albumin is dependent on calcium and total protein. 

During the learning stage, TAN embodies a good trade-off between the quality of the 

approximation of correlations among attributes and the computational complexity. This 

is an indication that the high complexity required to learn a TAN model is necessary as it 

has improved classification accuracy, which is one of the main purpose of this research. 
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Figure 4.7 Naïve Bayes structure of the original clinical data 

 
…                                                    … 
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Figure 4.8 TAN structure of the original clinical data 
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Naïve Bayes performances of the imputation methods show different performance 

outcomes. For example, PPV of SVM and SPEC of EM imputation methods show the 

maximum percentage outcome with 86% and 73% respectively (table 4.4). Based on this 

difference those performances with maximum percentage outcomes will be combined. 

Therefore the SVM alive class and EM dead class will be combined in order to obtain a 

better classification performance. Chapter 5 will implement naïve Bayes and TAN 

classification in order to determine the performance of the new combined dataset. 
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CHAPTER 5-THE PRESCRIPTIVE STAGE 

5.1 Introduction 

In earlier chapters, not only was the clinical workflow discussed, but in chapter 4, the 

performance metrics and evaluation measures used in the predictive stage were also 

discussed. At the same time the performance of two Bayes-based classification algorithms 

on different imputation schemes was presented. Although it is said that Bayes is immune 

to missing values, given the imbalance in the classes, imputation was carried out. 

Imputation helps maintain the richness of the data so that the expected mean of the whole 

population is obtained; this is also used as a model for the data space. Experiments using 

naïve Bayes and TAN Bayes have shown that TAN achieves better classification accuracy 

than naïve Bayes. The drawback, however, is that TAN has greater space and time 

complexity compared to naïve Bayes (see chapter 4). In this chapter, using the results 

from chapter 4, a detailed analysis of the data space is carried out in order to better 

understand the nature of the data and perhaps to identify a process by which problematic 

variables and records could be identified.    

An important component of Bayes methods is the determination of the means and 

standard deviation of the data for each class (see chapter 3). This implies that it is possible 

to use different methods for imputing data for each class. In chapter 4, results for various 

imputation schemes were presented. Based on these results, this chapter looks into the 

possibility of obtaining data for different classes using different imputation schemes and 

then combining them into one dataset. The new dataset (s) will be referred as a hybrid-

imputed dataset in this thesis. For example as shown in chapter, the performance of naive 

Bayes on data imputed using SVM shows the highest percentage PPV of 86% while the 

EM presents the highest SPEC of 73%. As a result, since PPV is a positive outcome and 

represents the alive class, while SPEC is a negative and represents the dead class, the 
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alive class of the SVM imputed dataset will be combined with the dead class of the EM 

dataset. As will be seen in the coming sections, this approach provides better results; 

however, there is still a significant number of FPs and FNs. In order to understand why 

and how these come about, an investigation of the class posterior probabilities of both the 

FP and TN records is conducted to determine the probabilities associated with prediction. 

The number of missing data present in each FP record will also be investigated to 

determine if they will affect classification performance.   

Euclidean distance is applied to determine the distance and similarity in the FP and 

TN records such as the maximum and minimum Euclidean distances of the dead class and 

their corresponding alive class distances. This will also help to identify the variable 

contributing the most through investigating the ∞ -norm distance of the FP and TN 

records. 

5.2 Performance of hybrid imputed datasets 

Based on the performance of classification using the different imputation schemes, a 

hybrid dataset was created as discussed above. Thus the different imputation methods 

were combined (see 5.2.1) and the performances evaluated. For example, the alive class 

where the missing data was imputed using FKM imputation and the dead class where EM 

imputation was used, were combined to form a new dataset. Other classes imputed with 

different imputation methods were also combined in that order, alive and dead 

respectively, and can be seen in this section. At the same time TAN Bayes is also applied 

to the new hybrid datasets to determine whether better classification accuracy can be 

achieved when compared to naïve Bayes performance. 

 

 



78 

 

5.2.1 Naïve Bayes performance of hybrid dataset 

Based on the results in chapter 4, four hybrid imputed datasets were created. Table 

5.1 shows the performance of naïve Bayes classification on these datasets.  

SVM and EM Predicted Evaluation measures % 
 True Alive Dead PPV 95 

Alive 1447TP 12FN NPV 97 
Dead 79 FP 406TN SEN 99 

 SPEC 84 
ACC 95 

FKM and EM Predicted Evaluation measures % 
 True Alive Dead PPV 95 

Alive 1448TP 11FN NPV 97 
Dead 79FP 406TN SEN 99 

 SPEC 84 
ACC 95 

FKM and SVM Predicted Evaluation measures % 
 True Alive Dead PPV 86 

Alive 1209TP 250FN NPV 54 
Dead 192FP 293TN SEN 83 

 SPEC 60 
ACC 77 

SVM and FKM Predicted Evaluation measures % 
 True Alive Dead PPV 86 

Alive 1220 TP 239 FN NPV 55 
Dead 194 FP 291 TN SEN 84 

 SPEC 60 
ACC 78 

Table 5.1: Naïve Bayes performance of the four hybrid imputed datasets  

It can be seen that SVM and EM and FKM and EM hybrid datasets show the most 

improvement and also the measures for evaluation are identical. For example the 

algorithm shows a PPV of 95% in both hybrid datasets; therefore it can be interpreted as 

predicting 5% as alive (FP) when they should be classed as dead. The classification has 

not only improved accuracy but also reduced the number of incorrectly classified 

positives. This is also reflected in NPV, SEN, SPEC and ACC measures, which are 97%, 

99%, 84% and 95% respectively, which indicates that classification accuracy has 

improved. This can be interpreted as predicting 3% and 1% as dead when they should be 
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alive, and 16% as alive when they should be dead. In table 4.4 of chapter 4, the incorrectly 

classified positives and negatives were higher in the naïve Bayes performance of the 

imputed datasets. For example PPV predicted 14% to be predicted as live when they 

should be dead while SEN predicted 18% as dead when they should be alive.  

On the contrary, the naïve Bayes performance of FKM and SVM and SVM and FKM 

hybrid datasets show similar measures of evaluation and the classification performance 

does not show much improvement when compared to SVM and EM, FKM and EM hybrid 

datasets. PPV and SPEC show identical measures of 86% and 60% respectively, while 

NPV shows 54% and 55%, and SEN 83% and 84% in the respective hybrid datasets. This 

could be due to the similarities in classification performance of the datasets individually 

imputed with FKM and SVM in table 4.4 of chapter 4. For example FKM and SVM share 

similar PPV of 85% and 86% and similar SPEC of 56% and 60%. However, the 

classification performance of SVM and EM in table 4.4 is quite different. For example 

EM shows a SPEC of 73% while SVM shows a PPV of 86%; this means a difference of 

13%. SVM PPV is also similar to FKM PPV of 85%. As a result, when combined with 

the EM dead class this causes the measure of evaluation for both hybrid datasets to be 

identical as shown in table 5.1. 

5.2.2 Tree augmented naïve Bayes performance of hybrid dataset 

TAN Bayes classifier was also applied on the hybrid datasets shown in table 5.1. 

Table 5.2 presents the TAN performance of the four hybrid datasets.  
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SVM and EM  Predicted Evaluation measures % 
 True Alive Dead PPV 97 

Alive 1432TP 27FN NPV 94 
Dead 49FP 436TN SEN 98 

 SPEC 90 
ACC 96 

FKM and EM  Predicted Evaluation measures % 
 True Alive Dead PPV 96 

Alive 1426TP 33FN NPV 93 
Dead 52FP 433TN SEN 98 

 SPEC 89 
ACC 96 

FKM and SVM  Predicted Evaluation measures % 
 True Alive Dead PPV 96 

Alive 1401TP 58FN NPV 88 
Dead 59FP 426TN SEN 96 

 SPEC 88 
ACC 94 

SVM and FKM  Predicted Evaluation measures % 
 True Alive Dead PPV 95 

Alive 1379TP 80FN NPV 84 
Dead 75FP 410TN SEN 95 

 SPEC 85 
ACC 92 

Table 5.2: TAN Bayes performance of the four hybrid imputed datasets 

It can be seen that all four hybrid datasets show an improvement when compared to 

the naïve Bayes performance of the hybrid datasets in table 5.1. The number of FPs are 

reduced, particularly in the SVM and EM, and FKM and EM hybrid datasets, where the 

FPs are 49% and 52% respectively. This is due to the conditional mutual information 

between the variables, which is not present in naïve Bayes. Where naïve Bayes predicts 

outcomes based on independence between variables, this is shown in tables 4.3 and 4.4. 

In contrast, TAN predicts outcomes based on the information shared amongst variables. 

This means that TAN correctly predicted 30 records from the naïve Bayes FP records as 

dead in SVM and EM, 27 records in FKM and EM, 133 records in FKM and SVM, and 

120 records in SVM and FKM. This further indicates that the records misclassified by 

naïve Bayes shared mutual relations between variables and therefore are correctly 

predicted as dead (TN).  
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The dataset which shows the best performance will be explored. For example the FP 

records of SVM and EM will be explored to identify the underlying task of the prediction, 

probabilities and identify records shared amongst naïve Bayes and TAN performance.  

5.3 Exploration of data records 

Although the metrics for evaluating the classification methods indicate an 

improvement in tables 5.1 and 5.2, it can be seen in both naïve Bayes and TAN Bayes 

performance that there are still a number of false positive and false negative results. In a 

model which is likely to be making life and death decisions, it is imperative to reduce the 

number of false positives and false negatives. The key to Bayes classification is the use 

of posterior probabilities, i.e. 

𝐼𝐼𝑓𝑓 𝑝𝑝𝑜𝑜𝑒𝑒𝑘𝑘𝑒𝑒𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎(𝑎𝑎𝑟𝑟𝑖𝑖𝑣𝑣𝑒𝑒) > 𝑃𝑃𝑜𝑜𝑒𝑒𝑘𝑘𝑒𝑒𝑎𝑎𝑖𝑖𝑜𝑜𝑎𝑎(𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑), 𝑐𝑐𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 = 𝑎𝑎𝑟𝑟𝑖𝑖𝑣𝑣𝑒𝑒 

𝑂𝑂𝑎𝑎 𝑒𝑒𝑟𝑟𝑒𝑒𝑒𝑒 𝑐𝑐𝑟𝑟𝑎𝑎𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑒𝑒𝑎𝑎𝑑𝑑 

The first step in looking at the reason for false positives is to look at the degree of 

difference between the two sets of posteriories. In this case, the 79 and 49 FP records of 

SVM and EM hybrid dataset shown in table 5.1 and 5.2 will be considered. Secondly, the 

number of missing data present in each record will be determined. The number of missing 

data has been considered to determine whether this plays a role in the prediction outcome. 

Thirdly the number of FP records shared by the 79 records of naïve Bayes and 49 records 

of the TAN Bayes performance will be identified. Their TN records will also be explored 

in the same way as the FP records and used as a reference to compare to the FP records. 

Finally, an investigation is carried out as to why different methods of imputation result in 

varied numbers of FPs and FNs (see table 5.1). 
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5.3.1 Effect of missing data and hybrid imputation on class posterior 

probabilities (naïve Bayes) 

Table 5.3 and 5.4 presents the alive and dead posterior probabilities, the number of 

Missing Data (MD), the true and predicted outcomes of five FP and TN records. The five 

records were randomly selected from the 79 FP records shown in appendix II and 406 TN 

(not shown) records of the naïve Bayes performance of the SVM and EM hybrid dataset 

shown in table 5.1.  

No. Record no. Alive post Dead post MD True Predicted 
3 1486 1  0  0 Dead Alive 
16 1686 0.864  0.136  0 Dead Alive 
25 1725 1  0  0 Dead Alive 
36 1800 1  0  7 Dead Alive 
45 1865 0.993  0.0075.33E-

106 
1 Dead Alive 

Table 5.3: Alive and dead class posterior probabilities, number of MD, the 

true and predicted outcomes of the 79 FP records 

No. Record no. Alive post Dead post MD True Predicted 
108 1568 0  1  28 Dead Dead 
123 1583 0 1  6 Dead Dead 
142 1602 0  1  15 Dead Dead 
219 1679 0  1  23 Dead Dead 
361 1821 0 1  1 Dead Dead 

Table 5.4: Alive and dead class posterior probabilities, number of MD, the 

true and predicted outcomes of the 406 TN records  

It can be seen in table 5.3 that the alive posterior values are greater than that of the 

dead posterior. This simply indicates that patients have been predicted as alive when in 

fact they should be dead (FP). This is also the same outcome in table 5.4, where the dead 

class posterior values of the TN records are greater than those of the alive class, indicating 

that these records are correctly classified as dead. It can also be seen that the dead and 

alive posterior probabilities of the FP records nearly overlap when compared to the TN 

records’ probabilities and there are no clear distinction, therefore causing 
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misclassification. In contrast, in the TN records, the dead and alive posterior probabilities 

are far apart and very distinctive.  

The number of missing data present in both FP and TN records are different in that 

the TN records consists of more missing data in their records, while in the FP records, the 

majority of the records have no missing data, five records have 1 missing data and three 

records have 7 missing data; the full 79 records are shown in appendix II. This comparison 

indicates that the presence of missing data in the records does not produce 

misclassification of the class; rather, those records with less or no missing data are the 

problem. As will be seen later on, it is often the presence of incorrectly obtained 

measurements that are a key cause for misclassification. 

5.3.2 Effect of missing data and hybrid imputation on class posterior 

probabilities (TAN Bayes) 

Tables 5.5 and 5.6 present the alive and dead posterior probabilities (alive post and post), 

the number of Missing Data (MD), the true and predicted outcomes of five FP and TN 

records respectively. Five records were also selected at random from the 49 FP records 

shown in appendix III and 436 TN records (not shown) of the SVM and EM imputation 

TAN performance shown in table 5.2. 

Table 5.5: Alive and dead class posterior probabilities, number of MD, the 

true and predicted outcomes of the 49 FP records.

No. Record no. Alive post Dead post MD True Predicted 
14 1729 0.996 0.004 0 Dead Alive 
26 1861 1 0 7 Dead Alive 
30 1869 0.934 0.066 0 Dead Alive 
43 1899 0.521 0.479 7 Dead Alive 
47 1914 0.976 0.024 0 Dead Alive 
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Table 5.6: Alive and dead class posterior probabilities, number of MD, the 

true and predicted outcomes of the 436 TN records 

It can be seen in table 5.5 that there are fewer missing data in the five FP records 

when compared to the five TN records in table 5.6, which shows more missing data in the 

records. For example, appendix III shows 49 FP records, where a majority of the records 

have no missing data, two records have 1 missing data and three records have 7 missing 

data, while in table 5.6, the TN five records show 9, 4, 8, 23 and 27 missing data in the 

five records respectively. These 49 FP records are also present in the 79 FP records of 

the naïve Bayes performance. The shared records are highlighted in bold in appendix 

II of the FP records. 

The comparison between the FP and TN records further indicates that the higher 

number of missing data present in the FP records does not affect misclassification; rather 

it is those records with less missing data. This essentially indicates that those records with 

zero missing data are observed incorrectly, as a majority of them have been incorrectly 

predicted as alive. As a result, those records with zero and one missing data in the 79 and 

49 FP records will be removed in order to determine whether classification performance 

will be improved. Naïve Bayes and TAN Bayes classifiers will be performed on the 

modified dataset. This will be shown in section 5.4 of this chapter.  

5.3.3 Performance of modified SVM and EM hybrid dataset 

Naïve Bayes and TAN classification performance of the SVM & EM hybrid data and 

original clinical dataset after discarding FP records with 0 and 1 missing data is examined 

No. Record no. Alive post Dead post MD True Predicted 
170 1629 0 1 9 Dead Dead 
240 1699 0 1 4 Dead Dead 
261 1720 0 1 8 Dead Dead 
310 1769 0 1 23 Dead Dead 
453 1912 0 1 27 Dead Dead 
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in order to determine whether classification accuracy will improve. As shown in table 5.3 

and appendix II there are more records with 0 and 1 missing data. Hence, these are records 

with more observed data than imputed data.  

 76 FP records which had 0 and 1 missing data were removed from the dataset in order 

to achieve better accuracy. In doing so, the number of dead class records was reduced from 

485 to 409, thus reducing the number of records in the dataset to 1868.  

 Predicted Evaluation measure % 
True Alive Dead PPV 100 
Alive 1459TP 0FN NPV 100 
Dead 5FP 404TN SEN 100 
 SPEC 99 

ACC 100 

Table 5.7: Naïve Bayes performance of SVM and EM hybrid dataset, 1868 

records 

 Predicted Evaluation measure % 
True Alive Dead PPV 100 
Alive 1459TP 0FN NPV 100 
Dead 4FP 405TN SEN 100 
 SPEC 99 

ACC 100 

Table 5.8: TAN performance of SVM and EM hybrid dataset, 

1868 records 

 

 Predicted Evaluation measure % 
True Alive Dead PPV 87 
Alive 1212TP 247FN NPV 48 
Dead 178FP 231TN SEN 83 
 SPEC 56 

ACC 77 

Table 5.9: Naïve Bayes performance of the original dataset, 1868 

records
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 Predicted Evaluation measure % 
True Alive Dead PPV 88 
Alive 1301TP 158FN NPV 60 
Dead 172FP 237TN SEN 89 
 SPEC 58 

ACC 82 

Table 5.10 TAN Bayes performance of original dataset, 1868 records 

Tables 5.7 and 5.8 show the naïve Bayes and TAN performance of the SVM and EM 

hybrid dataset. It can be seen in both tables that classification performance has 

significantly improved, where PPV, NPV, SEN and ACC are 100%. The difference in FP 

values is by 1, where the naïve Bayes algorithm shows FP of 4, while TAN Bayes 

algorithm shows FP of 5. This indicates that one record has been correctly classified as 

dead (TN) by TAN. The conditional mutual information implemented in TAN allows for 

dependencies between the variables to be located and therefore attempts to classify the 

true prediction of the data based on this.  

On the contrary, tables 5.9 and 5.10 present naïve Bayes and TAN Bayes performance 

of the original clinical data after removing the 76 FP records with 0 and 1 missing data. 

It can be seen in both tables that their performance is different when compared to the 

hybrid imputed dataset shown in tables 5.7 and 5.8. These results reflect a good 

performance of the original clinical dataset. However, the elimination of the 76 FP 

records has not affected or changed classification accuracy by a large margin when 

compared to the naïve and TAN Bayes performance of the full original clinical data 

shown in tables 4.3 and 4.7, where similar performances are shown.  

These results indicate that the hybrid imputed datasets provide a better classification of 

the Hull LifeLab dataset than records with complete observed data and incomplete data 

records. Thus it is better to have records with missing data so that suitable missing data 

imputation methods are applied. This also further confirms that the observed data are 

incorrect and correctly observed variables are needed. In addition, this process can be 
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used to identify variables and records of concern at the stage of data collection especially 

when the clinicians and model have different opinions.  The next section will explore and 

investigate the properties and problems that influence the classification of the FP 

outcome, through the application of K-means clustering and Euclidean distance. 

5.4 Euclidean distance 

In this section Euclidean distance is applied to better understand the properties of the 

dataset. Firstly, this involves computing the means for the alive class and the dead class. 

Euclidean distance uses a metric to determine the distance and similarity between the 

class mean and a data point which is the 79 FP and 406 TN records of the SVM and EM 

hybrid dataset.  

Consider two points 𝑎𝑎 = (𝑎𝑎1,𝑎𝑎2, … , 𝑎𝑎𝑑𝑑) is the mean vector for the alive class, and 𝑥𝑥 =

�𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑� is the data point. Thus if 𝐷𝐷𝑡𝑡 is the distance between the two points, where 

𝑘𝑘 is a positive number, is given by 𝐷𝐷𝑡𝑡(𝑎𝑎, 𝑥𝑥) = (∑ |𝑎𝑎𝑖𝑖−𝑥𝑥𝑖𝑖|𝑡𝑡)1/𝑡𝑡𝑑𝑑
𝑖𝑖=1  for 1 ≤ 𝑘𝑘 < ∞. The 

Euclidean distance is obtained when 𝑘𝑘 = 2, and the distance in the infinite norm is 

obtained when 𝑘𝑘 = ∞. The Euclidean distance is useful to determine an overall 

perspective of the distance of any point from another given point. However, it does not 

provide much information as to the contributions of the various dimensions. This is 

important, for it allows for determining which variable is contributing the most to the 

mismatch of classes. This is possible when 𝑘𝑘 = ∞: thus 𝐷𝐷∞ = max
1≤𝑖𝑖≤𝑑𝑑

|𝑎𝑎𝑖𝑖 − 𝑥𝑥𝑖𝑖|  

5.4.1 Euclidean distance of FP and TN records 

The dead and alive Euclidean distance of the FP records are shown; the Euclidean 

distance of the TN records are also determined and used as a reference. Appendix IV 

shows the Euclidean distance of the 79 FP records. From this, records with the maximum 

and minimum Euclidean distances of a point from the alive mean and dead mean are 
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selected (highlighted in bold). Two records with the maximum and minimum Euclidean 

distance are also selected from the 406 TN records (not shown). 

Table 5.11: SVM and EM class Euclidean distance  

Table 5.11 presents the maximum and minimum Euclidean distances in the dead class 

and their corresponding alive class distances in the FP and TN records. It can be seen in 

the maximum and minimum FP records that the alive class shows the smallest distance 

when compared to the dead class. The table shows the maximum Euclidean distance in 

the dead and alive class to be 1162.57 and 343.29 respectively while the minimum 

Euclidean distance in the dead and alive classes are 762.76 and 436.93 respectively. This 

indicates that the data points are closer to the alive mean and further away from the dead 

mean; therefore the record is classed as alive when they should be classified as dead.  

Similarly, it can be seen in the TN records that the maximum and minimum Euclidean 

distance is smaller in the dead class when compared to the alive class. The maximum 

Euclidean distance in the dead and alive class is 1170.95 and 1950.70 respectively, while 

the minimum Euclidean distance in the dead and alive class are 92.64 and 969.99 

respectively. This means that these records are correctly classified as dead and further 

indicates that the data points are closer to the dead mean than the alive mean. The 

Euclidean distance results and misclassification of the dead class may have been 

No. Record 
no. 

Euclidean 
distance 

range 

SVM & EM 
Euclidean distance 

FP records 
   Dead Alive 
8 1543 Max  1162.57 343.29 
58 1886 Min 762.76 436.93 

TN records 
   Dead Alive 
341 1801 Max 1170.95 1950.70 
252 1709 Min 92.64 969.99 
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influenced by several factors. For example, the presence of variability in the observed 

data which are presented as outliers may have been introduced during data collection.  

5.4.2 Investigating the ∞−𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒏𝒏𝒅𝒅𝒅𝒅 of FP and TN records 

Table 5.12 presents the maximum difference (max diff) of the variable contributing 

the most in the dead class and their corresponding alive class maximum difference in the 

FP and TN records.  

No. of 
record 

Record 
no. 

Variables and maximum difference  

  FP records 
  Dead Alive 
  Max diff  Variable Max diff  Variable 
8 1543 786 PEFR 179.29  PEFR 
58              1886 486 PEFR 120.71 PEFR 
  TN records 
  Dead Alive 
  Max diff Variable Max diff Variable 
341 1801 0 PEFR 606.71 PEFR 
252 1709 0 PEFR 606.71 PEFR 

Table 5.12: Maximum difference of variable contributing the most. 

It can be seen in the FP records, that records 8 and 58 present the maximum 

difference of 786 and 486 in the dead class and the corresponding variable is Peak 

Expiratory Flow Rate (PEFR) (Vaughan et al., 1989) which is the variable contributing 

the most, while the corresponding alive class shows a low maximum difference of 179.29 

and 120.71. The high maximum difference presented by the dead class indicates how far 

the records’ data point is from the alive mean; hence the reason why the dead records are 

classified as alive. This indicates that PEFR is a problematic variable and therefore 

causing the misclassification of the dead class. In comparison to the TN records, the 

maximum difference of records 341 and 252 is 0, which is less than that of the alive class, 

showing a maximum difference of 606.71. This indicates that the records data points are 

closer to the dead class and therefore they are correctly predicted as dead. Appendix V 
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shows the full dead and alive maximum difference of the PEFR variable, where records 

8 and 58 are highlighted in bold. 

 

 

 

 

 

 

 

 

 

  

 

 
Figure 5.1 Data distribution of the PEFR variable 

Figure 5.1 shows the distribution of the PEFR variable. It can be seen that the data of 

the PEFR variable is varied, with some are presented as extreme values (indicated by the 

arrows). As a result, the distribution of the variable is positively skewed, where most of 

the distribution is concentrated on the left of the figure. This could be due to the nature 

of data collection.  

PEFR is a lung functioning test that is used to determine pulmonary impairment. For 

the purpose of clinical assessment new PEFR measurements are repeatedly taken for 

comparison with the old measurement to determine any significant changes and whether 

they agree sufficiently to be replaced with an old measurement. Bland and Altman (Bland 

and Altman, 1986) suggest that this investigation is usually carried out by using 

correlation coefficients which are known to be misleading, which may have contributed 

to the variation of the variable.
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5.5 Summary 

For most data driven methodologies, the presence of abundant data is a prerequisite. 

A reason for this is that the law of large numbers ensures that the larger the size of the 

sample means and standard deviations are as close as possible to the expected means and 

standard deviations. The dataset under consideration has a large number of data points, 

albeit imbalanced. However, methods based on Bayes are robust to these imbalances as 

long as there is sufficient number of representative samples. This is the case with the 

dataset under consideration. However, the results were not as expected. Thus this chapter 

presented results, using the inherent transparency afforded by Bayes methodologies. 

Therefore it is possible to analyse why some records are being misclassified and allows 

the challenges of the clinical data to be explored in a greater detail.  

In this chapter, the performance of hybrid imputed datasets was assessed. It showed 

that irrespective of the imputation or hybridisation of the dataset, there was a significant 

number of FPs that still remained. As a first step towards understanding the causes for 

this, an investigation of the class posterior probabilities was carried out. The next stage 

was to look for records with imputation and the number of missing data present within 

the FP records in order to determine if the imputation and missing data were causing the 

problem. Once this exploration was done, a further investigation was carried out to 

explain the reason for misclassification of the FP records, such as determining the 

problematic variable(s) in the data, through the application of Euclidean distance. This 

involved estimating the distance between the class mean and the 79 FP data points.  

The results in section 5.3 show that FP records with no imputed data are the ones 

which are incorrectly classified. Section 5.4 shows an investigation of the various records 

using the ∞ norm (see appendix V for full dead and alive list of the 79 FP records). It was 

possible to determine the variable which was at the root of the problem of 
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misclassification. The PEFR variable presented varied measurements and contributed the 

most variation in the data. These results have shown that however robust a method is, the 

nature of the data present is crucial in order to make effective clinical decisions. In clinical 

settings, issues surrounding the quality of clinical data usually include poor data handling 

processes and errors during the migration process, e.g. 

• When transferring data from one system to another; 

• Failure to stick to data entry and maintenance procedures; 

• Failure to update instruments used for a particular test, 

• Instruments of multiple versions may vary in subtle ways in cases where multiple 

instruments are used for a particular test. 

These issues can occur at any stage of data collection and initial processing and thus 

as a result could be the problem with the real life heart failure clinical dataset. Therefore, 

it is crucial that these measures are considered during data collection. 

The PEFR variable and other variables shown in appendix I such as creatinine and 

uric acid flag up extreme values also known as outliers. Although there are several 

techniques available in literature for detecting and eliminating such values in clinical data; 

the current approach explores the data structure to determine the presence of bad data 

records. Often, in real life clinical datasets, it is always possible for two records to have 

similar values but be classified in different classes, mainly due to the experience of the 

clinicians and the nature of data collection. Exploring the FP records, the number of 

missing data present in records, their posterior probabilities and data distribution has 

undoubtedly aided in understanding the data space and properties. In addition, it has 

allowed an investigation of the data from a broad overview to a fine structure in order to 

impact effective quality of data for better healthcare. 
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CHAPTER 6 OTHER CLASSIFICATION ALGORITHMS 

6.1 Introduction 

There are two aspects to data mining. One is to understand the nature of the data and 

the other is the performance. The key is to understand the relationship between the two. 

Thus chapters 4 and 5 have shown that classification accuracy can be improved through 

the application of an augmented naïve Bayes, imputation methods, the proposed hybrid 

imputed dataset and discarding problematic records. At the same time the methods 

provide tools which can look into the reasons for poor performance. There are other 

sophisticated methods available (e.g. J48, ANNs etc.); however these often remain as 

black boxes, in the sense that they do not yield the internal relationships between the data 

and the method.   

This chapter will discuss four other classification algorithms, namely, (a) Bayes 

classifier based on Kernel Density Estimation (KDE) (b) Beta based Bayes classifier, (c) 

decision tree (C4.5) and (d) Multi-layer Perceptron (MLP). The algorithms will be applied 

on the original data and SVM and EM hybrid data for comparative analysis. Results will 

be presented in two ways: 1) as a training set and 2) with the 10-fold cross validation and 

compared to the naïve Bayes performance of the original data and SVM and EM  hybrid 

imputed data shown in table 4.3 and 5.1 respectively. The classification outcome in both 

results will be discussed and an explanation offered as to why these algorithms were not 

initially considered. 

6.2 Bayes classifier based on kernel density estimation 

Kernel Density Estimation (KDE) is a technique applied in data mining for solving 

the smoothing problem posed by real life clinical data (Guidoum, 2014). Most 

classification methods are parametric, including naïve Bayes. There is, however, a class 

of Bayes classifiers which are not parametric. These are classed as kernel density 
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methods. Kernel applies a kernel density estimator (eq. 6.1) rather than a Gaussian 

distribution. The advantage here is that unlike the naïve Bayes classifier, which assumes 

that continuous variables are in a Gaussian distribution, the data exist in a non-Gaussian 

distribution. Thus for naïve Bayes a Gaussian distribution is fitted irrespective of the 

actual distribution. For example this can be seen in figure 6.1 where kernel, Gaussian and 

the actual data distribution of the potassium variable is shown. The normal blood 

potassium level is between 3.5-5.1mmol/L, the two distinctive peaks shows that the 

majority of the population are within this range (Parikh and Webb, 2012). 

 

Figure 6.1 Naive Bayes (Gaussian), Kernel and data distribution of the 

potassium variable 

KDE is a non-parametric method that estimates the probability density function 𝑓𝑓(𝑥𝑥) 

of the continuous variables 𝑋𝑋 using kernels (Pérez et al., 2009). It should be noted that 

KDE is a flexible estimator in that, for modelling the conditional density no assumptions 

are made on the shape of the probability density or the number of kernels. Let 
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(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛) be n samples of an independent continuous random variable 𝑋𝑋, with an 

unknown density function. Thus the density function 𝑓𝑓(𝑥𝑥) is as follows (eq. 6.1.) 

  𝑓𝑓ℎ(𝑥𝑥) = 1
𝑛𝑛
∑ 𝐾𝐾ℎ(𝑥𝑥 − 𝑥𝑥𝑖𝑖) = 1

𝑛𝑛ℎ
∑ 𝐾𝐾 �𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ
�𝑛𝑛

𝑖𝑖=1
𝑛𝑛
𝑖𝑖=1      (6.1) 

where: 

 𝐾𝐾ℎ(. ) is the kernel function, 

 𝑛𝑛 is the number of samples  

 ℎ is a bandwidth matrix; a smoothing parameter which controls the degree of smoothing 

applied to data. 

Thus KDE is characterised by the kernel density 𝐾𝐾 selected and the bandwith ℎ. The 

kernel based density estimate 𝑓𝑓ℎ(. ) is determined by averaging 𝑛𝑛 kernel densities 𝐾𝐾ℎ(. ) 

placed at each observation 𝑥𝑥𝑖𝑖.  

KDE is also known as a flexible naïve Bayes algorithm (John and Langley, 1995). 

John and Langley state that kernel estimation with Gaussian kernels is similar to naïve 

Bayes Gaussian, except that the estimated density is averaged over a large set of kernels 

𝑝𝑝(𝑋𝑋 = 𝑥𝑥|𝐶𝐶 = 𝑐𝑐) = 1
𝑛𝑛
∑ 𝑎𝑎𝑖𝑖 (𝑥𝑥, 𝜇𝜇𝑖𝑖,𝜎𝜎𝑐𝑐), where 𝑖𝑖 ranges over the training point of variables 

𝑋𝑋  in class 𝑐𝑐 and 𝜇𝜇𝑖𝑖 = 𝑥𝑥𝑖𝑖 , as applied in this thesis.  

Its flexibility presents a few disadvantages, in that a significant amount of storage 

space is required for storing continuous attribute values during training, and could 

increase exponentially as the number of variables increases. At the same time KDE 

computes the probability measure of 𝑛𝑛 variables in order to obtain 𝑃𝑃�𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖�𝐶𝐶 = 𝑐𝑐𝑗𝑗� one 

per observed value of 𝑋𝑋 in class 𝐶𝐶, and hence if the number of samples 𝑁𝑁 is large, the 

computational and space complexity will increase (Li et al., 2006, Sinha and Gupta, 

2008).
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6.2.1 Kernel density estimation performance via Bayesian network 

classifier 

A confusion matrix was used for a more detailed analysis of the class attribute 

distribution. Table 6.1 presents the kernel based Bayesian network classifier performance 

of the original and hybrid datasets. It can be seen that the performance with the original 

data is similar to the naïve Bayes performance with the original data shown in table 4.3, 

while the performance with the hybrid data is similar to that of the naïve Bayes 

performance with the hybrid data shown in table 5.1. However, if the results from the 

cross validation are compared, there is greater similarity between the two sets of 

algorithms (KDE and naïve Bayes). This could be due to cross validation assessing how 

the results will generalise to independent data, so that over-fitting problems are limited. 

This generalisation is similar to the independence assumption posed by naïve Bayes, 

which is also retained by KDE during computation. The results indicate that the added 

complexity of the KDE method does not yield any appreciable improvement in the 

performance. 
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Table 6.1: Kernel based Bayesian network classification performance of the original data and hybrid 

data.

Original dataset 
Training set Cross validation 

 Predict Evaluation measure %  Predict Evaluation measure % 
True Alive Dead PPV 86 True Alive Dead PPV 84 
Alive 1249TP 210FN NPV 57 Alive 1202TP 257FN NPV 50 
Dead 201FP 284TN SEN 86 Dead 225FP 260TN SEN 82 
 SPEC 59  SPEC 54 

ACC 79 ACC 75 
SVM and EM hybrid dataset 

Training set Cross validation 
 Predict Evaluation measure %  Predict Evaluation measure % 
True Alive  Dead PPV 95 True Alive Dead PPV 95 
Alive 1459TP 0FN NPV 100 Alive 1448TP 11FN NPV 97 
Dead 80FP 405TN SEN 100 Dead 81FP 404TN SEN 99 
 SPEC 84  SPEC 83 

ACC 96  ACC 95 
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6.3 Beta based Bayes classifier 

Beta distribution is a method applied to continuous random variables to control the 

shape and behaviour of continuous probability distributions. Beta distribution for 𝑋𝑋, 

where two shape parameters, alpha, 𝛼𝛼 and beta, 𝛽𝛽 are unknown (Gupta and Nadarajah, 

2004), is computed by Maximum Likelihood Estimates (MLEs) (Gnanadesikan et al., 

1967), (eq. 6.2). MLEs are the values of the parameters that maximize the likelihood 

function for fixed values of 𝑋𝑋. If 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are independent variables each having a beta 

distribution, the joint log likelihood function for 𝑛𝑛 independent and identically distributed 

(iid) observations is: 

   lnℒ(𝛼𝛼,𝛽𝛽|𝑋𝑋) = ∑ ln(ℒ𝑖𝑖(𝛼𝛼,𝛽𝛽|𝑥𝑥𝑖𝑖))𝑛𝑛
𝑖𝑖=1                         (6.2) 

The shape parameters 𝛼𝛼 and 𝛽𝛽 are determined by maximising the likelihood function, 

which involves estimating the values of the parameters that give the highest likelihood 

given the data 𝑋𝑋. The likelihood function is determined in a similar way to the beta 

Probability Density Function (PDF) shown in equation 6.3. However for the pdf, the 

parameters are considered as the normalising constants and the variable as 𝑥𝑥. The 

likelihood function reverses the roles of the variables, where the observed sample values 

are fixed while the variables are unknown parameters.  

  𝑦𝑦 = 𝑓𝑓(𝑥𝑥|𝛼𝛼,𝛽𝛽) = 1
𝐵𝐵(𝛼𝛼,𝛽𝛽) 𝑥𝑥

𝛼𝛼−1(1− 𝑥𝑥)𝛽𝛽−1𝐼𝐼(0,1)(𝑥𝑥)       (6.3) 

where: 

𝐵𝐵(. ) is the beta function acting as the normalising constant 

(𝛼𝛼,𝛽𝛽) are two positive shape parameters that control the shape of the distribution.   

𝐼𝐼(0,1)(𝑥𝑥) is the indicator function that ensures only values of 𝑥𝑥 in the range (0,1) have 

nonzero probability. 
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In this thesis, the MATLAB function ‘betafit’ (MathWorks, 2005) is applied to 

estimate the beta parameters. The function produced an error, suggesting that the data 

must be within the closed interval of [0,1]. As a result, the Hull LifeLab data was 

normalised to remain within this interval. 

The mean (𝜇𝜇) and variance (𝜎𝜎2) beta distribution with parameters 𝛼𝛼 and 𝛽𝛽 are 

computed (eq. 6.4 and 6.5) for each class and then applied to the naïve Bayes algorithm 

outlined in table 4.2. Thus the mean and variance are given by: 

    𝜇𝜇 = 𝛼𝛼
𝛼𝛼+𝛽𝛽

      (6.4) 

   𝜎𝜎2 = 𝛼𝛼𝛽𝛽
(𝛼𝛼+𝛽𝛽)2(𝛼𝛼+𝛽𝛽+1)

      (6.5) 

The estimates of the two shape parameters are dependent on the properties of the data 

and depending on these estimates different beta distribution can be obtained. For example 

if one or both parameters are smaller than 1, the probability is concentrated at x-values of 

the distribution between 0 and 1. Whatever way the data is structured will reflect on the 

resulting shapes and distribution (Zhanyu and Leijon, 2011).  

6.3.1 Beta distribution classification results  

The Hull LifeLab data have been normalised so that the data is within the same scale, 

between 0 and1 and manageable for the application of beta naïve Bayes in order to 

achieve both data integrity and performance. 

Table 6.2 presents the beta based naïve Bayes classifier of the original data and 

hybrid data. For most of the methods discussed in this thesis, missing data was not a major 

computational issue during cross validation. However, with beta functions cross 

validation failed and as a result the missing data were replaced with 0.001. Therefore, the 

original data result shown in the table below is a product of the missing data replaced 

with 0.001 in both the training set and cross validation. 
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It can be seen that the training set result of the original data is poor when compared 

to the naïve Bayes performance with the original data in table 4.3. For example the 

training set shows a SPEC of 36% due to the high number of FPs. However, the cross 

validation results show a better performance, similar to the naïve Bayes performance in 

table 4.3. These results suggest that beta has not changed or improved the classification 

performance due to the complexity posed by the Hull LifeLab data, since the estimated 

parameters are dependent on the data space and properties. On the contrary, the same 

performance in the training set and cross validation results are presented by the hybrid 

data and the performance is similar to the naïve Bayes performance with the hybrid data 

shown in table 5.1. However, beta distribution shows a subtle improvement, but not by a 

large margin. 
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Table 6.2: Beta distribution naïve Bayes classification performance of the original and 

hybrid data 

Original dataset 
Training set Cross validation 

 Predict Evaluation measure %  Predict Evaluation measure % 
True Alive Dead PPV 81 True Alive Dead PPV 88 
Alive 1291TP 168FN NPV 51  1124TP 335FN NPV 50 
Dead 309FP 176TN SEN 88  151FP 334TN SEN 77 
 SPEC 36  SPEC 69 

ACC 75 ACC 75 
SVM and EM hybrid dataset 

Training set Cross validation 
 Predict Evaluation measure %  Predict Evaluation measure % 
True Alive  Dead PPV 95 True Alive Dead PPV 95 
 1459TP 0FN NPV 100  1459TP 0FN NPV 100 
 81FP 404TN SEN 100  81FP 404TN SEN 100 
 SPEC 83  SPEC 83 

ACC 96  ACC 96 



102 

 

6.4 Decision tree classifier (C4.5) 

The methods considered so far made a number of assumptions on either the 

distribution of the data or the dependency of the variables. However there is a class of 

methods which do not make these assumptions. In what follows are two applied methods; 

a decision tree and feed forward network algorithms. 

Decision tree is a non-parametric classification method applied in machine learning 

and data mining for classifying examples and prediction of values (Balakrishnan and 

David, 2010). The method generates a tree structure consisting of either a leaf, indicating 

a class, or a decision node of a test with one branch and a subtree for each possible 

outcome of the test conditions (Quinlan, 1986, Quinlan, 2014). The tree structure is used 

to classify an example by simply starting at the root of the tree and proceeding through it 

until a leaf is encountered.  

In this thesis, the decision tree is generated using the C4.5 algorithm developed by 

Ross Quinlan (Quinlan, 1986, Quinlan, 2014). C4.5 is an extension of the Iterative 

Dichotomiser 3 algorithm (ID3) which converts the ID3 algorithm trained tree into sets 

of if-then rules. The rules are then presented in the form of a J48 pruned tree. The tree 

will be generated for the original data and hybrid data to show the rules of the pruned 

tree. Detailed steps of the C4.5 algorithm are presented in table 6.3. 
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Step Description 

Summary 

of tree 

INPUT: 

Training data 

OUTPUT:  

Decision tree 

1 𝑋𝑋 contains all the samples in the dataset, belonging to a single class 𝐶𝐶𝑗𝑗 

The decision tree for 𝑋𝑋 is a leaf identifying class 𝐶𝐶𝑗𝑗 

2 Determine the class to be associated with the leaf by using the concept 

of information entropy (eq. 6.6). 

If 𝑋𝑋 is any set of samples in 𝑋𝑋, let 𝑓𝑓𝑎𝑎𝑒𝑒𝑓𝑓�𝐶𝐶𝑗𝑗 ,𝑋𝑋� stand for the number of 

samples in 𝑋𝑋 that belong to class 𝐶𝐶𝑗𝑗, out of the 𝑘𝑘 possible classes, 

𝐶𝐶1,𝐶𝐶2, …𝐶𝐶𝑘𝑘 and |𝑋𝑋| is the number of samples in the set  𝑋𝑋. 

Then the entropy of the set 𝑆𝑆:      𝐸𝐸𝑛𝑛𝑘𝑘𝑎𝑎𝑜𝑜𝑝𝑝𝑦𝑦(𝑋𝑋) =

−∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐶𝐶𝑗𝑗,𝑋𝑋)
|𝑋𝑋|

𝑛𝑛
𝑗𝑗=1 𝑟𝑟𝑜𝑜𝑎𝑎2 �

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐶𝐶𝑗𝑗,𝑋𝑋)
|𝑋𝑋| �                            (6.6)                            

where: 

𝑛𝑛= number of attributes 

Entropy measures the average amount of information needed to identify 

the class of a case in 𝑋𝑋.  

3 𝑋𝑋 is partitioned into subsets of samples 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑁𝑁 where 𝑋𝑋𝑖𝑖 contains 

all the samples in 𝑋𝑋 that have outcome of the chosen test node. Therefore 

the decision tree for 𝑋𝑋 consists of a decision node identifying the test 

and one branch for each possible outcome. The criterion is to select an 

attribute with the highest gain value to make the decision. 

4 Repeat the process for each branch until all examples have the same 

class 

Table 6.3: C4.5 (decision tree) algorithm 

The computation of the decision tree algorithm can be over-complex and cause 

overfitting on the training data, particularly on data with a large number of attributes. The 

cost at each node involves searching through the attributes 𝑂𝑂(𝑛𝑛𝑎𝑎𝑡𝑡𝑡𝑡𝑓𝑓𝑖𝑖𝑏𝑏𝑎𝑎𝑡𝑡𝑓𝑓𝑎𝑎) to locate the 

attribute that offers the largest reduction in entropy. This includes the cost of number of 
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attributes, samples and logarithmic number of samples 

𝑂𝑂�𝑛𝑛𝑎𝑎𝑡𝑡𝑡𝑡𝑓𝑓𝑖𝑖𝑏𝑏𝑎𝑎𝑡𝑡𝑓𝑓𝑎𝑎𝑁𝑁𝑎𝑎𝑎𝑎𝑚𝑚𝑝𝑝𝑠𝑠𝑓𝑓𝑎𝑎 log�𝑁𝑁𝑎𝑎𝑎𝑎𝑚𝑚𝑝𝑝𝑠𝑠𝑓𝑓𝑎𝑎�� at each node. As a result, this leads to a total cost 

over the entire trees by summing the cost at each node 

𝑂𝑂(𝑛𝑛𝑎𝑎𝑡𝑡𝑡𝑡𝑓𝑓𝑖𝑖𝑏𝑏𝑎𝑎𝑡𝑡𝑓𝑓𝑎𝑎𝑁𝑁2
𝑎𝑎𝑎𝑎𝑚𝑚𝑝𝑝𝑠𝑠𝑓𝑓𝑎𝑎 log�𝑁𝑁𝑎𝑎𝑎𝑎𝑚𝑚𝑝𝑝𝑠𝑠𝑓𝑓𝑎𝑎�)  (Dumont et al., 2009, Breiman et al., 1984). 

However, to reduce the complexity of the tree during construction of the decision tree, 

pruning is introduced.   

Pruning reduces the number of nodes by eliminating rules that provide little 

contribution to classifying instances or improving accuracy. It is an important element as 

it reduces the computational complexity of the final classifier, avoids over-fitting of the 

data and improves the tree structure by controlling the size of the tree  (Drazin and 

Montag, 2012, Maimon and Rokach, 2008). On the other hand, the initial computational 

complexity can be reduced and over-fitting avoided by setting the minimum number of 

samples required at a leaf node or setting the maximum depth of the tree.  

6.4.1 J48 pruned tree results 

The C4.5 algorithm is often used to implement a j48 pruned tree (e.g. WEKA machine 

learning software (Hall et al., 2009, Witten and Frank, 2005)) on the original and hybrid 

datasets. The outcome is a set of rules. The number of rules and leaves generated by the 

original dataset is 219 and 110 respectively, while the hybrid imputed dataset generated 

61 rules and 31 leaves (see appendix VI and VII for full rules). It can be seen that the 

number of leaves is reduced in the hybrid dataset. This indicates that the tree structure is 

dependent on the data. In this case it is due to the richness of the data space after 

imputation, although decision tree is able to process erroneous  and incomplete datasets 

(Bhargava et al., 2013). However, implementation of such data is computed differently 

from a complete dataset. For example in step 3 of the C4.5 algorithm, J48 divides 

instances with missing data for the split attribute up into fractional parts proportional to 
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the frequencies of the observed non-missing data (Witten and Frank, 2005). Therefore 

missing attribute data are ignored during the measure of information entropy in step 2.  

Despite the reduced number of rules and leaves in the hybrid data, there is still the 

problem of generating a biased tree due to the class imbalance present in the Hull LifeLab 

dataset where the alive class dominates the dead class. This imbalance creates a biased 

predictor and imbalanced decision tree and thus causes the problem of excessive testing 

time (Ramanan et al., 2007). A simple solution to this will be to balance the classes to 

reduce the bias, and tree size, and thus improve accuracy. However, this does not allow 

the properties of the data to be examined in great detail and thus the aim of this thesis 

would not be achieved. 

Figure 6.2 and table 6.4 present the decision tree and rules of the original data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Decision tree (j48) of the original data 
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Table 6.4: Rules of the original data 

It can be seen that there is a hierarchical division of the attributes. Table 6.4 shows urea 

to be the highest gain. Due to the size of the tree and the limited space in the thesis, only 

a small section of the tree is shown in figure 6.2, which shows the CRP variable as the 

first node. It can be seen that if the CRP variable is greater than 10 it is classified as dead. 

The numbers in parenthesis represent the number of instances correctly classified as 

dead/the number of instances incorrectly classified as dead which are 15.78/0.06 

respectively. The first number is usually larger than the second number as the algorithm 

is designed to obtain the best possible number of correct classifications. However, if CRP 

is less than 10, the algorithm proceeds to urea and if the urea is less than 4.8 the algorithm 

classifies the variable as alive, where 7.78 is correctly classified as alive and 1.15 is 

incorrectly classified as alive. However, if urea is greater than 4.8, the algorithm continues 

to the next node (FEV1). If the FEV1 is less than 0.42 then the algorithm classifies the 

variable as alive, where 2.12 is correctly classified as alive and 0.01 is incorrectly 

classified as alive. Similarly if FEV1 is greater than 0.42, the algorithm classifies the 

variable as dead, where 16.92 is correctly classified as dead and 1.44 is incorrectly 

classified as dead.   

Original data 

Urea (mmol/L) <= 9.5 

|   FEV1 (L) <= 0.92 

|   |   BMI <= 22.838625 

|   |   |   CRP (mg/L) <= 10 

|   |   |   |   Urea (mmol/L) <= 4.8: Alive (7.78/1.15) 

|   |   |   |   Urea (mmol/L) > 4.8 

|   |   |   |   |   FEV1 (L) <= 0.42: Alive (2.12/0.01) 

|   |   |   |   |   FEV1 (L) > 0.42: Dead (16.92/1.44) 
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Figure 6.3 Decision tree (j48) of the hybrid dataset 

 

 

 

 

 

 

Table 6.5: Rules of the hybrid dataset 

Figure 6.3 and table 6.5 also present a small section of the decision tree and rules of 

the hybrid dataset. It can be seen in the table that the SystolicBP variable has the highest 

gain and contains the most information. For this reason it has been selected as the first 

split criterion. Therefore, if the SystoliBP variable is less than 233, the algorithm proceeds 

to the next split which is MR-proANP and 910.0 is correctly classified as alive while 12.0 

is incorrectly classified as alive. The number of correctly classified outcomes shown in 

Hybrid imputed dataset 

SystolicBP(mmHg) <= 233 

|   MR-proANP <= 188: Alive (910.0/12.0) 

|   MR-proANP > 188 

|   |   UricAcid(mmol/L) <= 0.83 

|   |   |   LVEDD(HgtIndexed) <= 3.55 
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table 6.5 is larger than those in the original data. This indicates that decision tree produces 

a better result when implemented on complete data. 

6.4.2 Decision tree classification performance 

The decision tree classification performance of the original and SVM and EM hybrid 

dataset are presented in table 6.6. It can be seen that accuracy is greater in the hybrid 

imputed dataset when compared to incomplete dataset. For example the training set of the 

hybrid data shows a significant performance, where the NPV and SEN measures of 

evaluation are 100% while PPV, SPEC and ACC are 98%, 95% and 99% respectively. 

The performance of the original dataset (training set) is better when compared to naïve 

Bayes and TAN Bayes classifier results of the same dataset shown in figure 4.3 and 4.7 

respectively. Similarly, the hybrid results show a better performance when compared to 

the hybrid result of the naïve Bayes shown in table 5.1. The improvement in classification 

performance generated by the imputed dataset, is due to the measure of entropy, which 

estimates the average value (expected) of the information contained in the data. As a 

result, with richer data and more information presented by the data, the expected value is 

achieved. 

The decision tree algorithm results provide an output number of classified and 

misclassified outcomes. However, the algorithm does not give an insight as to how and 

why misclassification occurred. Therefore decision tree does not have the properties to 

analyse the cause of misclassification and to further reduce the number of FPs to the 

minimum. 
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Table 6.6: Decision tree classification performance of the original data and hybrid data. 

 

 

Original dataset 
Training set Cross validation 

 Predict Evaluation measure %  Predict Evaluation measure % 
True Alive Dead PPV 92 True Alive Dead PPV 80 
Alive 1434TP 25FN NPV 93  1213TP 246FN NPV 42 
Dead 126FP 359TN SEN 98  305FP 180TN SEN 83 
 SPEC 74  SPEC 37 

ACC 92 ACC 72 
SVM and EM hybrid dataset 

Training set Cross validation 
 Predict Evaluation measure %  Predict Evaluation measure % 
True Alive  Dead PPV 98 True Alive Dead PPV 96 
 1458TP 1FN NPV 100  1408TP 51FN NPV 89 
 26FP 459TN SEN 100  66FP 419TN SEN 97 
 SPEC 95  SPEC 86 

ACC 99  ACC 94 
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6.5 Multilayer perceptron 

Multilayer perceptron (MLP) is a feedforward artificial neural network applied to 

learn classification problems (Silva et al., 2008). The training process involves a 

combination of three layers, namely, the input layer, one or more hidden layers, and the 

output layer. Each layer is connected and information flows from one layer to the next. 

The architecture of a multilayer perceptron is shown in figure 6.4. (Gardner and Dorling, 

1998, Autio et al., 2007, Vaughn, 1996). 

 

 

 

 

 

 

 

 

Figure 6.4 The architecture of a multilayer perceptron 

The architecture shown in figure 6.4 is a nonlinear mapping between the inputs, the 

variable of the dataset, and the outputs. During training of the network, the inputs 

𝑥𝑥1, 𝑥𝑥2 … 𝑥𝑥𝑛𝑛, are fed to the input layer. The nodes of the input layer does not process the 

information, but distribute them to the next layer. The nodes at the hidden layer, 𝑖𝑖, first 

generate a weighted sum of inputs ∑𝑥𝑥𝑖𝑖𝑒𝑒𝑖𝑖which is then passed through an activation 

function that determines the activation level of the processing neuron (Vaughn, 1996). 

This information is then subsequently passed on to the nodes of the next hidden layer, 

where the information is processed again in the same manner as before. Thus each hidden 
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layer (if more than one) passes on its outputs to the next layer until the output 𝑂𝑂1,𝑂𝑂2 …𝑂𝑂𝑛𝑛 

is obtained.  

The network is designed by a popular training algorithm, namely, the back-

propagation algorithm (Chen and Jain, 1994, Leung and Haykin, 1991, Gardner and 

Dorling, 1998, Bishop, 1995). The general outline of the algorithm is shown in table 6.7.  

Step Description 

1 Initialise network weights 

2 Present inputs from training data to the network 

3 Propagate the inputs through the network to calculate actual output  

4 Calculate an error signal by comparing the actual output 𝑂𝑂𝑖𝑖to the target 

output 𝑇𝑇𝑖𝑖 

5 Propagate error signal back through the network 

6 Adjust weights to minimise overall error 

7 Repeat steps 2-7 with next input vector, until overall error is satisfactorily 

small 

Table 6.7: Back-propagation algorithm 

The algorithm minimises the error between outputs of the network and the target 

output. The cost function used is a key criterion, namely, the Mean Squared Error (MSE) 

function (Nitta, 1997): 

   𝐽𝐽(𝑥𝑥, 𝑜𝑜) = ∑ 1
2

(𝑂𝑂𝑖𝑖 − 𝑇𝑇𝑖𝑖)2𝑁𝑁
𝑖𝑖=1        (6.7) 

where: 

𝑁𝑁 is the number of neurons in the output layer 

𝑂𝑂𝑖𝑖 are the outputs of the network  

𝑇𝑇𝑖𝑖 are the target outputs to be reached
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The weights are then modified iteratively according to the gradient of the cost 

function. 

The complexity associated with the training of an MLP is dependent on the number 

of nodes and the corresponding number of weights. The computational complexity of 

back propagation is 𝑂𝑂(𝑊𝑊) and the numerical gradient computation is of the order 𝑂𝑂(𝑊𝑊2) 

(where 𝑊𝑊 is the number of weights in the network). Thus, the larger the network, the 

greater the complexity of the network. For example, in this case with 60 variables, two 

hidden layers with 10 nodes in each layer and two output nodes, the complexity is of the 

order 𝑂𝑂((60 ∗ 10 + 10 ∗ 10 + 10 ∗ 2)2) = 𝑂𝑂(7202). Thus the training algorithm’s 

complexity increases with the topology of the network, and the degree of approximation 

required.  

6.5.1 Multilayer perceptron classification performance 

Table 6.8 presents the multilayer perceptron classification performance of the original 

and hybrid datasets. It can be seen that the performance of the hybrid data is better than 

the performance of the original dataset. The training set result shows NPV and SEN to be 

100% while PPV, SPEC and ACC are 99%, 95% and 99% respectively. The hybrid 

performance also outperforms the naïve Bayes result shown in table 5.1. This could be 

due to the fact that MLP is able to adjust the weights of algorithm using the error signal 

so that a minimum error is obtained. Although MLP produces outstanding classification 

performance, a key and perhaps the most important disadvantage, from a clinical 

perspective, for the Hull LifeLab clinical dataset is that the algorithm is simply a black 

box that does not allow information about the data to be learnt in great detail. 
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Table 6.8: Multilayer perceptron classification performance of the original and hybrid dataset 

 

 

 

 

Original dataset 
Training set Cross validation 

 Predict Evaluation measure %  Predict Evaluation measure % 
True Alive Dead PPV 97 True Alive Dead PPV 81 
Alive 1455TP 4FN NPV 99  1235TP 224FN NPV 47 
Dead 30FP 455TN SEN 100  284FP 201TN SEN 85 
 SPEC 94  SPEC 41 

ACC 98 ACC 74 
SVM and EM hybrid dataset 

Training set Cross validation 
 Predict Evaluation measure %  Predict Evaluation measure % 
True Alive  Dead PPV 99 True Alive Dead PPV 96 
 1459TP 0FN NPV 100  1421TP 38FN NPV 92 
 22FP 463TN SEN 100  62FP 423TN SEN 97 
 SPEC 95  SPEC 87 

ACC 99  ACC 95 
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6.6 Analysis of results 

The results in this chapter have shown that the classification algorithms obtained 

different predictive accuracy with the original data and the hybrid data. However, for 

Bayes classifier based on KDE shown in table 6.1 and beta based Bayes classifier shown 

in table 6.2, the results using the hybrid data are very similar. This could be due to the 

fact that some of the assumptions required for Bayes classifier are shared by the other 

classifiers. For example, KDE retains the independence assumption but eschews the 

Gaussian distribution assumption. Moreover, the MLEs of the parameters that index the 

beta distribution can be severely biased. As a result, there is no appreciable difference 

and not much of an improvement in performance is shown when compared to naïve Bayes 

performance on the original data shown in table 4.3 and SVM and EM hybrid data in table 

5.1.  

The advantage posed by Beta and KDE Bayes classifiers is that they take into account 

skews and the shape of the distribution, which can be controlled to smooth the data 

distribution. In cases where one is not certain about skews, these classifiers would be 

recommended as a first step, rather than naïve Bayes. However, the performance 

presented by both methods does not show much of an improvement and in cases where 

the data is noisy and contains a lot of issues, this will be reflected in the distribution. On 

the contrary, it is possible to obtain some idea about the data by altering the bandwidth, 

ℎ value. For example, if ℎ → ∞, a Gaussian distribution will be obtained and if ℎ is small, 

too many kernels will be obtained for each data point. Parameters of the data also play a 

part in changing the shape of the distribution, such as the mean and standard deviations. 

For example, Table 6.9 presents glucose, ferritin, MR-proANP and PEFR variable mean 

values for the original data, SVM and EM hybrid data and the SVM and EM hybrid data 
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using the 𝛼𝛼 and 𝛽𝛽 parameters to compute the mean beta distribution. Figure 6.5 shows 

the corresponding graphical representation of the means.  

Overall data 

 Glucose Ferritin MR-proANP PEFR 

Original data 6.698 115.386 225.647 218.533 

SVM & EM 6.974 136.709 301.583 353.375 

Beta 7.255 146.177 364.564 618.593 

Dead class 

 Glucose Ferritin MR-proANP PEFR 

Original data 7.014 119.488 316.841 180.050 

EM 8.333 221.770 621.213 727.316 

Beta 8.491 185.644 722.823 806.223 

Alive class 

 Glucose Ferritin MR-proANP PEFR 

Original data 6.588 114.042 195.332 230.773 

SVM 6.523 108.433 195.332 229.070 

Beta 6.647 127.174 194.77 228.360 

Table 6.9: Mean values of the four variables for the original data, 

SVM & EM data and beta distirbution
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Figure 6.5 Glucose, ferritin, MR-proANP and PEFR mean values of the original data, SVM & EM data and beta SVM & 
EM  dataset
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The four variables were chosen due to their being the variables that presented poor 

distribution as shown in appendix I. It can be seen in table 6.9 that the beta distribution 

shows the most increased mean in all four variables when compared to the original data 

and SVM & EM imputed data. This is also reflected in the graph shown in figure 6.5, 

where there is a steep growth from the original data means to the beta distribution means 

especially for the PEFR variable in the overall data mean and dead class mean, whereas 

the glucose mean values are consistent in all three data groups.  

The dead class shows a different pattern of mean values. For example ferritin presents 

an increase in the SVM and EM data and then a slight drop for the beta mean, where their 

mean values are 221.770 and 185.644 respectively. The PEFR variable shows a mean 

difference of approximately 500 between the original data and the SVM and EM imputed 

data, which illustrates the sudden increase in the dead class graph. This is also reflected 

in the MR-proANP variable which presents a difference of approximately 300. 

On the contrary, the alive class presents similar mean values for each variable. For 

example the PEFR means for the original data, SVM & EM data and beta distribution are 

230.773, 229.070 and 228.360 respectively. The similarity is also present in glucose, 

ferritin, MR-proANP and PEFR variables and reflected in figure 6.5, where a consistency 

is shown. 

The increase in the mean values presented by the SVM and EM algorithm and beta 

distribution indicates a shift in the means and therefore the distribution fits a more 

appropriate curve for the dataset. In contrast, the low mean values presented by the 

original data indicates that the means of the variables are located on the left side of the 

distribution as shown in appendix I. The increased mean by SVM and EM hybrid data, 

especially for the overall data and dead class is due to the maximisation step of the EM 

algorithm and the further increased mean by beta distribution is because of the MLEs of 
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the parameter estimates for the beta distribution. The results in table 6.9 further indicate 

that the original dead class is causing the most problem in the data due to the large mean 

difference between the original and SVM & EM hybrid dataset. The reason for this is 

because the dead class has less number of missing data to be imputed. Table 6.10 present 

the number of missing data present in the different variables for the alive and dead class.  

No. of missing data 

Alive class 

Glucose  Ferritin MR-proANP PEFR 

195 291 0 85 

Dead class 

Glucose  Ferritin MR-proANP PEFR 

46 102 0 48 

Table 6.10: Number of missing data present in the variables of the 

alive and dead class 

It can be seen that the number of missing data present in the alive class is greater than 

those presented by the dead class. This suggests that imputing the missing data generated 

consistent mean values. In contrast, the dead class shows less number of missing data 

therefore less imputed data. This indicates that the observed data variables are causing a 

huge variation in the dead mean values, especially in the PEFR variable. This also 

provides further evidence and answers the question posed in chapter 5 as to what variable 

is causing misclassification of the dead class and contributing the most?; the varied 

measurements of the PEFR variable as mentioned in chapter 5 thus affects the mean 

values presented in this chapter.  

It can be seen that the decision tree and MLP performance shown in table 6.6 and 

table 6.8 respectively show similar performance with the hybrid dataset. The performance 

also improved when compared to the KDE and beta performance and fewer 

misclassifications (FP and FN) are presented when compared to the SVM and EM hybrid 
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results in table 5.1. Neither MLP nor decision tree based classifiers use the distribution 

of the data explicitly, although for the MLP the data is scaled, whereas for the decision 

tree no such requirement is present. The complexity in both can be controlled using 

pruning strategies. However in each case this strategy is different. For example, decision 

tree uses pruning strategies to adjust the size of the tree based on the desired accuracy and 

hence entropy to specifically measure the amount of information needed to identify the 

class of a sample. However, a cautionary note is required in that variation present in the 

data can generate a different decision tree (especially when the variables are close to each 

other in value). This is the case in some of the variables in the Hull LifeLab dataset such 

as ‘Age’ and ‘Pulse bpm’. In contrast, MLP uses the back propagation algorithm to 

minimise the cost function between the actual outputs and target output.  

Decision tree prefers balanced classes and over fits the training data. However 

balancing methods have generalisation problems and for clinical application it is an issue. 

Moreover, pruning and tuning the pruning procedures are required to avoid overfitting 

issues during each implementation. In contrast, decision tree is found useful for 

understanding the structure of the decision making process which makes the usefulness 

of MLP much less clear for data interpretation. However, both algorithms lack the ability 

to explore the data in great detail. Although good results are produced, an explanation as 

to why misclassification has occurred and information about the nature of the data is not 

offered.  

The FP records of the SVM and EM hybrid imputed data generated by the four 

classifiers are shown in appendix VIII. The records were identified to determine whether 

the same records are present in the 79 FP records of the naïve Bayes performance shown 

in table 5.1 of chapter 5. KDE (table 6.1), beta (table 6.2), decision tree (table 6.6) and 

MLP (table 6.8) show 80, 81, 26 and 22 FP records respectively, whereas 79 FP records 
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of the KDE and  beta and all 26 and 22 records were present in the 79 FP records of the 

naïve Bayes classification performance. This indicates that the data of the records is 

poorly collected. 

6.7 Summary 

KDE and beta Bayes based classifiers are both data dependent and thus good 

predictive performance is based on the data properties, characteristics and tuning of the 

data distribution. The complexity of the classifiers is an important factor and this chapter 

has provided an insight into how they can influence performance. KDE requires a 

significant amount of memory to store the probability estimates but does not improve 

results when compared to the naïve Bayes results in chapters 4 and 5. All the classifier 

algorithms are fairly complex, with naïve Bayes having the lowest complexity (both in 

terms of time and space complexity)  

Unlike the classifier algorithms discussed above, naïve Bayes classifier is simple, 

easy to train and allows one to explore the outcome of the prediction using the mean and 

standard deviation parameters obtained during the design of experiments. The assumption 

made about the type of the distribution density function introduces prior information into 

the classifier’s design process. In cases where this additional information is correct, it can 

reduce the classification error, otherwise the classification error will be large. Although 

this assumption is not met by most variables of the Hull LifeLab data, nevertheless the 

data performed surprisingly well; perhaps not to the standards of a computer scientist but 

good enough to provide an insight regarding predictive accuracy. The independence 

assumption has allowed us to benefit from understanding the nature of the clinical data in 

that it permits parameters for each variable to be learned separately. The algorithm was 

also able to deal with the challenges posed by the dataset. For example, unlike decision 

tree, which requires balanced classes and ignores missing data, Bayes classifier is not 
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sensitive to these challenges, including irrelevant attributes. In general the advantages 

outweigh the disadvantages of Bayes for clinical data. However, implementing other 

statistical techniques to guide towards the problematic attributes and records has been 

beneficial for the considered data and in understanding the underlying properties.  
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CHAPTER 7 CONCLUSION AND FUTURE RESEARCH 

7.1 Introduction 

The purpose of this research was to contribute towards tackling the challenges posed 

by the real life clinical datasets when used for mining, while simultaneously improving 

classification performance of the data. There are four challenges posed by the real life 

heart failure clinical dataset, such as missing data, high dimensionality, class imbalance 

and non-normal distribution. Having investigated data mining frameworks, e.g. CRISP-

DM and SEMMA, a workflow, Clinical Data Mining Workflow, was developed (see 

chapter 2). This workflow provided an outline within which classification, and data could 

be analysed. Thus this thesis follows the three distinctive stages presented in the 

workflow, namely, the descriptive, predictive and prescriptive stages. The stages are 

interlinked and each plays a part in understanding the properties of the data by providing 

clear answers as to why misclassification occurred. The findings in this thesis do not 

present an outlier problem but a problem in the manner clinical data was gathered by 

clinicians and tools to identify the problems in the data. This chapter concludes the thesis 

with a summary of the main contributions of the thesis and gives suggestions for future 

research. 

7.2 Contributions of the research 

This thesis explores the underlying challenges through the application of Bayes 

methodologies and analyses the manner in which the challenges affect the performance 

of the algorithm. Although methods based on Bayes are robust to the challenges, i.e. 

missing data, the performances are poor. The workflow allowed for an analysis of the 

reasons for this poor performance, at the same time Bayes utilises a set of tools which 

further enhances the analysis. This allows for a deeper understanding of the nature of the 

data. A number of tests were carried out to understand the importance of missing values 
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in the dataset. This resulted in the investigation of the use of a hybrid imputation dataset, 

which improved classification performance. The hybrid imputation dataset also allowed 

for a more detailed exploration of the posterior probabilities associated with the classes. 

This investigation resulted in an analysis of missing data and records. It was found that 

the records with missing data were classified correctly and that it was records with no 

imputation that were causing the problem. A simple test of discarding the full records 

while leaving records with imputed data resulted in substantially improving classification 

performance. However, this did not locate where the real problem occurred, as a result 

the infinite-norm approach was used to determine the problem variable (see chapter 5). 

This section outlines the objectives of the research and the corresponding chapter (s) that 

present the solution of the objectives. 

Objective 1: To identify challenges associated with a real life clinical dataset as applied 

to clinical practice and the most appropriate set of algorithms for the dataset. 

In chapter 1 the four main challenges posed by real life clinical datasets, such as 

missing data, class imbalance, high dimensionality and non-normal distribution are 

identified. This chapter discusses how these challenges occur, such as during the 

collection of EHRs in clinical practice and how data mining processes can extract 

meaningful information for the purpose of clinical decision making and thus improve 

quality of life. Bayes has been suggested as the appropriate data mining algorithm to 

classify the Hull LifeLab data and develop prediction algorithms. 

Objective 2: Investigate and evaluate methods for handling missing data  

In chapter 2 the proposed Clinical Data Mining Workflow (CDMW) specifically 

tailored to real life clinical datasets that builds the flow of the thesis was presented. The 

three stages of the workflow are descriptive, predictive and prescriptive stages, which are 

discussed in chapters 3-5. Chapter 3 introduces the descriptive stage which involves two 
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steps: 1) data exploration and 2) data preparation. The latter step involves the application 

of seven missing data imputation methods, namely, Most Common value Imputation 

(MCI), Concept Most Common value imputation (CMCI), Expectation Maximization 

Imputation (EMI), k-Nearest Neighbour Imputation (KNNI), k-Means clustering 

Imputation (KMI), Fuzzy k-Means clustering Imputation (FKMI) and Support Vector 

Machine Imputation (SVMI). These imputation methods were implemented to understand 

their mechanisms and determine their effect on the statistical measures and distribution 

of the data.  

Objective 3: Investigate the relationship between methods for missing data with a view 

to develop prediction models and improve classification performance. 

In chapter 4, the predictive stage was presented, which includes the naïve Bayes 

classification performance of the seven imputed datasets. An augmented naïve Bayes, 

known as TAN Bayes was also implemented to improve the naïve Bayes classification 

accuracy. The performance of the imputed datasets was compared, their tasks were taken 

into consideration and the time, space and structural complexities of the Bayes methods 

were also considered to determine their impact on classification accuracy. The results 

showed TAN to outperform naïve Bayes; this is because TAN weakens the strong 

independence assumption of naïve Bayes. Despite the high computational complexity 

posed by the TAN algorithms, the algorithm improved classification accuracy. This 

indicates that the high complexity is required to learn the TAN algorithm. On the other 

hand, naïve Bayes has allowed the variables of the data to be learnt independently and 

considered the accuracy of the classes separately. 

Objective 4: Develop an integrated solution using Bayes methods for missing data. 

In chapter 5 the prescriptive stage of the workflow was discussed. This chapter 

assesses the performance of the proposed SVM and EM hybrid imputed dataset by 
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exploring the posterior probabilities of the 79 FP records. The dataset was developed 

based on the performance of the different classes using different imputation schemes and 

then combining them to form one dataset. This approach improved classification 

accuracy. However, to understand why misclassification was generated, an investigation 

of the class posterior probabilities of both the FP and TN records was conducted to 

determine the probabilities associated with prediction. The records of dead patients who 

were incorrectly classified as alive (that is FP) were investigated to see if imputing 

missing data was the cause for the incorrect classification. It was found that these records 

had no missing data or data was not imputed.  

The proposed SVM and EM hybrid imputed dataset is an extension of the CMC 

imputation method discussed and applied in chapter 3. CMC imputes missing data using 

the in class mean of the dead and alive class respectively, while the hybrid imputed data 

imputes the missing data in the two classes using two different imputation schemes, i.e. 

SVM for the alive class and EM for the dead class. This proposed method has allowed 

the properties of the classes to be understood separately, and thus improved classification 

accuracy. For example in chapter 6, table 6.9 and figure 6.5 shows a sudden mean increase 

with the SVM and EM data and beta distribution for the dead class. This is due to a 

maximisation approach applied by the EM algorithm and during the 𝛼𝛼 and 𝛽𝛽 parameter 

estimates in the beta distribution. In the EM algorithm, the maximisation step maximises 

the expectation of the complete data log likelihood while beta distribution computes the 

means based on the MLE parameters 𝛼𝛼 and 𝛽𝛽. As a result, using the MLE algorithm on 

the already maximised expected value of the data further improved the beta distribution 

mean values. 

Objective 5: Investigate ways of improving classifier to enhance performance for better 

clinical prediction models and decision support systems.  
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In chapter 6 other classification methods are discussed. The considered methods are, 

Bayes classifier based on KDE, beta based Bayes classifier, decision tree and MLP. MLP 

showed the most improved classification performance with reduced number of records in 

the FPs and FNs of the training set (table 6.8). However, the algorithm does not allow 

misclassification of the data to be understood in great detail. The beta distribution bases 

Bayes classifier also improved classification due to the nested MLE process which 

allowed proposed SVM and EM hybrid imputed data where the EM was used on the dead 

class. The application of the EM algorithm on the dead class maximises the mean beta 

distribution   

Overall the choice of the classifier for generating predictive model is a complex task, 

however it is required. The selection of a correct data mining algorithm depends on not 

only the goal of an application, but also on the dataset. Although in some cases the data 

is not compatible with the assumptions of the considered method, it allows the data to be 

explicitly explored to achieve the set aims and objectives.  

In the light of the findings presented in this thesis and the conclusion drawn, 

contributions to the area of investigating challenges of a real life clinical data through the 

application of data mining methods are as follows: 

• The application of the proposed Clinical Data Mining Workflow (CDMW) to 

assist in the data analysis of real life clinical data 

• Implementation of data mining methods such as missing data imputation methods 

and Bayes classifier to determine the effect of the challenges on classification 

performance  

• Implementation of the proposed methods for classification, i.e. hybrid imputed 

data 
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• Determination of the cause of misclassification, exploring the posterior 

probabilities of misclassified records. 

7.3 Future research 

Clinical data also present the challenge of high dimensionality. Although Bayes is not 

sensitive to the issue, it should be considered for future research, particularly in clinical 

datasets where irrelevant data exist. As a result, recommendations for future research are 

as follows: 

1) Investigate feature selection and feature extraction methods with a view to 

develop prediction models and decision support systems. 

• The application of feature selection methods such as Correlation Feature 

Selection (CFS) to select relevant features 

• Feature extraction such as PCA to reduce dimensions of a clinical data.  

2) Investigate the relationships of the seven imputation methods on the different 

classes using other non-Bayes classifier 

3) Recursive Bayes classifier can be applied to estimate the PDF of the parameters 

recursively, each time a new data is introduced, new set of parameters are 

estimated to replace the old ones. This is particularly useful for tele-monitoring.  
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Appendix I Distributions of the raw clinical data 60 variables 
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Appendix II Alive and dead class posterior probabilities and 

missing data of SVM and EM 79 FP record 

No. Record no. Alive post Dead post MD True Predicted 
1 1460 1  0  0 Dead Alive 
2 1479 1  0  0 Dead Alive 
3 1486 1  0  0 Dead Alive 
4 1493 1  0  0 Dead Alive 
5 1520 1  0  0 Dead Alive 
6 1536 1  0  0 Dead Alive 
7 1540 1  0  0 Dead Alive 
8 1543 1  0  0 Dead Alive 
9 1544 1  0  0 Dead Alive 
10 1558 1  0  0 Dead Alive 
11 1591 1  0  0 Dead Alive 
12 1600 1  0  0 Dead Alive 
13 1615 1  0  0 Dead Alive 
14 1637 1  0  0 Dead Alive 
15 1671 1  0  0 Dead Alive 
16 1686 0.864  0.136  0 Dead Alive 
17 1690 1  0  0 Dead Alive 
18 1694 1  0  0 Dead Alive 
19 1707 1  0  0 Dead Alive 
20 1708 1  0  0 Dead Alive 
21 1710 1  0  0 Dead Alive 
22 1711 1  0  0 Dead Alive 
23 1712 1  0  0 Dead Alive 
24 1716 1  0  0 Dead Alive 
25 1725 1  0  0 Dead Alive 
26 1729 1  0  0 Dead Alive 
27 1759 1  0  0 Dead Alive 
28 1768 1  0  0 Dead Alive 
29 1771 1  0  0 Dead Alive 
30 1776 1  0  0 Dead Alive 
31 1780 1  0  0 Dead Alive 
32 1784 1  0  0 Dead Alive 
33 1786 1  0  0 Dead Alive 
34 1795 0.886  0.114  0 Dead Alive 
35 1797 1  0  0 Dead Alive 
36 1800 1  0  7 Dead Alive 
37 1848 1  0  0 Dead Alive 
38 1850 1  0  0 Dead Alive 
39 1855 1  0  0 Dead Alive 
40 1856 1  0  0 Dead Alive 
41 1858 1  0  0 Dead Alive 
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42 1859 1  0  0 Dead Alive 
43 1861 1  0  7 Dead Alive 
44 1863 1  0  0 Dead Alive 
45 1865 0.993  0.007  1 Dead Alive 
46 1867 1  0  0 Dead Alive 
47 1868 1  0  0 Dead Alive 
48 1869 1  0  0 Dead Alive 
49 1872 1  0  0 Dead Alive 
50 1873 1  0  1 Dead Alive 
51 1874 1  0  0 Dead Alive 
52 1876 1  0  0 Dead Alive 
53 1877 1  0  0 Dead Alive 
54 1878 1  0  0 Dead Alive 
55 1879 1  0  0 Dead Alive 
56 1880 1  0  0 Dead Alive 
57 1883 1  0  1 Dead Alive 
58 1886 1  0  0 Dead Alive 
59 1887 1  0  0 Dead Alive 
60 1888 1  0  0 Dead Alive 
61 1890 1  0  0 Dead Alive 
62 1892 1  0  0 Dead Alive 
63 1896 1  0  1 Dead Alive 
64 1897 1  0  0 Dead Alive 
65 1898 1  0  0 Dead Alive 
66 1899 1  0  7 Dead Alive 
67 1902 1  0  0 Dead Alive 
68 1906 1  0  0 Dead Alive 
69 1910 1  0  0 Dead Alive 
70 1911 1  0  0 Dead Alive 
71 1914 1  0  0 Dead Alive 
72 1923 1  0  0 Dead Alive 
73 1927 1  0  0 Dead Alive 
74 1929 1  0  1 Dead Alive 
75 1931 1  0  0 Dead Alive 
76 1936 1  0  0 Dead Alive 
77 1937 1  0  0 Dead Alive 
78 1939 1  0  0 Dead Alive 
79 1943 1  0  0 Dead Alive 
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Appendix III Alive and dead class posterior probabilities and 

missing data of SVM and EM 49 FP record 

No. Record no. Alive post Dead post MD True Predicted 
1 1460 0.826 0.174 0 Dead Alive 
2 1520 0.938 0.062 0 Dead Alive 
3 1540 0.678 0.322 0 Dead Alive 
4 1543 0.963 0.037 0 Dead Alive 
5 1544 0.729 0.271 0 Dead Alive 
6 1558 0.942 0.058 0 Dead Alive 
7 1591 0.87 0.13 0 Dead Alive 
8 1615 0.98 0.02 0 Dead Alive 
9 1637 0.78 0.22 0 Dead Alive 
10 1671 0.514 0.486 0 Dead Alive 
11 1707 0.839 0.161 0 Dead Alive 
12 1711 0.551 0.449 0 Dead Alive 
13 1716 0.745 0.255 0 Dead Alive 
14 1729 0.996 0.004 0 Dead Alive 
15 1759 0.795 0.205 0 Dead Alive 
16 1768 0.73 0.27 0 Dead Alive 
17 1776 0.815 0.185 0 Dead Alive 
18 1780 0.58 0.42 0 Dead Alive 
19 1784 0.841 0.159 0 Dead Alive 
20 1786 0.82 0.18 0 Dead Alive 
21 1795 1 0 0 Dead Alive 
22 1800 0.922 0.078 7 Dead Alive 
23 1856 0.992 0.008 0 Dead Alive 
24 1858 0.988 0.012 0 Dead Alive 
25 1859 0.677 0.323 0 Dead Alive 
26 1861 1 0 7 Dead Alive 
27 1863 1 0 0 Dead Alive 
28 1865 0.586 0.414 1 Dead Alive 
29 1867 0.986 0.014 0 Dead Alive 
30 1869 0.934 0.066 0 Dead Alive 
31 1873 0.98 0.02 1 Dead Alive 
32 1874 0.997 0.003 0 Dead Alive 
33 1877 0.863 0.137 0 Dead Alive 
34 1878 0.84 0.16 0 Dead Alive 
35 1879 0.962 0.038 0 Dead Alive 
36 1880 0.999 0.001 0 Dead Alive 
37 1886 0.535 0.465 0 Dead Alive 
38 1888 0.997 0.003 0 Dead Alive 
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39 1890 0.998 0.002 0 Dead Alive 
40 1892 0.698 0.302 0 Dead Alive 
41 1897 0.802 0.198 0 Dead Alive 
42 1898 0.995 0.005 0 Dead Alive 
43 1899 0.521 0.479 7 Dead Alive 
44 1902 0.997 0.003 0 Dead Alive 
45 1906 0.977 0.023 0 Dead Alive 
46 1911 0.987 0.013 0 Dead Alive 
47 1914 0.976 0.024 0 Dead Alive 
48 1937 0.916 0.084 0 Dead Alive 
49 1939 0.847 0.153 0 Dead Alive 
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Appendix IV Euclidean distance of the 79 FP records of SVM 

and EM hybrid data 

No.  Record no. SVM & EM Euclidean distance 
  Dead Alive 
1 1460 1000.64 217.85 
2 1479 1053.79 1183.42 
3 1486 867.77 355.42 
4 1493 944.41 270.54 
5 1520 1031.81 397.88 
6 1536 831.85 592.05 
7 1540 923.87 200.20 
8 1543 1162.57 343.29 
9 1544 989.82 339.00 
10 1558 1102.91 227.14 
11 1591 949.05 233.93 
12 1600 1034.15 168.65 
13 1615 921.10 275.20 
14 1637 875.45 222.15 
15 1671 858.31 569.25 
16 1686 910.45 195.77 
17 1690 1013.73 343.31 
18 1694 898.40 566.73 
19 1707 1158.04 249.20 
20 1708 1212.06 1472.88 
21 1710 1110.67 1231.11 
22 1711 1036.20 419.72 
23 1712 917.69 423.97 
24 1716 1101.56 273.56 
25 1725 1107.94 188.08 
26 1729 1110.05 174.01 
27 1759 1014.00 144.03 
28 1768 1100.99 223.92 
29 1771 875.88 494.59 
30 1776 905.12 250.45 
31 1780 1077.55 944.53 
32 1784 1075.99 232.35 
33 1786 1021.14 162.66 
34 1795 927.56 488.18 
35 1797 907.03 308.45 
36 1800 881.96 200.01 
37 1848 786.13 519.84 
38 1850 1063.22 1247.68 
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39 1855 938.33 318.62 
40 1856 963.54 157.17 
41 1858 856.44 308.37 
42 1859 883.38 421.79 
43 1861 947.81 190.16 
44 1863 937.13 333.46 
45 1865 987.79 170.45 
46 1867 1061.38 206.99 
47 1868 782.15 353.90 
48 1869 1054.52 987.29 
49 1872 914.00 753.21 
50 1873 1061.45 233.52 
51 1874 947.64 167.57 
52 1876 1080.09 251.60 
53 1877 998.11 1146.66 
54 1878 800.10 356.41 
55 1879 933.14 175.78 
56 1880 971.07 181.32 
57 1883 1059.20 801.50 
58 1886 762.76 436.93 
59 1887 1007.42 179.35 
60 1888 1148.98 256.65 
61 1890 1076.16 167.70 
62 1892 968.43 597.81 
63 1896 893.06 562.64 
64 1897 1007.28 303.80 
65 1898 1040.85 313.59 
66 1899 884.50 386.97 
67 1902 1013.02 157.08 
68 1906 958.96 347.88 
69 1910 932.38 307.66 
70 1911 1063.06 260.18 
71 1914 939.92 578.48 
72 1923 965.10 462.61 
73 1927 883.51 271.65 
74 1929 1008.62 778.66 
75 1931 1083.66 645.62 
76 1936 891.26 504.94 
77 1937 977.81 414.03 
78 1939 989.23 263.78 
79 1943 800.11 627.22 
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Appendix V Dead and alive class maximum difference of the 

PEFR variable 

 PEFR 
No.  Record no. Dead Alive 
1 1460 544.00 62.71 
2 1479 703.00 96.29 
3 1486 607.00 0.29 
4 1493 667.00 60.29 
5 1520 697.00 90.29 
6 1536 668.00 61.29 
7 1540 533.00 73.71 
8 1543 786.00 179.29 
9 1544 780.00 173.29 
10 1558 677.00 70.29 
11 1591 614.00 7.29 
12 1600 683.00 76.29 
13 1615 695.00 88.29 
14 1637 535.00 71.71 
15 1671 513.00 93.71 
16 1686 655.00 48.29 
17 1690 763.00 156.29 
18 1694 662.00 55.29 
19 1707 725.00 118.29 
20 1708 611.00 4.29 
21 1710 612.00 5.29 
22 1711 813.00 206.29 
23 1712 765.00 158.29 
24 1716 738.00 131.29 
25 1725 750.00 143.29 
26 1729 710.00 103.29 
27 1759 557.00 49.71 
28 1768 721.00 114.29 
29 1771 641.00 34.29 
30 1776 485.00 121.71 
31 1780 738.00 131.29 
32 1784 539.00 67.71 
33 1786 591.00 15.71 
34 1795 607.00 0.29 
35 1797 614.00 7.29 
36 1800 565.28 41.43 
37 1848 588.00 18.71 
38 1850 534.00 72.71 
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39 1855 693.00 86.29 
40 1856 563.00 43.71 
41 1858 454.00 152.71 
42 1859 694.00 87.29 
43 1861 509.85 96.86 
44 1863 314.00 292.71 
45 1865 676.55 69.84 
46 1867 633.00 26.29 
47 1868 391.00 215.71 
48 1869 572.00 34.71 
49 1872 745.00 138.29 
50 1873 791.24 184.53 
51 1874 599.00 7.71 
52 1876 743.00 136.29 
53 1877 569.00 37.71 
54 1878 478.00 128.71 
55 1879 629.00 22.29 
56 1880 561.00 45.71 
57 1883 741.02 134.31 
58 1886 486.00 120.71 
59 1887 720.00 113.29 
60 1888 702.00 95.29 
61 1890 636.00 29.29 
62 1892 734.00 127.29 
63 1896 616.81 10.10 
64 1897 680.00 73.29 
65 1898 530.00 76.71 
66 1899 620.64 13.93 
67 1902 563.00 43.71 
68 1906 735.00 128.29 
69 1910 662.00 55.29 
70 1911 672.00 65.29 
71 1914 642.00 35.29 
72 1923 688.00 81.29 
73 1927 529.00 77.71 
74 1929 750.35 143.64 
75 1931 771.00 164.29 
76 1936 673.00 66.29 
77 1937 665.00 58.29 
78 1939 692.00 85.29 
79 1943 676.00 69.29 
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Appendix VI J48 pruned decision tree of the original dataset 

Urea (mmol/L) <= 9.5 
|   FEV1 (L) <= 0.92 
|   |   BMI <= 22.838625 
|   |   |   CRP (mg/L) <= 10 
|   |   |   |   Urea (mmol/L) <= 4.8: Alive (7.78/1.15) 
|   |   |   |   Urea (mmol/L) > 4.8 
|   |   |   |   |   FEV1 (L) <= 0.42: Alive (2.12/0.01) 
|   |   |   |   |   FEV1 (L) > 0.42: Dead (16.92/1.44) 
|   |   |   CRP (mg/L) > 10: Dead (15.78/0.06) 
|   |   BMI > 22.838625 
|   |   |   CRP (mg/L) <= 7.6 
|   |   |   |   Aortic Velocity (m/s) <= 1.43 
|   |   |   |   |   E <= 0.38: Dead (3.59/0.49) 
|   |   |   |   |   E > 0.38 
|   |   |   |   |   |   FVC (L) <= 1.33 
|   |   |   |   |   |   |   Haemoglobin (g/dL) <= 12.7 
|   |   |   |   |   |   |   |   FVC <= 58.620258: Dead (4.31/0.16) 
|   |   |   |   |   |   |   |   FVC > 58.620258: Alive (2.43/0.03) 
|   |   |   |   |   |   |   Haemoglobin (g/dL) > 12.7: Alive (14.04/0.7) 
|   |   |   |   |   |   FVC (L) > 1.33: Alive (40.83/0.33) 
|   |   |   |   Aortic Velocity (m/s) > 1.43 
|   |   |   |   |   CT-proET1 <= 37: Dead (5.82/0.67) 
|   |   |   |   |   CT-proET1 > 37 
|   |   |   |   |   |   FEV1 (L) <= 0.65 
|   |   |   |   |   |   |   QT <= 414: Dead (5.94/0.1) 
|   |   |   |   |   |   |   QT > 414: Alive (6.94/1.9) 
|   |   |   |   |   |   FEV1 (L) > 0.65: Alive (17.36/1.96) 
|   |   |   CRP (mg/L) > 7.6 
|   |   |   |   MR-proANP <= 98 
|   |   |   |   |   Uric Acid (mmol/L) <= 0.3: Dead (2.21/0.21) 
|   |   |   |   |   Uric Acid (mmol/L) > 0.3: Alive (11.35) 
|   |   |   |   MR-proANP > 98 
|   |   |   |   |   Height (Exam) (m) <= 1.575: Dead (15.43/1.31) 
|   |   |   |   |   Height (Exam) (m) > 1.575 
|   |   |   |   |   |   Age (yrs) <= 68: Alive (4.55) 
|   |   |   |   |   |   Age (yrs) > 68 
|   |   |   |   |   |   |   Height (Exam) (m) <= 1.595: Alive (3.91/0.15) 
|   |   |   |   |   |   |   Height (Exam) (m) > 1.595 
|   |   |   |   |   |   |   |   Phosphate (mmol/L) <= 1.07: Dead (12.86/1.16) 
|   |   |   |   |   |   |   |   Phosphate (mmol/L) > 1.07 
|   |   |   |   |   |   |   |   |   FEV1 <= 25.064277: Dead (4.74/0.21) 
|   |   |   |   |   |   |   |   |   FEV1 > 25.064277: Alive (7.06/0.84) 
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|   FEV1 (L) > 0.92 
|   |   Systolic BP (mmHg) <= 111 
|   |   |   Bilirubin (umol/L) <= 34 
|   |   |   |   Albumin (g/L) <= 30 
|   |   |   |   |   Platelets (10^9/L) <= 334: Dead (9.25/0.05) 
|   |   |   |   |   Platelets (10^9/L) > 334: Alive (4.02/1.0) 
|   |   |   |   Albumin (g/L) > 30 
|   |   |   |   |   CT-proET1 <= 31 
|   |   |   |   |   |   Calcium (mmol/L) <= 2.34: Dead (8.92/0.72) 
|   |   |   |   |   |   Calcium (mmol/L) > 2.34 
|   |   |   |   |   |   |   TSH (mU/L) <= 1.2: Dead (2.95/0.56) 
|   |   |   |   |   |   |   TSH (mU/L) > 1.2: Alive (4.79/0.09) 
|   |   |   |   |   CT-proET1 > 31 
|   |   |   |   |   |   Bicarbonate (mmol/L) <= 26: Alive (16.53) 
|   |   |   |   |   |   Bicarbonate (mmol/L) > 26 
|   |   |   |   |   |   |   Left Atrium (Hgt indexed) <= 2.4 
|   |   |   |   |   |   |   |   Pulse BP (mmHg) <= 45: Alive (27.85) 
|   |   |   |   |   |   |   |   Pulse BP (mmHg) > 45 
|   |   |   |   |   |   |   |   |   Albumin (g/L) <= 37: Dead (2.61/0.36) 
|   |   |   |   |   |   |   |   |   Albumin (g/L) > 37: Alive (2.75) 
|   |   |   |   |   |   |   Left Atrium (Hgt indexed) > 2.4 
|   |   |   |   |   |   |   |   Rate (ECG) (bpm) <= 64: Alive (13.63/0.87) 
|   |   |   |   |   |   |   |   Rate (ECG) (bpm) > 64 
|   |   |   |   |   |   |   |   |   MCV (fL) <= 91.7 
|   |   |   |   |   |   |   |   |   |   QT <= 400 
|   |   |   |   |   |   |   |   |   |   |   Iron (umol/L) <= 15 
|   |   |   |   |   |   |   |   |   |   |   |   Left Atrium (cm) <= 4.33: Alive (3.05/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   Left Atrium (cm) > 4.33: Dead (5.37/0.35) 
|   |   |   |   |   |   |   |   |   |   |   Iron (umol/L) > 15: Alive (7.94/1.61) 
|   |   |   |   |   |   |   |   |   |   QT > 400: Alive (8.72/0.25) 
|   |   |   |   |   |   |   |   |   MCV (fL) > 91.7 
|   |   |   |   |   |   |   |   |   |   Cholesterol (mmol/L) <= 4.4: Dead (10.43/1.25) 
|   |   |   |   |   |   |   |   |   |   Cholesterol (mmol/L) > 4.4: Alive (2.88/0.94) 
|   |   |   Bilirubin (umol/L) > 34: Dead (7.15/0.04) 
|   |   Systolic BP (mmHg) > 111 
|   |   |   Age (yrs) <= 61: Alive (276.61/9.0) 
|   |   |   Age (yrs) > 61 
|   |   |   |   CRP (mg/L) <= 3.9 
|   |   |   |   |   Haemoglobin (g/dL) <= 11.8 
|   |   |   |   |   |   Calcium (mmol/L) <= 2.31 
|   |   |   |   |   |   |   Vitamin B12 (ng/L) <= 433 
|   |   |   |   |   |   |   |   Triglycerides (mmol/L) <= 1.6: Dead (10.32/1.29) 
|   |   |   |   |   |   |   |   Triglycerides (mmol/L) > 1.6: Alive (5.1/1.62) 
|   |   |   |   |   |   |   Vitamin B12 (ng/L) > 433: Alive (7.05/0.54) 
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|   |   |   |   |   |   Calcium (mmol/L) > 2.31 
|   |   |   |   |   |   |   Age (yrs) <= 86: Alive (19.57/0.31) 
|   |   |   |   |   |   |   Age (yrs) > 86: Dead (2.5/0.63) 
|   |   |   |   |   Haemoglobin (g/dL) > 11.8 
|   |   |   |   |   |   LVEDD (cm) <= 6.91 
|   |   |   |   |   |   |   Urea (mmol/L) <= 7.3: Alive (339.82/17.21) 
|   |   |   |   |   |   |   Urea (mmol/L) > 7.3 
|   |   |   |   |   |   |   |   Sodium (mmol/L) <= 137: Alive (13.08/0.05) 
|   |   |   |   |   |   |   |   Sodium (mmol/L) > 137 
|   |   |   |   |   |   |   |   |   Urea (mmol/L) <= 7.5: Dead (4.48/1.14) 
|   |   |   |   |   |   |   |   |   Urea (mmol/L) > 7.5 
|   |   |   |   |   |   |   |   |   |   Adj Calcium (mmol/L) <= 2.31: Dead (2.38/0.08) 
|   |   |   |   |   |   |   |   |   |   Adj Calcium (mmol/L) > 2.31 
|   |   |   |   |   |   |   |   |   |   |   Creatinine (umol/L) <= 139: Alive (35.57/1.14) 
|   |   |   |   |   |   |   |   |   |   |   Creatinine (umol/L) > 139 
|   |   |   |   |   |   |   |   |   |   |   |   Sodium (mmol/L) <= 142: Dead (2.94/0.09) 
|   |   |   |   |   |   |   |   |   |   |   |   Sodium (mmol/L) > 142: Alive (3.11/0.01) 
|   |   |   |   |   |   LVEDD (cm) > 6.91 
|   |   |   |   |   |   |   Bicarbonate (mmol/L) <= 30 
|   |   |   |   |   |   |   |   Rate (ECG) (bpm) <= 90 
|   |   |   |   |   |   |   |   |   CRP (mg/L) <= 1.8 
|   |   |   |   |   |   |   |   |   |   PCT <= 0.014: Alive (3.68) 
|   |   |   |   |   |   |   |   |   |   PCT > 0.014 
|   |   |   |   |   |   |   |   |   |   |   Age (yrs) <= 68: Alive (2.38) 
|   |   |   |   |   |   |   |   |   |   |   Age (yrs) > 68: Dead (8.96/1.6) 
|   |   |   |   |   |   |   |   |   CRP (mg/L) > 1.8: Alive (10.75/0.1) 
|   |   |   |   |   |   |   |   Rate (ECG) (bpm) > 90: Dead (4.19/0.12) 
|   |   |   |   |   |   |   Bicarbonate (mmol/L) > 30: Alive (7.25/0.09) 
|   |   |   |   CRP (mg/L) > 3.9 
|   |   |   |   |   CT-proET1 <= 44 
|   |   |   |   |   |   FEV1 <= 42.70618: Dead (5.92/0.03) 
|   |   |   |   |   |   FEV1 > 42.70618 
|   |   |   |   |   |   |   MR-proADM <= 0.644867: Alive (55.18/18.26) 
|   |   |   |   |   |   |   MR-proADM > 0.644867: Dead (7.34/1.88) 
|   |   |   |   |   CT-proET1 > 44 
|   |   |   |   |   |   FVC (L) <= 3.7 
|   |   |   |   |   |   |   BMI <= 27.274954 
|   |   |   |   |   |   |   |   Cholesterol (mmol/L) <= 3.3: Alive (10.03/0.25) 
|   |   |   |   |   |   |   |   Cholesterol (mmol/L) > 3.3 
|   |   |   |   |   |   |   |   |   Adj Calcium (mmol/L) <= 2.38 
|   |   |   |   |   |   |   |   |   |   Bilirubin (umol/L) <= 14: Dead (16.94/2.92) 
|   |   |   |   |   |   |   |   |   |   Bilirubin (umol/L) > 14 
|   |   |   |   |   |   |   |   |   |   |   Vitamin B12 (ng/L) <= 373: Alive (5.51/0.07) 
|   |   |   |   |   |   |   |   |   |   |   Vitamin B12 (ng/L) > 373: Dead (2.05/0.05) 
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|   |   |   |   |   |   |   |   |   Adj Calcium (mmol/L) > 2.38 
|   |   |   |   |   |   |   |   |   |   Triglycerides (mmol/L) <= 2.2 
|   |   |   |   |   |   |   |   |   |   |   Bilirubin (umol/L) <= 26 
|   |   |   |   |   |   |   |   |   |   |   |   Urea (mmol/L) <= 5.2: Alive (31.56/4.16) 
|   |   |   |   |   |   |   |   |   |   |   |   Urea (mmol/L) > 5.2 
|   |   |   |   |   |   |   |   |   |   |   |   |   Chloride (mmol/L) <= 105 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   Hct (fraction) <= 0.403 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   Urea (mmol/L) <= 8.7: Alive (16.49/2.59) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   Urea (mmol/L) > 8.7: Dead (2.79/0.02) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   Hct (fraction) > 0.403 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   White Cell Count (10^9/L) <= 8.1 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   PCT <= 0.02: Dead (8.0/1.97) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   PCT > 0.02: Alive (9.58/2.12) 
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   White Cell Count (10^9/L) > 8.1: Dead (7.52/0.05) 
|   |   |   |   |   |   |   |   |   |   |   |   |   Chloride (mmol/L) > 105: Alive (5.72/0.06) 
|   |   |   |   |   |   |   |   |   |   |   Bilirubin (umol/L) > 26: Dead (3.89/0.06) 
|   |   |   |   |   |   |   |   |   |   Triglycerides (mmol/L) > 2.2: Alive (10.78/0.39) 
|   |   |   |   |   |   |   BMI > 27.274954: Alive (256.49/42.7) 
|   |   |   |   |   |   FVC (L) > 3.7: Alive (32.56/0.3) 
Urea (mmol/L) > 9.5 
|   PCT <= 0.045 
|   |   Diastolic BP (mmHg) <= 98 
|   |   |   Iron (umol/L) <= 12 
|   |   |   |   Iron (umol/L) <= 5: Alive (4.98/0.42) 
|   |   |   |   Iron (umol/L) > 5 
|   |   |   |   |   Iron (umol/L) <= 8 
|   |   |   |   |   |   LVEDD (Hgt indexed) <= 3.31 
|   |   |   |   |   |   |   QT <= 421: Dead (2.3/0.47) 
|   |   |   |   |   |   |   QT > 421: Alive (3.17/0.34) 
|   |   |   |   |   |   LVEDD (Hgt indexed) > 3.31: Dead (18.4/2.54) 
|   |   |   |   |   Iron (umol/L) > 8 
|   |   |   |   |   |   Bilirubin (umol/L) <= 9: Alive (5.57/0.03) 
|   |   |   |   |   |   Bilirubin (umol/L) > 9 
|   |   |   |   |   |   |   CT-proAVP <= 18.5 
|   |   |   |   |   |   |   |   Iron (umol/L) <= 9: Alive (4.95/0.51) 
|   |   |   |   |   |   |   |   Iron (umol/L) > 9 
|   |   |   |   |   |   |   |   |   Iron (umol/L) <= 11 
|   |   |   |   |   |   |   |   |   |   White Cell Count (10^9/L) <= 8.2: Alive (11.09/1.71) 
|   |   |   |   |   |   |   |   |   |   White Cell Count (10^9/L) > 8.2: Dead (7.63/1.05) 
|   |   |   |   |   |   |   |   |   Iron (umol/L) > 11 
|   |   |   |   |   |   |   |   |   |   MCV (fL) <= 89.6: Alive (5.42/0.13) 
|   |   |   |   |   |   |   |   |   |   MCV (fL) > 89.6 
|   |   |   |   |   |   |   |   |   |   |   White Cell Count (10^9/L) <= 7.7: Dead (5.86/0.45) 
|   |   |   |   |   |   |   |   |   |   |   White Cell Count (10^9/L) > 7.7: Alive (2.93/0.44) 



163 

 

|   |   |   |   |   |   |   CT-proAVP > 18.5 
|   |   |   |   |   |   |   |   Sodium (mmol/L) <= 138 
|   |   |   |   |   |   |   |   |   ALT (iu/L) <= 15: Dead (4.13/0.12) 
|   |   |   |   |   |   |   |   |   ALT (iu/L) > 15 
|   |   |   |   |   |   |   |   |   |   FVC Predicted (L) <= 3.737692: Alive (3.34/0.02) 
|   |   |   |   |   |   |   |   |   |   FVC Predicted (L) > 3.737692: Dead (2.54/0.44) 
|   |   |   |   |   |   |   |   Sodium (mmol/L) > 138: Dead (16.12/1.05) 
|   |   |   Iron (umol/L) > 12 
|   |   |   |   Albumin (g/L) <= 36 
|   |   |   |   |   Chloride (mmol/L) <= 96: Dead (6.84/0.23) 
|   |   |   |   |   Chloride (mmol/L) > 96 
|   |   |   |   |   |   Ferritin (ug/L) <= 155 
|   |   |   |   |   |   |   TSH (mU/L) <= 2.2: Dead (11.95/2.38) 
|   |   |   |   |   |   |   TSH (mU/L) > 2.2: Alive (10.38/3.09) 
|   |   |   |   |   |   Ferritin (ug/L) > 155: Alive (12.07/2.1) 
|   |   |   |   Albumin (g/L) > 36 
|   |   |   |   |   MCV (fL) <= 93.1: Alive (55.65/6.51) 
|   |   |   |   |   MCV (fL) > 93.1 
|   |   |   |   |   |   Triglycerides (mmol/L) <= 2.7 
|   |   |   |   |   |   |   Iron (umol/L) <= 24 
|   |   |   |   |   |   |   |   Diastolic BP (mmHg) <= 82: Dead (24.56/6.9) 
|   |   |   |   |   |   |   |   Diastolic BP (mmHg) > 82: Alive (3.17) 
|   |   |   |   |   |   |   Iron (umol/L) > 24: Alive (3.04/0.28) 
|   |   |   |   |   |   Triglycerides (mmol/L) > 2.7: Alive (9.05/0.79) 
|   |   Diastolic BP (mmHg) > 98: Alive (15.93/0.49) 
|   PCT > 0.045 
|   |   Urea (mmol/L) <= 21.2 
|   |   |   Rate (ECG) (bpm) <= 54: Alive (8.54/0.28) 
|   |   |   Rate (ECG) (bpm) > 54 
|   |   |   |   Haemoglobin (g/dL) <= 14.6 
|   |   |   |   |   Creatinine (umol/L) <= 132: Dead (13.11/0.05) 
|   |   |   |   |   Creatinine (umol/L) > 132 
|   |   |   |   |   |   TSH (mU/L) <= 0.41: Alive (4.11/0.1) 
|   |   |   |   |   |   TSH (mU/L) > 0.41 
|   |   |   |   |   |   |   Adj Calcium (mmol/L) <= 2.45 
|   |   |   |   |   |   |   |   Age (yrs) <= 77 
|   |   |   |   |   |   |   |   |   Platelets (10^9/L) <= 328: Alive (12.12/1.34) 
|   |   |   |   |   |   |   |   |   Platelets (10^9/L) > 328: Dead (2.03/0.02) 
|   |   |   |   |   |   |   |   Age (yrs) > 77 
|   |   |   |   |   |   |   |   |   Platelets (10^9/L) <= 272: Dead (15.0/1.0) 
|   |   |   |   |   |   |   |   |   Platelets (10^9/L) > 272: Alive (3.07/0.07) 
|   |   |   |   |   |   |   Adj Calcium (mmol/L) > 2.45: Dead (16.28/1.29) 
|   |   |   |   Haemoglobin (g/dL) > 14.6: Alive (4.31/0.01) 
|   |   Urea (mmol/L) > 21.2: Dead (21.48/1.12) 
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Appendix VII J48 pruned decision tree of the SVM and EM 

hybrid dataset 

SystolicBP(mmHg) <= 233 
|   MR-proANP <= 188: Alive (910.0/12.0) 
|   MR-proANP > 188 
|   |   UricAcid(mmol/L) <= 0.83 
|   |   |   LVEDD(HgtIndexed) <= 3.55 
|   |   |   |   AlkalinePhophatase(iu/L) <= 135 
|   |   |   |   |   Chloride(mmol/L) <= 98 
|   |   |   |   |   |   CRP(mg/L) <= 8.8: Alive (42.0/1.0) 
|   |   |   |   |   |   CRP(mg/L) > 8.8 
|   |   |   |   |   |   |   BSA(m^2) <= 1.741787 
|   |   |   |   |   |   |   |   E <= 1.27: Dead (6.0) 
|   |   |   |   |   |   |   |   E > 1.27: Alive (2.0) 
|   |   |   |   |   |   |   BSA(m^2) > 1.741787: Alive (12.0/1.0) 
|   |   |   |   |   Chloride(mmol/L) > 98: Alive (243.0/8.0) 
|   |   |   |   AlkalinePhophatase(iu/L) > 135 
|   |   |   |   |   Rate(ECG)(bpm) <= 84 
|   |   |   |   |   |   Albumin(g/L) <= 39: Dead (6.0) 
|   |   |   |   |   |   Albumin(g/L) > 39: Alive (2.0) 
|   |   |   |   |   Rate(ECG)(bpm) > 84: Alive (10.0/1.0) 
|   |   |   LVEDD(HgtIndexed) > 3.55 
|   |   |   |   Albumin(g/L) <= 31 
|   |   |   |   |   Calcium(mmol/L) <= 2.28: Dead (8.0) 
|   |   |   |   |   Calcium(mmol/L) > 2.28: Alive (3.0) 
|   |   |   |   Albumin(g/L) > 31 
|   |   |   |   |   Urea(mmol/L) <= 17.6 
|   |   |   |   |   |   Triglycerides(mmol/L) <= 1.75 
|   |   |   |   |   |   |   MCV(fL) <= 91.6 
|   |   |   |   |   |   |   |   Calcium(mmol/L) <= 2.3: Alive (32.0) 
|   |   |   |   |   |   |   |   Calcium(mmol/L) > 2.3 
|   |   |   |   |   |   |   |   |   Albumin(g/L) <= 38 
|   |   |   |   |   |   |   |   |   |   MCV(fL) <= 88.5 
|   |   |   |   |   |   |   |   |   |   |   QRSWidth(msec) <= 102: Alive (5.0) 
|   |   |   |   |   |   |   |   |   |   |   QRSWidth(msec) > 102 
|   |   |   |   |   |   |   |   |   |   |   |   UricAcid(mmol/L) <= 0.38: Alive (3.0/1.0) 
|   |   |   |   |   |   |   |   |   |   |   |   UricAcid(mmol/L) > 0.38: Dead (7.0) 
|   |   |   |   |   |   |   |   |   |   MCV(fL) > 88.5: Alive (11.0) 
|   |   |   |   |   |   |   |   |   Albumin(g/L) > 38: Alive (18.0) 
|   |   |   |   |   |   |   MCV(fL) > 91.6 
|   |   |   |   |   |   |   |   CT-proET1 <= 66.333748 
|   |   |   |   |   |   |   |   |   Pulse(Exam)(bpm) <= 54: Alive (2.0) 
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|   |   |   |   |   |   |   |   |   Pulse(Exam)(bpm) > 54: Dead (12.0/1.0) 
|   |   |   |   |   |   |   |   CT-proET1 > 66.333748 
|   |   |   |   |   |   |   |   |   LVEDD(cm) <= 6.96 
|   |   |   |   |   |   |   |   |   |   CRP(mg/L) <= 9.4: Alive (23.0) 
|   |   |   |   |   |   |   |   |   |   CRP(mg/L) > 9.4 
|   |   |   |   |   |   |   |   |   |   |   Height(Exam)(m) <= 1.69: Alive (4.0) 
|   |   |   |   |   |   |   |   |   |   |   Height(Exam)(m) > 1.69: Dead (2.0) 
|   |   |   |   |   |   |   |   |   LVEDD(cm) > 6.96 
|   |   |   |   |   |   |   |   |   |   LeftAtrium(BSAIndexed) <= 2.34: Alive (4.0) 
|   |   |   |   |   |   |   |   |   |   LeftAtrium(BSAIndexed) > 2.34 
|   |   |   |   |   |   |   |   |   |   |   Cholesterol(mmol/L) <= 3.6: Alive (2.0) 
|   |   |   |   |   |   |   |   |   |   |   Cholesterol(mmol/L) > 3.6: Dead (7.0) 
|   |   |   |   |   |   Triglycerides(mmol/L) > 1.75: Alive (41.0/1.0) 
|   |   |   |   |   Urea(mmol/L) > 17.6 
|   |   |   |   |   |   TotalProtein(g/L) <= 68 
|   |   |   |   |   |   |   MR-proANP <= 494.319106: Alive (3.0/1.0) 
|   |   |   |   |   |   |   MR-proANP > 494.319106: Dead (8.0) 
|   |   |   |   |   |   TotalProtein(g/L) > 68: Alive (3.0) 
|   |   UricAcid(mmol/L) > 0.83: Alive (109.0) 
SystolicBP(mmHg) > 233: Dead (404.0) 
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Appendix VIII FP Records of the four classifiers 

No. Decision tree KDE MLP Beta distribution 
1   1486        1460        1543      1460 
2   1493        1479        1600      1479 
3   1540        1486        1637      1486 
4   1543        1493        1707      1493 
5   1637        1520        1729      1520 
6   1686        1536        1768      1536 
7   1711        1540        1856      1540 
8   1716        1543        1858      1543 
9   1776        1544        1863      1544 
10   1784        1558        1867      1558 
11   1850        1591        1876      1591 
12   1861        1600        1878      1600 
13   1863        1615        1888      1615 
14   1865        1637        1890         1637 
15   1867        1671        1898      1671 
16   1869        1686        1899      1686 
17   1874        1690        1902      1690 
18   1878        1694        1910      1694 
19   1879        1707        1911      1707 
20   1880        1708        1927      1708 
21   1888        1710        1931      1710 
22   1890        1711        1937      1711 
23   1898        1712       1712 
24   1902        1716      1716 
25   1927        1725      1725 
26   1939        1729      1729 
27 

 

  1759      1759 
28   1768      1768 
29   1771      1771 
30   1776      1776 
31   1778      1778 
32   1780      1780 
33   1784      1784 
34   1786      1786 
35   1795      1795 
36   1797      1797 
37   1800      1800 
38   1848      1848 
39   1850      1850 
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40   1855      1855 
41   1856      1856 
42   1858      1858 
43   1859      1859 
44   1861      1861 
45   1863      1863 
46   1865      1865 
47   1867      1867 
48   1868          1868 
49   1869      1869 
50   1872      1872 
51   1873      1873 
52   1874      1874 
53   1876      1876 
54   1877      1877 
55   1878      1878 
56   1879      1879 
57   1880      1880 
58   1883      1883 
59   1886      1886 
60   1887      1887 
61 

 

  1888       1888 
62   1890      1890 
63   1892      1892 
64   1896      1893 
65   1897      1896 
66   1898      1897 
67   1899      1898 
68   1902      1899 
69   1906      1902 
70   1910      1906 
71   1911      1910 
72   1914      1911 
73   1923      1914 
74   1927      1923 
75   1929      1927 
76   1931      1929 
77   1936      1931 
78   1937      1936 
79   1939      1937 
80   1943      1939 
81  1943 
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